Slicing a system for optimization in QMC

Pablo López Ríos

TCM group, Cavendish Laboratory, University of Cambridge.

・ロト ・回ト ・ヨト ・ヨト

э

Extended systems and target accuracy

QMC studies of extended systems require calculations at multiple system sizes.

Let $M \equiv (\# \text{ steps})$, $N \equiv (\# \text{ electrons})$, assume Slater-Jastrow wfn:

- Cost of QMC run is $\sim MN^3$
- Statistical error in total energy is $\sigma \sim \sqrt{N/M}$ \rightarrow for fixed error in total energy σ , cost of run is $\sim N^4$
- Statistical error in energy per electron is $\sigma \sim 1/\sqrt{NM}$ \rightarrow for fixed error per electron σ , cost of run is $\sim N^2$

(ロ) (同) (E) (E) (E)

Wave function optimization and system size

Wave function optimization in QMC:

- Generate $\{{\bf R}_m(\pmb{\alpha}_0)\}_{m=1}^M$ distributed according to $|\Psi(\pmb{\alpha}_0)|^2$
- Minimize target function evaluated at $\{\mathbf{R}_m(\boldsymbol{\alpha}_0)\}$, giving $\boldsymbol{\alpha}_1$
- Repeat until converged

How to scale M with N in optimization?

- Local energy relatively smoother for larger $N \rightarrow$ reduce M?
- Each R_m represents one data point for target function;
 Some methods have a hard lower limit on M;
 - \rightarrow keep *M* constant?

(ロ) (同) (E) (E) (E)

Background

Slicing the system

Divide, conquer?

What if we divide the system into n pieces (e.g., primitive cells) to make n times more data points available to the optimizer?

The slicing idea

- Divide the system into *n* slices
- Compute the energy of each slice
- Pass nM data points to the optimizer

< 17 >

э.

The slicing idea: options

- How to divide the system?
- What is "the energy" of a slice of the system?
- Slices with different $N \rightarrow$ fluctuations. What do we do?

 ∃ >

The slicing idea: tentative choices

Divide geometrically.

•
$$E^{(k)} = \sum_{i \in \Omega_k} \left(-\frac{1}{2} \nabla_i^2 \Psi + v_{ii} + \frac{1}{2} \sum_{j \neq i} v_{ij} \right)$$
 such that $E = \sum_k E^{(k)}$

• Pass energies per electron to the optimizer.

< 1[™] >

- Paramagnetic 38-electron gas at $r_s = 1$ a.u.
- Simple cubic cell
- Slater-Jastrow wave function with 16 parameters
- Optimize by minimizing median absolute deviation of local energies from median (MADmin)

・ロト ・回ト ・ヨト ・ヨト

3

Results

Running with M = 2500 configurations:

Method Tests

Results

Running with M = 20 configurations:

Summary

- Slices seem to work OK for the HEG
- Slices seem advantageous at (very) small M
- Slices not expected to be terribly useful, however might be an idea to keep in mind

- < ≣ >

э

End

Pablo López Ríos slice-opt-matic

★ロ→ ★御→ ★注→ ★注→ 「注

End

Pablo López Ríos slice-opt-matic

★ロ→ ★御→ ★注→ ★注→ 「注