
Chapter 5

Topological Phase Transitions

Previously, we have seen that the breaking of a continuous symmetry is accompanied by the

appearance of massless Goldstone modes. Fluctuations of the latter lead to the destruction

of long-range order at any finite temperature in dimensions d ≤ 2 — the Mermin-Wagner

theorem. However, our perturbative analysis revealed only a power-law decay of spatial

correlations in precisely two-dimensions — “quasi long-range order”. Such cases admit

the existence of a new type of continuous phase transition driven by the proliferation of

topological defects. The aim of this section is to discuss the phenomenology of this type

of transition which lies outside the usual classification scheme.

In classifying states of condensed matter, we usually consider two extremes: on the
one hand there are crystalline solids in which atoms form a perfectly periodic array that
extends to infinity in all directions. Such phases are said to possess long-range order
(LRO). On the other hand there are fluids or glasses, in which the atoms are completely
disordered and the system is both orientationally and positionally isotropic — that is
the materials look the same when viewed from any direction. However, an intermediate
state of matter is possible. In such a state the atoms are distributed at random, as in a
fluid or glass, but the system is orientationally anisotropic on a macroscopic scale, as in
a crystalline solid. This means that some properties of the fluid are different in different
directions. Order of this sort is known as bond-orientational order.

This type of quasi long-range order is manifest in properties of superfluid and
superconducting films (i.e. two-dimensions) and in the crystallisation properties of fluid
membranes. As we have seen, according to the Mermin-Wagner theorem, fluctuations
of a two-component or complex order parameter destroy LRO at all finite temperatures.
However, at temperatures below Tc, quasi-LRO is maintained. The nature of this topo-
logical phase transition was first resolved by Berezinskii (Sov. Phys. JETP 32, 493,
(1971)) and later generalised to encompass a whole class of systems by Kosterlitz and
Thouless1 (J. Phys. C 5, L124 (1972); 6, 1181 (1973)). These include the melting of
a two-dimensional crystal, with dislocations taking the place of vortices (Halperin and
Nelson, Phys. Rev. Lett. 41, 121 (1978)).
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58 CHAPTER 5. TOPOLOGICAL PHASE TRANSITIONS

In this chapter, we will exploit a magnetic analogy to explore this unconventional
type of phase transition which is driven by the condensation of topological defects
known as vortices. Note that this type of phase transition is qualitatively quite different
from those we have met previously.

5.1 Continuous Spins Near Two-Dimensions

Suppose unit n-component spins Si = (si1, si2, · · · sin) (S2
i = 1) which occupy the sites i

of a lattice and interact ferromagnetically with their neighbours.

−βH = K
∑

〈ij〉
Si · Sj = −

K

2

∑

〈ij〉

[
(Si − Sj)

2 − 2
]
.

5.1.1 High Temperature Series

As usual we can try to confirm the existence of two separate phases, at high and low
temperatures, by respectively treating β as a small or large parameter in the partition
function. In the former case, we can expand the exponential in the partition function as
follows

Z =

∫
DSi δ(S

2 − 1) e−βH =

∫
DSi δ(S

2 − 1)

[
1 +K

∑

<ij>

Sµ
i S

µ
j +O(K2)

]
,

where we have used the notation δ(S2 − 1) to represent a “functional δ-function” — i.e.,
at all spatial coordinates, S(x)2 = 1. Summation over repeated Cartesian components µ
is implied.

The high temperature expansion can be used to estimate the spin-spin correlation
function 〈S0 ·Sx〉. The terms in the high temperature series are products of factors. Each
factor in a given product corresponds to a lattice bond < ij >. To leading order, only
those products with factors which join sites 0 and r will survive and give a contribution.
This is because once the integral over Si is taken we have 〈Sµ

i S
ν
j 〉 = 1

n
δµνδij, where the

average is taken with respect to all possible configurations of Si.

〈S0 · Sx〉 ∼
(
K

n

)|x|
∼ exp [−|x|/ξ]

John Michael Kosterlitz and David James
Thouless: together with Duncan Haldane co-
recipients of the 2016 Nobel Prize in Physics
”for theoretical discoveries of topological
phase transitions and topological phases of
matter”.
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where ξ−1 = ln(n/K). This result implies an exponential decay of the spin-spin correlation
function in the disordered phase. Note that that the number of possible lattice paths that
connect two points can scale with at most d|x| – we have neglected these non-universal
lattice effects.

5.1.2 Low Temperature Series

At zero temperature the presumption is that the ground state configuration is ferro-
magnetic with all spins aligned along some direction (say Si = ên ≡ (0, 0, · · · , 1)). At
low temperatures statistical fluctuations involve only low energy long wavelength modes
which can be treated within a continuum approximation. Accordingly the Hamiltonian
can be replaced by

−βH[S] = −βE0 −
K

2

∫
dx (∇S)2,

where the discrete lattice index i has been replaced by a continuous vector x ∈ Rd. The
corresponding partition function is given by the so-called non-linear σ-model,

Z =

∫
DS(x) δ(S2 − 1) e−βH[S].

Here we have used the notation δ(S2 − 1) to represent a “functional δ-function” — i.e.
at all spatial coordinates, S(x)2 = 1.

Fluctuations transverse to the ground state spin orientation ên are described by n−1
Goldstone modes. Adopting the parameterisation S(x) = (π1(x), · · · πn−1(x), (1 −
π2)1/2) ≡ (π, (1− π2)1/2), and expanding to quadratic order in π we obtain the following
expression for the average transverse fluctuation (cf. section 2.5)

〈|π(x)|2〉 =
∫

ddq

(2π)d
〈|π(q)|2〉 =

∫
ddq

(2π)d
n− 1

Kq2

=
n− 1

K

Sd

(2π)d
a2−d − L2−d

d− 2

L→∞−−−→ (n− 1)Kd

K

{
a2−d ∝ T d > 2,

L2−d →∞ d ≤ 2.

This result suggests that in more than two dimensions we can always find a temperature
where the magnitude of the fluctuations is small while in dimensions of two or less
fluctuations always destroy long-range order. This is in accord with the Mermin-Wagner
theorem discussed in section 2.5 which predicted the absence of long-range order in
d ≤ 2. Even so, for d = 2 the low temperature analysis still indicates the presence of a
low-temperature phase which is distinct from the high-temperature phase with a finite
correlation length. This phase, rather than exhibiting true long-range order has quasi
long-range order (power-law order)

〈S(0) · S(x)〉 ≈ e−
n−1
2πK

ln(x

a) =

(
a

|x|

) n−1
2πK

(5.1)
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This analysis is in fact incorrect for n > 2 as higher order interaction terms between
the n− 1 Goldstone mode branches are relevant. For n = 2 there is only one Goldstone
mode branch and the low temperature expansion is stable – the power-law phase extends
to finite temperatures. The mechanism behind the phase transition responsible for loss
of power-law order at high temperatures will be the subject of the next section. We now
demonstrate in the case of n = 3 that interactions between two different Goldstone mode
branches are relevant. (This argument carries through to n > 3).

βH[S(x)] =
K

2

∫
ddx (eθ∂µθ + eφ sin θ∂µφ) · (eθ∂µθ + eφ sin θ∂µφ)

θ→π
2
+θ

K=T−1

=
1

2T

∫
ddx

[
∂µθ∂

µθ + ∂µφ∂
µφ− 1

2
θ2∂µφ∂

µφ+O(θ4φ2)

]

θ→
√
Tθ

φ→
√
Tφ

=

∫
ddx

[
∂µθ∂

µθ + ∂µφ∂
µφ− T

2
θ2∂µφ∂

µφ+O(θ4φ2)

]

(5.2)

where θ(r) and φ(r) are the spherical polar angles of the spin vector S(r), eθ, eφ the
corresponding unit direction vectors, and (θ = π/2, φ = 0) is the globally uniform config-
uration around which we are expanding. We have also explicitly shown that the quartic
interaction term is small in T . This is why T is referred to as the coupling as it is
a measure of the interaction strength between the Goldstone modes. Under naive RG
scaling of (θ, φ)→ b

2−d
2 (θ, φ) and x→ bx, it is clear that this term is relevant in d ≤ 2.

In fact, Polyakov [Phys. Lett. 59B, 79 (1975)] developed a perturbative RG expansion
close to two-dimensions that shows that the interactions between these Goldstone modes
lead to the instability of the low-temperature fixed point for d ≤ 2, i.e., the system flows
towards the high-temperature K = 0 fixed point as soon as K becomes finite.2

The excitation of Goldstone modes therefore rules out spontaneous order in two-
dimensional models with a continuous symmetry. An RG analysis of the non-linear
σ-model indeed confirms that the transition temperature of n-component spins vanishes
as T ∗ = 2πǫ/(n − 2) for ǫ = (d − 2) → 0 (see problem set 2). This unstable fixed point
that separates the low and high temperature phases moves to a finite temperature as d is
increased above 2. The RG also indicates that the behaviour for n = 2 is in some sense
marginal.

RG flow for n = 3 and d = 2: We now analyse the RG flow equation, derived by
Polyakov, in more detail in the case of n = 3 and d = 2 (see problem set 2)

dT

dl
=

T 2

2π
, (5.3)

2Polyakov’s work provided one of the milestones in the study of critical phenomena. The ǫ =
d− 2 expansion employed in the perturbative RG approach set the framework for numerous subsequent
investigations. A description of the RG calculation can be found in Chaikin and Lubensky and is assigned
as a question in the problem set 2.
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where T = K−1. Integrating the above equation we obtain

1

T
− 1

T ′ =
l

2π
, (5.4)

where T ′ = T at l = 0. We can also write down separate flow equations for the correlation
length ξ and the momentum p

ξ′ = ξe−l,

p′ = pel. (5.5)

If we choose T ∼ O(1), then ξ ∼ a. We thus obtain

ξ′ ∼ ae
2π
T ′ , (5.6)

for the divergence of the correlation length as T ′ → 0. This divergence is non-perturbative,
i.e., it could not have been obtained from any finite order of perturbation theory.

Running coupling: In general, we can map correlation functions at momentum p
and coupling T to ones at momentum p′ and coupling T ′. The change of correlators with
l can be obtained from the RG flow equations and is described by the Callan-Symanzik
equation. We will demonstrate this idea by considering the flow of the following non-
linear σ model correlator for the case n = 3, d = 2

G(x, T ) = 〈S(x) · S(0)〉T ≈ 〈1 + 2φ(x)φ(0)− 2φ2(0)〉T , (5.7)

where φ(x) is the azimuthal angle of the three-component spin and to leading order its
renormalisation factor ζ = 1 (see problem set 3). Note that, to leading order, the fast
and slow parts of φ(x) separate. Neglecting the quartic terms, we can write down

〈1 + 2φ(x)φ(0)− 2φ2(0)〉T ≈ 〈1 + 2φ<(x)φ<(0)− 2φ2
<(0)〉〈1 + 2φ>(x)φ>(0)− 2φ2

>(0)〉 .
(5.8)

Considering the flow of the correlator from l = 0 to δl, we obtain for δl≪ 1

G(x, T ) = G
(
xe−δl, T ′(δl)

) (
1− 2〈φ2(0)− φ(x)φ(0)〉>

)

= G
(
xe−δl, T ′(δl)

)(
1− 2

∫ Λ

Λe−δl

d2q

(2π)2
T

q2

(
1− eiq·x

))

Λ|x|≫1
= G

(
xe−δl, T ′(δl)

)(
1− 2

∫ Λ

Λe−δl

d2q

(2π)2
T

q2

)

= G
(
xe−δl, T ′(δl)

)
e−

T
π
δl, (5.9)

where the factor is the result of integrating out fluctuations Λe−l ≤ |q| ≤ Λ, which are
not present in the correlator that is evaluated with the renormalised parameters. Taking
the Fourier transform of both sides of the equation, we obtain

G(p, T ) = e−
T
π
δl+2δlG(peδl, T ′(δl)) . (5.10)
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Considering a succession of RG transformations we thus obtain

G(p, T ) = e2lΓ(l)G(pel, T ′(l)), (5.11)

where Γ is the amplitude factor accumulated through a series of integrations over the
short-distance fluctuations

Γ(l) = exp

[
−
∫ l

0

T ′(l)

π
dl

]
, (5.12)

and the integrand in the exponential γ(T ) = −T
π
is known as the gamma function.

Choosing an l such that pel = p′, we obtain

G(p, T ) = Γ

(
ln

p′

p

)(
p′

p

)2

G

(
p′, T ′

(
ln

p′

p

))
, (5.13)

where

T ′
(
ln

p′

p

)
=

1
1
T
+ 1

2π
ln p

p′

→ 2π

ln p
p′

as
p

p′
→∞ (5.14)

is known as the running (or effective) coupling constant at momentum p and its derivative
dT ′

d ln p
p′

= β(T ′) is known as the beta function. Hence, in the limit p/p′ → ∞ (p′ ∼
O(1) is kept fixed and the lattice cutoff 1/a has been taken to infinity), we can expand

G
(
p′, T ′

(
ln p′

p

))
in small T ′. In the limit T → 0 the correlation length ξ diverges and

the correlator G(x, T → 0)→ 1
xT/π at a fixed lengthscale x≪ ξ, and its Fourier transform

is therefore G(p, T )→ 1/p2−T/π

G

(
p′, T ′

(
ln

p′

p

))
=

1

p′2
+O

(
1

ln p/p′

)
, (5.15)

G(p, T ) = Γ

(
ln

p′

p

)[
1

p2
+O

(
1

ln p/p′

)]
. (5.16)

The correlators tend to those of a purely quadratic theory in the large momentum limit
with logarithmically small corrections. In other words, the effective (or running) cou-
pling becomes logarithmically small at large momenta.

Exercise for the Reader:
Show that the gamma function gives rise to logarithmic corrections

Γ

(
ln

p′

p

)
∝ ln2 p

′

p
as

p′

p
→∞.
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5.2 Topological Defects in the XY-Model

The first indication of unusual behaviour in the two-dimensional XY -model (n = 2)
appeared in an analysis of the high temperature series expansion by Stanley and Ka-
plan (1971). The series appeared to indicate a divergence of susceptibility at a finite
temperature, seemingly in contradiction with the absence of symmetry breaking. It was
this contradiction that led Wigner to explore the possibility of a phase transition without

symmetry breaking. It is the study of this novel and important type of phase transition
to which we now turn. We begin our analysis with a study of the asymptotic behaviour
of the partition function at high and low temperatures using a series expansion.

5.2.1 High Temperature Series

In two-dimensions it is convenient to parameterise the spins by their angle with respect
to the direction of one of the ground state configurations S = (cos θ, sin θ). The spin
Hamiltonian can then be presented in the form

−βH = K
∑

〈ij〉
cos(θi − θj).

At high temperatures the partition function can be expanded in powers of K

Z =

∫ 2π

0

∏

i

dθi
2π

e−βH =

∫ 2π

0

∏

i

dθi
2π

∏

〈ij〉

[
1 +K cos(θi − θj) +O(K2)

]
.

Each term in the product can be represented by a “bond” that connects neighbouring
sites i and j. To the lowest order in K, each bond on the lattice contributes either a
factor of one, or K cos(θi− θj). But, since

∫ 2π

0
(dθ1/2π) cos(θ1− θ2) = 0 any graph with a

single bond emanating from a site vanishes. On the other hand, a site at which two-bonds
meet yields a factor

∫ 2π

0
(dθ2/2π) cos(θ1− θ2) cos(θ2− θ3) = cos(θ1− θ3)/2. The first non-

vanishing contributions to the partition function arise from closed loop configurations
that encircle one plaquette.

The high temperature expansion can be used to estimate the spin-spin correlation
function 〈S0 · Sx〉 = 〈cos(θx − θ0)〉. To leading order, only those graphs which join sites
0 and r will survive and give a contribution

〈S0 · Sx〉 ∼
(
K

2

)|x|
∼ exp [−|x|/ξ] ,

where ξ−1 = ln(2/K). This result implies an exponential decay of the spin-spin correlation
function in the disordered phase.
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5.2.2 Low Temperature Series

At low temperature the cost of small fluctuations around the ground state is obtained
within a quadratic expansion which yields the Hamiltonian corresponding to Eq. (2.18)

−βH =
K

2

∫
dx(∇θ)2,

in the continuum limit. Note that the integration measure d2x is in units of a. According
to the standard rules of Gaussian integration

〈S(0) · S(x)〉 = Re
〈
ei(θ(0)−θ(x))

〉
= Re

[
e−〈(θ(0)−θ(x))2〉/2

]
.

In section 2.5 we saw that in two-dimensions Gaussian fluctuations grow logarithmically
〈(θ(0) − θ(x))2〉/2 = ln(|x|/a)/2πK, where a denotes a short distance cut-off (i.e. lat-
tice spacing). Therefore, at low temperatures the spin-spin correlation function decays
algebraically as opposed to exponential.

〈S(0) · S(x)〉 ≃
(

a

|x|

)1/2πK

.

A power law decay of correlations implies self-similarity (i.e. no correlation length), as
is usually associated with a critical point. Here it arises from the logarithmic growth of
angular fluctuations, which is specific to two-dimensions.

The distinction between the nature of the asymptotic decays allows for the possibility
of a finite temperature phase transition. However, the arguments so far put forward are
not specific to the XY-model. Any continuous spin model in d = 2 will exhibit exponential
decay of correlations at high temperature, and a power law decay in a low temperature
Gaussian approximation. Strictly speaking, to show that Gaussian behaviour persists to
low temperatures we must prove that it is not modified by the additional terms in the
gradient expansion. Quartic terms, such as

∫
ddx(∇θ)4, generate interactions between

Goldstone modes belonging to the same branch and naive RG scaling suggests they are
irrelevant in d = 2. This can be confirmed using perturbative RG (see problem set 2).

Exercise for the Reader:
Show that naive RG scaling suggests that terms

∫
ddx(∇θ)4 are irrelevant.

We have already seen that the zero temperature fixed point in d = 2 is unstable
for all n > 2 but apparently stable for n = 2. (There is only one branch of Goldstone
modes for n = 2. It is the interactions between different branches of these modes for
n > 2 that are relevant and lead to instability towards high temperature behaviour.) The
low temperature phase of the XY-model is said to possess quasi-long range order, as
opposed to true long range order that accompanies finite magnetisation.

What is the mechanism for the disordering of the quasi-long range ordered phase?
Since the RG suggests that higher order terms in the gradient expansion are not relevant
it is necessary to search for other relevant operators.
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Figure 5.1: Spin configurations of the two-dimensional XY -model showing vortices of
charge ±1.

5.3 Vortices

The gradient expansion describes the energy cost of small deformations around the
ground state and applies to configurations that can be continuously deformed to the
uniformly ordered state. Berezinskii, and later Kosterlitz and Thouless, suggested that
the disordering is caused by topological defects that can not be obtained from such
deformations.

Since the angle describing the orientation of a spin is defined up to an integer multiple
of 2π, it is possible to construct spin configurations in which the traversal of a closed
path will see the angle rotate by 2πn. The integer n is the topological charge enclosed
by the path. The discrete nature of the charge makes it impossible to find a continuous
deformation which returns the state to the uniformly ordered configuration in which the
charge is zero. (More generally, topological defects arise in any model with a compact
group describing the order parameter — e.g. a ‘skyrmion in an O(3)’ or three-component
spin Heisenberg Ferromagnet, or a dislocation in a crystal.)

The elementary defect, or vortex, has a unit charge. In completing a circle centred
on the defect the orientation of the spin changes by ±2π (see Fig. 5.1). If the radius
r of the circle is sufficiently large, the variations in angle will be small and the lattice
structure can be ignored. By symmetry ∇θ has uniform magnitude and points along the
azimuthal direction. The magnitude of the distortion is obtained by integrating around
a path that encloses the defect,

∮
∇θ · dℓ = 2πn =⇒ ∇θ =

n

r
êr × êz,

where êr and êz are unit vectors respectively in the plane and perpendicular to it. This
(continuum) approximation fails close to the centre (core) of the vortex, where the lattice
structure is important.
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Figure 5.2: Spin configurations of vortex/antivortex pairs.

The energy cost from a single vortex of charge n has contributions from the core
region, as well as from the relatively uniform distortions away from the centre. The
distinction between regions inside and outside the core is arbitrary, and for simplicity,
we shall use a circle of radius a to distinguish the two, i.e.

βEn = βE0
n(a) +

K

2

∫

a

dx(∇θ)2 = βE0
n(a) + πKn2 ln

(
L

a

)
.

The dominant part of the energy comes from the region outside the core and diverges
logarithmically with the system size L.3 The large energy cost associated with the defects
prevents their spontaneous formation close to zero temperature. The partition function
for a configuration with a single vortex of charge n is

Z1(n) ≈
(
L

a

)2

exp

[
−βE0

n(a)− πKn2 ln

(
L

a

)]
, (5.17)

where the factor of (L/a)2 results from the configurational entropy of possible vortex
locations in an area of size L2. The entropy and energy of a vortex both grow as lnL,
and the free energy is dominated by one or the other. At low temperatures, large K,
energy dominates and Z1, a measure of the weight of configurations with a single vortex,
vanishes. At high enough temperatures, K < Kn = 2/(πn2), the entropy contribution
is large enough to favour spontaneous formation of vortices. On increasing temperature,
the first vortices that appear correspond to n = ±1 at Kc = 2/π. Beyond this point
many vortices appear and Eq. (5.17) is no longer applicable.

In fact this estimate of Kc represents only a lower bound for the stability of the system
towards the condensation of topological defects. This is because pairs (dipoles) of defects
may appear at larger couplings. Consider a pair of charges ±1 separated by a distance

3Notice that if the spin degrees of freedom have three components or more, the energy cost of a
defect is finite.
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Figure 5.3: Schematic diagram showing the deconfinement of vortex pairs.

d. Distortions far from the core |r| ≫ d can be obtained by superposing those of the
individual vortices (see fig. 5.2)

∇θ = ∇θ+ +∇θ− ≈ 2d · ∇
(
êr × êz
|r|

)
,

which decays as d/|r|2. Integrating this distortion leads to a finite energy, and hence
dipoles appear with the appropriate Boltzmann weight at any temperature. The low
temperature phase should therefore be visualised as a gas of tightly bound dipoles (see
fig. 5.3), their density and size increasing with temperature. The high temperature phase
constitutes a plasma of unbound vortices. A theory of the Berezinskii-Kosterlitz-Thouless
transition based on an RG description can be found in Chaikin and Lubensky.

5.3.1 Coulomb Gas Description of the XY Model

Vortex Interactions: In deriving long-distance vortex-vortex interactions, we can take
the continuum a → 0 and thermodynamic L → ∞ limits. The flow field v of a single
vortex with integer charge q at r = 0 satisfies the following equation

v = ∇θ =
q

r
eφ, (5.18)

with

∇×v = 2πqδ(r)ez. (5.19)

For multiple vortices with charges qi at locations ri, we therefore have

∇×v = 2π
∑

i

qiδ(r− ri)ez. (5.20)

We now introduce a scalar potential Ψ(r) to parametrise the flow field v

v = ∇×Ψez. (5.21)
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Eq. (5.20) thus leads to Laplace’s equation for Ψ(r) with the following unique solution

∇2Ψ = −2π
∑

i

qiδ(r− ri),

Ψ = −
∑

i

qi ln |r− ri|.
(5.22)

The energy of this multiple vortex configuration is given by

βH =
K

2

∫
d2r v2 =

K

2

∫
d2r

[
(∂xΨ)2 + (∂yΨ)2

]

= −K

2

∫
d2rΨ

(
∂2
x + ∂2

y

)
Ψ+

K

2

∫

S

(Ψ∇Ψ) · dS

= −πK
∑

i,j

qiqj ln |ri − rj|, (5.23)

where the surface integral vanishes for configurations that are overall charge neutral∑
i qi = 0 (we have imposed periodic boundary conditions). As expected, the above

formula gives us a divergent result for ri = rj (because L/a → ∞ in the continuum
picture), but gives the correct asymptotic limit (|ri − rj|/a ≫ 1) of the vortex-vortex
interaction.

In the large K limit vortices will come in tightly bound vortex-antivortex pairs. We
can regularise the above expression by considering the energy of a single vortex-antivortex
pair

βHpair = 2Eq2 − 4π2q2KC(x), (5.24)

where q, −q are the charges of the vortex and the anitvortex respectively, and 2E is
the self-energy of a dipole of size a. The function C(x) = 0 for |x| ≤ a and C(x) =
1
2π

ln(|x|/a) for |x| ≥ a. Note that we also need to enforce that the vortex separation
is |x| ≥ a, because otherwise the vortices could annihilate and the above Hamiltonian
would no longer give the correct energy.

In a system with multiple vortex-antivortex pairs we then have

βH = E
∑

i

q2i − 2π2K
∑

i 6=j

qiqjC(xi − xj), (5.25)

where E can now be interpreted as the core vortex self-energy. As the vortex-antivortex
separation is increased the energy increases logarithmically indicating that there are 2D
Coulomb forces between the vortices which are inversely proportional to their separation.
It is important to note that the parameter K that determines the long-distance vortex
interactions is the same parameter that enters the long-wavelength Gaussian limit of the
original XY model, whereas the parameter E that determines the vortex core energy
is directly related to the nearest-neighbour microscopic interactions of the original XY
model (a cosine potential).
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Dilute 2D Coulomb Gas: In the large K limit, vortices are dilute and come in
tightly bound vortex-antivortex pairs. In this limit, we can write down the following
partition function as a good approximation of the XY model

Z =
∞∑

N=0

yN

((N/2)!)2

∫ N∏

i=1

d2xi e
2π2K

∑

i 6=j qiqjC(xi−xj), (5.26)

where y = e−E is the vortex fugacity and Z is the partition function of the dilute 2D
Coulomb gas. In the limit of y ≪ 1 configurations with qi = ±1 dominate and only such
configurations are included in the partition function. Furthermore, as explained above,
we enforce charge neutrality

∑
i qi = 0.

We want to explore the instability of the XY model around the fixed point y = 0, K =
2/π caused by unbinding of vortex-antivortex pairs. The singular properties associated
with this point are therefore captured by the above partition function, valid in the limit
y ≪ 1. Thus, the critical properties of the XY model are those of the dilute 2D Coulomb
gas. We now explore this critical behaviour by following an RG scheme, originally due
to Kosterlitz.

5.3.2 Perturbative RG for the Dilute Coulomb Gas

The RG scheme can be summarised as follows. We first integrate out vortex-antivortex
pairs whose size ranges from a to ba and look at the renormalisation ofK that results. We
then rescale x = bx′ to restore the original cut-off a, which leads to the renormalisation
of fugacity y.

Renormalisation of K: We will follow a slightly indirect approach here. We will
introduce two external unit charges to the Coulomb gas at positions x and x′ and compute
their potential energy V (x,x′). This is a physically measurable quantity and must be
constant under renormalisation. By looking at how screening from vortex-antivortex
pairs contributes to this potential energy, we can deduce the RG transformation for K.
Perturbatively in the fugacity y we only need to include corrections from a single vortex-
antivortex pair

e−βV (x−x′) = e−4π2KC(x−x′) ×[
1 + y2

∫
d2yd2y′e−4π2KC(y−y′)+4π2K[C(x−y)−C(x−y′)−C(x′−y)+C(x′−y′)] +O(y4)

]

[
1 + y2

∫
d2yd2y′e−4π2KC(y−y′) +O(y4)

]

= e−4π2KC(x−x′)

[
1 + y2

∫
d2yd2y′e−4π2KC(y−y′)

(
e4π

2KD(x,x′;y,y′) − 1
)
+O(y4)

]
.

(5.27)

In the small fugacity limit, the size of the internal vortex-antivortex dipoles r = y′ − y
is small. We can thus approximate

D(x,x′;y,y′) = C(x−R+
r

2
)− C(x−R− r

2
)− C(x′ −R+

r

2
) + C(x′ −R− r

2
)
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as:

−r · ∇RC(x−R) + r · ∇RC(x′ −R) +O(r3)
(5.28)

where R = (y+y′)/2 is the dipole centre of mass. Substituting the dipole approximation
for D(x,x′;y,y′) into Eq. (5.27), we obtain

e−βV (x−x′) = e−4π2KC(r)
(
1 + 8π4K2y2

∫
d2r d2R e−4π2KC(r)

× [r · ∇RC(x−R)− r · ∇RC(x′ −R)]
2
)
, (5.29)

where the integral over the linear term in r vanishes. Carrying out the angular part of
the r integration, we obtain

e−βV (x−x′) = e−4π2KC(r)
(
1 + 8π5K2y2

∫
r3e−4π2KC(r)dr

×
∫

d2R [∇RC(x−R)−∇RC(x′ −R)]
2
. (5.30)

The second integral is proportional to the energy of a vortex and anti-vortex at locations
x and x′ (see Eq. (5.23)), and is equal to 2C(x−x′) in the long distance limit. Note that
C(0) = 0.

We thus obtain the following correction to the potential V (x,x′) due to screening
from internal charges

βV (x− x′) = 4π2C(x− x′)

[
K − 4π3K2y2

∫ ∞

a

r3 e−4π2KC(r)dr

]
. (5.31)

Hence, if dipoles ranging from a to ba are removed from the theory, K needs to be reduced
by the following amount if we are to obtain the same physical potential from the partition
function

δK = −4π3K2y2
∫ ba

a

r3 e−4π2KC(r)dr

= −4π3K2y2a4δl, (5.32)

where b = el.
Restoring the original cutoff by x = bx′:
To complete the RG transformation and restore the cutoff on vortex separation, we

simply rescale space by

x = bx′,

|xi − xj| > ba → |x′
i − x′

j| > a. (5.33)
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In the above partition function d2xi = b2d2x′
i and C(xi − xj) = C((x′

i − x′
j)/b) =

C(x′
i − x′

j) +
1
2π

ln b. Both can be absorbed into the fugacity. Note that overall charge
neutrality leads to

2π2K
∑

i 6=j

qiqj
1

2π
ln b = πK ln b



(
∑

i

qi

)2

−
∑

i

q2i


 = −NπK ln b. (5.34)

We thus conclude that the following replacement of the partition function can be
made

Z =
∞∑

N=0

yN

((N/2)!)2

∫ N∏

i=1

d2xi e
−2π2K

∑

i 6=j qiqjC(xi−xj)

→
∞∑

N=0

y′N

((N/2)!)2

∫ N∏

i=1

d2x′
i e

−2π2K′
∑

i 6=j qiqjC(x′
i−x′

j), (5.35)

where y′ = yb2−πK , K ′ = K − δK and the cutoff on vortex separation is a. The corre-
sponding RG equations in the {K, y} parameter space are

dK

dl
= −4π3K2a4y2 +O(y4),

dy

dl
= (2− πK)y +O(y3).

(5.36)

5.3.3 Analysis of the RG Flow for the XY Model

Making the following substitution

K−1 − π/2→ x,

ya2 → y, (5.37)

it is straightforward to show that the RG flow proceeds along hyperbolas

x2 − π4y2 = c (5.38)

parametrised by a constant c. Fig. 5.3.3 shows the resulting RG flows in {x, y} space.
The constant c parametrises the transition; close to the critical temperature Tc, we

can write

c = x2 − π4y2 = b2(Tc − T ), (5.39)

where x = T − π
2
, ln y ∝ 1

T
and b is a constant of the order of unity. This relation

allows us to derive several of the XY model’s critical properties. In particular for c > 0,
(i.e., below the critical temperature), the RG flow terminates on the line of fixed points
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y=-x/π2
y=x/π2

c<0

c<0
c<0

y

x0

Figure 5.4: RG flow for the XY model in the Coulomb gas description limit.

formed by the negative x-axis. The effective theory below TC is Gaussian. This is because
fugacity vanishes on the line of fixed points, which means that short-distance fluctuations
parametrised by E, i.e., vortex cores, in the original XY model are quenched – we are
in the zero vortex sector. The effective K, which parametrises the cost of long-distance
fluctuations of the original XY model is given by its fixed point K value

K =
2

π
− 4

π2
lim
l→∞

x =
2

π
+

4b

π2

√
Tc − T (5.40)

For T > TC , K flows to zero and y flows to 1 (E = 0), i.e., the theory flows away from
the dilute Coulomb gas limit towards the high-temperature phase with finite correlations.
This is the Debye plasma phase where vortices, separated by distances larger than the
correlation length, are completely screened from each other.

Divergence of the correlation length at T = Tc:
We consider an RG trajectory for T−TC ≪ 1, starting at x(0) = 0 and terminating at

x(l) = 1, where ξ(l) ∼ a. Substituting for y, using Eq. (5.39), into the RG flow equation
for x we obtain

dx

dl
= 4π3y2 =

4

π

(
x2 + b2(T − Tc)

)
, (5.41)

Integrating we obtain
∫ 1

0

dx

x2 + b2(T − Tc)
=

∫ l

0

4dl

π
,

1

b2
√
T − TC

arctan

(
1

b2
√
T − TC

)
=

4l

π
. (5.42)
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Approximating arctan
(

1
b2
√
T−TC

)
by π/2 close to the critical temperature, we obtain

l =
π2

8b2
√
T − TC

(5.43)

and

ξ(0) = ξ(l)el ∼ ae
π2

8b2
√

T−TC (5.44)

for the divergence of the correlation length at the critical point.

5.3.4 Debye Plasma Phase

For T > Tc, the Coulomb gas model flows to the limit where E → 0. We now look more
closely at the Coulomb gas Hamiltonian in this limit

βH = E
∑

i

q2i − 2π2K
∑

i 6=j

qiqjC2

(
xi − xj

a

)
. (5.45)

For E → 0 vortices proliferate and the sum over qi in the partition function can be
replaced by an integral

ZDb =

∫
Dq(x)

∫
DΨ(x) e

∫

d2x(−Eq(x)2+iΨ(x)q(x))e−
1

4π2K

∫

d2xΨ(x)∇2Ψ(x), (5.46)

where a Hubbard-Stratonovich field Ψ(x) has been introduced. Integrating out the vortex
charges q(x), we obtain

ZΨ =

∫
DΨ(x) e−

∫

d2xΨ(x)( 1
4E

+ 1
4π2K

∇2)Ψ(x). (5.47)

The interaction between two static unit charges of opposite sign introduced into the
system at positions x and x′ is given by the following correlator

e−βV (y−y′) = 〈eiΨ(y)−iΨ(y′)〉ZΨ
,

βV (y − y′) = 〈Ψ(y)Ψ(y′))〉ZΨ
− 〈Ψ(0)2〉ZΨ

= e−|y−y′|/ξC(|y − y′|), (5.48)

where ξ =
√

E
π2K

is the Debye screening length and the potential energy has the form of

the 2D Ornstein-Zernike correlator that we have encountered earlier.

5.4 3D Coulomb Gas

In 3D the Coulomb gas Hamiltonian takes the following form

βH = E
∑

i

q2i −K
∑

i 6=j

qiqj

(
a

|xi − xj|
− 1

)
, (5.49)
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where position vectors xi span three-dimensional space and a is the cutoff on the sepa-
ration of charges. A simple application of the RG scheme used for the 2D Coulomb gas
model (see Problem Set 2) shows that the there is no stable Coulomb phase. E always
flow to zero towards the Debye phase fixed point. The fact that the 3D Coulomb gas is al-
ways in the Debye phase has important ramifications for 3D lattice gauge theories, which
as we will see in the next chapter can be mapped onto 2D quantum electrodynamics.

3D Lattice Gauge Theory Hamiltonian: A 3D lattice gauge theory has the
following Hamiltonian

βH = −K
∑

P

cos (curlPθ) , (5.50)

where the variables θ live, say, on the links of a 3D simple cubic lattice, e.g., θij lives
on the link between the ith and the jth sites. The curl is taken around each face of the
cubic units making up the lattice; e.g., for face P with corners at sites i = 1, 2, 3, 4, we
have

curlPθ = θ1 − θ2 + θ3 − θ4. (5.51)

Gaussian Limit: In the large K limit, the low energy fluctuations will be long-
wavelength and, as usual, we can take the continuum Gaussian approximation

θij = A · eij
curlPθ = (∇×A) · n̂

βH =
K

2

∫
d3r (∇×A)2 =

K

2

∫
d3r B2 , (5.52)

where eij is the vector joining lattice sites i and j, n̂ is the unit vector normal to face P
and B = ∇×A is the magnetic field. The connection with Maxwellian electromagnetism
is now clear.

Just as before, higher order gradient terms are irrelevant and we need to look for
topological defects to determine the RG flow around the K =∞ fixed point.

Magnetic Monopoles: Just like ∇θ was only measured modulo 2π for the XY
model, the magnetic field (∇×A) is now only measured modulo 2π. This is because the
Hamiltonian is periodic (compact gauge theory) and the energy cost of a magnetic field
which is an integer multiple of 2π is zero. Let us therefore consider a pair of magnetic
monopoles of charge ±2π. Since the magnetic field has no divergence, these have to be
connected by a magnetic field line of strength 2π, known as the Dirac string. Thus for
monopoles at positions x and x′ the divergenceless magnetifc field configuration is given
by

B(r) =
(r− x)

2|r− x|3 −
(r− x′)

2|r− x′|3 + 2πΘ(z)δ(x)δ(y)êz, (5.53)

where the monopoles are separated by a distance d in the z-direction, x− x′ = dêz, and
Θ(z) = 1 for x′ · êz < z < x · êz and vanishes otherwise.
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Because the Hamiltonian is periodic in B, this string contributes no energy, regardless
of its length (i.e., has zero tension) and can be simply neglected. The only interaction
between the magnetic monopoles is now the usual 3D Coulomb attraction, obtained by
integrating K

2
B2 over all space.

Magnetic Monopole Gas: The defects in the lattice gauge theory form a 3D
Coulomb gas. But this is always in the Debye phase! This means that magnetic
monopoles proliferate and screen any externally placed static monopoles. The Gaus-
sian expansion of the 3D lattice gauge theory is unstable and we do not obtain ordi-
nary Maxwellian electromagnetism for any finite K. What is more, the proliferation of
magnetic monopoles (large fluctuations of the magnetic field) means that in the corre-
sponding 2D quantum electrodynamics the conjugate electric field is confined to narrow
tubes (small fluctuations of the conjugate variable by Heisenberg uncertainty principle)
and externally placed static electric charges feel a force that increases linearly with their
separation. This is somewhat akin to quark confinement that takes place in Yang-Mills
theory.


