
NATURAL SCIENCES TRIPOS Part III

REVISION PACK

EXPERIMENTAL AND THEORETICAL PHYSICS
Minor Topics: Phase Transitions

List of non-examinable topics:

Topological Phase transitions (chapter 5)

Epsilon Expansion

Lattice Gauge Theory

O(3) Quantum Rotors

Finite-size Scaling and Quantum Criticality
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1 In one-dimension, the q-state Potts model is defined by the lattice
Hamiltonian

βH = −K
∑
i

δsi,si+1
+ g,

where the variables, si, can take only integer values from 1 to q, and g and K > 0
are constants.

(a) By integrating over the variables si at every other site, implement a real
space renormalisation group procedure to obtain the exact recursion
relations for K and g. [7]

(b) Show that K∗ = 0 and K∗ =∞ are both fixed points of the
Hamiltonian, and explore their stability. [6]

n=1 n=4n=3n=2
(c) The figure below shows the first four generations of a heirarchical lattice.
Each generation, n, is obtained from generation n by replacing each bond by
a ‘diamond’ of new bonds. Generalizing the real space renormalization group
analysis above, show that, in the thermodynamic limit, n→∞, the
Hamiltonian has a non-trivial fixed point defined by the condition, [5]

K∗ = 2 ln

[
q − 1 + e2K∗

q − 2 + 2eK∗

]
.

Without explicit computation, sketch the resulting renormalisation group
flows for the three fixed points. [2]

2 Outline concisely the conceptual basis of the Renormalisation Group (RG)
method. [5]

In the Gaussian approximation, the Ginzburg-Landau Hamiltonian for the
disordered phase of a ‘smectic liquid crystal’ takes the form

βH[m(x)] =

∫
dx‖

∫
dd−1x⊥

[
t

2
m2 +

K

2
(∇‖m)2 +

L

2
(∇2
⊥m)2 − hm

]
where m(x) represents a one-component field depending on a d-dimensional set of
coordinates x = (x‖,x⊥), and the coefficients K, L, and t assume positive values.
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(a) Transforming to the Fourier basis, reexpress the Hamiltonian βH[m] in
terms of the fields m(q‖, q⊥). [3]

(b) Construct a Renormalisation Group transformation for the Hamiltonian
βH[m] by (i) applying an anisotropic rescaling of the coordinates such that
q′‖ = b q‖ and q′⊥ = c q⊥, and (ii) applying the field renormalisation m′ = m/z.

How do the parameters t, K, L, and h scale under the RG transformation? [10]

(c) For what values of c and z (as a function of b) do the parameters K and
L remain fixed? For the remaining coefficients t and h, show that the
corresponding Gaussian fixed point is associated with the exponents yt = 2
and yh = (d+ 5)/4 respectively. [3]

(d) By establishing the relationship between the free energies f(t, h) and
f(t′, h′) of the original and rescaled Hamiltonians, show that the free energy
assumes the homogeneous form

f(t, h) = t2−αgf (h/t
∆).

Identify the exponents α and ∆. [4]

3 In the leading approximation, the influence of lattice compressibility on the
ferromagnetic transition can be explored within the framework of the
Ginzburg-Landau Hamiltonian

βH[m,φ] =

∫
d3x

[
t

2
m2 + um4 + vm6 +

K

2
(∇m)2 − hm+ gφm2 +

c

2
φ2

]
,

where φ(x) denotes the (scalar) strain field, and the parameters u and v are both
assumed positive.

(a) Integrating out strain field fluctuations φ(x), show that the partition
function for the magnetisation field is controlled by the effective Hamiltonian [4]

βHeff [m] =

∫
d3x

[
t

2
m2 +

(
u− g2

2c

)
m4 + vm6 +

K

2
(∇m)2 − hm

]
.

(b) Working in the Landau theory approximation, by sketching the m
dependence of the Landau Hamiltonian for different values of the
parameters, describe qualitatively the magnetic phase diagram for h = 0. In

particular, discuss what happens when
g2

2c
> u. [4]

(c) When
g2

2c
= u, obtain the average magnetisation m̄(t, h = 0), m̄(t = 0, h),

and susceptibility χ(t, h = 0) =
∂m̄

∂h

∣∣∣
h=0

within the Landau theory

approximation. [6]
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4 If we define a Hamiltonian βH[φ] = βH0[φ] + U [φ] as the sum of a free
theory βH0[φ] and a perturbation U [φ], show that the renormalisation group (RG)
transformation resulting from field integration over fast field fluctuations φ>
results in the following renormalised Hamiltonian for the slow field fluctuations φ<,

βH ′[φ<] = −Z0
> + βH0[φ<]− ln〈e−U [φ<,φ>]〉>

where Z0
> =

∫
Dφ>e

−βH0[φ>] and 〈· · · 〉> =
1

Z0
>

∫
Dφ> · · · e−βH0[φ>].

[5]

The two-dimensional sine-Gordon theory describes a free scalar field φ(x)
perturbed by a periodic potential,

βH[φ] =

∫
d2x

[
K

2
(∇φ)2 + g cos(λφ)

]
,

where K > 0.

(a) Treating the periodic potential as a perturbation of the free Gaussian
theory, and applying the perturbative momentum shell RG, show that the
renormalised Hamiltonian takes the form [2]

βH ′[φ<] = −Z0
> + βH0[φ<] +

∫
d2x g〈cos[λ(φ<(x) + φ>(x))]〉> +O(g2)

(b) Working to first order in g, show that, under the RG transformation, the
parameters obey the scaling relations [7]

K(b) = Kz2b−4

g(b) = gb2 exp

[
− λ2

4πK
(1− b−1)

]
λ(b) = ζλYour discussion should indicate the significance of the parameters z, b and

ζ in the RG. For a free Gaussian theory, you may assume the identity
〈eiλφ(x)〉 = e−λ

2〈φ2(x)〉/2.


(c) Focusing on the fixed Hamiltonian K(b) = K (i.e. z = b2), it may be
confirmed that λ(b) = λ. In this case, setting b = e` ' 1 + `+ · · · , show that
the differential recursion relations translate to the form

dg

d`
= g

(
2− λ2

4πK

)
.

Identify the fixed point and sketch the renormalisation group flow. Comment
briefly on the physical implications of the result. [6]
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5 In the restricted solid-on-solid model, the Hamiltonian of a rough surface is
specified by

H = K
∑
〈lm〉

|hl − hm|∞ ,

where the discrete coordinates l and m each index the sites of a two-dimensional
square lattice, and the height variable hl can take positive and negative integer
values. Here we have used the notation 〈lm〉 to indicate that the sum involves
only neighbouring sites of the lattice.

(a) Considering βH, where β =
1

kBT
with T the temperature, show that the

height difference between neighbouring sites can only assume values of ±1 or
zero. [3]

(b) As a consequence, taking the boundary conditions to be periodic, show
that the N ×N site Hamiltonian may be recast in terms of the 2×N ×N
variables nlm = hl − hm indexing the bonds between neighbouring sites.
Explain why the sum of nlm around each square plaquette (i.e. unit cell
boundary) of the lattice is constrained to be zero, i.e. defining êx = (1, 0)
and êy = (0, 1), for each lattice site l, [4]

nl,l+êx + nl+êx,l+êx+êy + nl+êx+êy ,l+êy + nl+êy ,l = 0 .

(c) Imposing these constraints using the identity

∫ 2π

0

dθ

2π
e±inθ = δn0 for

integer n, show that the partition function can be written as [6]

Z =

(∏
l

∫ 2π

0

dθl
2π

)
exp

∑
〈lm〉

ln
[
1 + 2e−βK cos(θl − θm)

] .

(d) At low temperatures (i.e. βK � 1), show that the system becomes
equivalent to that of the classical two-dimensional XY spin model. Without
resorting to detailed calculation, discuss the significance of this
correspondence for the phase behaviour of the restricted solid-on-solid
model? [7]

6 Under what circumstances are the low-energy degrees of freedom of systems
described by Goldstone modes?

An approximately flat surface (i.e. with no ‘overhangs’) in d-dimensions can
be described by its height h(x) as a function of the remaining d− 1 coordinates
x = (x1, · · · , xd−1). If the surface has a tension σ, the Hamiltonian is simply
H = σA, where A denotes the total surface area

A =

∫
dd−1x

[
1 + (∇h)2

]1/2
.
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(a) At suffiently low temperatures there will be only slow variations in h. By
expanding the Hamiltonian to quadratic order in h, express the total partition
function as a functional integral.

(b) By using a Fourier transformation to diagonize the quadratic
Hamiltonian into normal modes hq (known as capillary waves), show that the
low-energy excitations are described by Goldstone modes. Identify the symmetry
breaking responsible for the generation of the Goldstone modes.

(c) Obtain an expression for the correlation function of the height
〈[h(x)− h()]2〉 in the form of an integral and, without evaluating it explicitly,
comment on the form of your result in dimensions d = 2, 3 and 4.

7 Define Goldstone Modes and the describe the concepts of long-range and
quasi long-range order.

The superfluid transition is accompanied by the condensation of the complex
order parameter ψ =

√
ρse

iϕ. Below the transition temperature Tc, the superfluid
density ρs becomes finite, and fluctuations of the phase field φ are governed by the
effective Ginzburg-Landau Hamiltonian,

βH =
1

2

∫
ddxρs (∇ϕ)2 .

By evaluating the spatial correlation function of the phase field 〈ϕ(x)ϕ(0)〉,
show that the correlation function of the complex order parameter in a
two-dimensional film decays as a power law,

〈ψ(x)ψ(0)〉 = ρs

(
a

|x|

)1/2πρs

,

where a represents a short-distance cut-off.

8 Outline briefly the basis of the Ginzburg-Landau phenomenology.
The d-dimensional Ginzburg-Landau Hamiltonian for a n-component order

parameter m(x) is given by

βH =

∫
ddx

[
K

2
(∇m)2 +

t

2
m2 + u

(
m2
)2
]

where t denotes the reduced temperature, and u > 0, K > 0.
(a) In the mean-field or saddle-point approximation, show that there is a

spontaneous symmetry breaking at t = 0, and determine the average
magnetisation m̄ as a function of the reduced temperature for t < 0.

(b) Including both longitudinal and transverse fluctuations

m(x) = (m̄+ φ`(x)) ê` +
n∑
i=2

φit(x)êi,
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expand βH to quadratic order in the fields φ` and φit.
(c) Expressed in Fourier representation φit(q) =

∫
dxe−iq·xφit(x), obtain an

expression for the transverse correlation functions 〈φit(q)φjt(q
′)〉. Comment on the

implications of this result for the long-distance (i.e. |x| → ∞) behaviour of the
transverse correlation function 〈φit(x)φjt(0)〉 for t < 0 and t > 0.

(d) Using quantum-classical mapping and the above saddle-point analysis,
comment on the nature of excitations of the following quantum-field Hamiltonian
in the case n > 1

Ĥ =

∫
ddx

[
p̂2

2K
+
K

2
(∇m̂)2 +

t

2
m̂2 + u

(
m̂2
)2
]
, (1)

where [m̂i(x), p̂j(x
′)] = iδijhδ(x− x′) are canonically conjugate operators (i

indexes the component). Find the spectrum of excitations in the case t < 0. Using
quantum-classical mapping write down the following ground state expectation
values:

(i) 〈m̂(x)〉g.s.,
(ii) 〈m̂(x)m̂()〉g.s.,
(iii)〈eĤτm̂(x)e−Ĥτm̂()〉g.s., where τ > 0.[
Note that

∫
ddq

(2π)d
eiq·x

q2+ξ2
∼ e−|x|/ξ.

]
9 Non-examinable The two-dimensional XY-model is described by the
continuum Hamiltonian

βH =

∫
d2x

J

2
(∇θ)2

where the field θ(x) is periodic in 2π. Defining the concept of a Goldstone mode,
explain concisely why this Hamiltonian does not exhibit a phase of long-range
order at any finite temperature.

(a) Imposing a field configuration involving a single vortex, show that the
corresponding energy is given by

βEvortex = πJ ln

(
L

a

)
+ βEcore,

where a denotes a short-scale cut-off or lattice spacing, and βEcore represents some
unspecified core energy.

(b) Using this result, estimate the contribution to the partition function from
the vortex configuration as a function of the effective temperature J−1. What
implications does this result have on the nature of long-range order in the
two-dimensional XY model?

10 Explain the concepts of Spontaneous Symmetry Breaking and Goldstone
modes in statistical mechanics.
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The low-energy properties of a classical d-dimensional XY-Ferromagnet are
described by the Ginzburg-Landau Hamiltonian

βH =
K̄

2

∫
ddx (∇θ)2

where the corresponding two-component magnetisation field
m(x) = m̄(cos θ(x), sin θ(x)) is assumed to be constant in magnitude.

(a) Taking the fluctuations of the magnetisation field to be small, i.e. θ(x)� 2π,
use the rules of Gaussian functional integration to show that the correlation
function takes the form

〈θ(x)θ(0)〉 = − |x|2−d

(2− d)SdK̄
+ const.

where Sd denotes the d-dimensional solid angle.

(b) Using this result, show that

lim
|x|→∞

〈m(x) ·m(0)〉 = m2
0, d > 2

= 0, d ≤ 2

where m0 denotes some non-zero constant. Comment on the implications of
this result for the nature of long-range order in low dimensions.

[Note that, for a Gaussian distribution, 〈exp[αθ]〉 = exp[α2〈θ2〉/2].]

11 Close to the critical point of a classical Ferromagnet, the singular part of the
free energy assumes the homogeneous form

f(t, h) = t2−αgf

(
h

t∆

)
where t = |T − Tc|/Tc represents the reduced temperature, and h denotes the
dimensionless magnetic field.

(a) Using this expression for the free energy, obtain the homogeneous form for the
magnetisation. With this result, determine the scaling exponents of the
magnetisation m(t, h = 0) ∼ tβ and m(t = 0, h) ∼ h1/δ as a function of the
exponents α and ∆.

(c) Using the expression for the magnetisation, obtain the scaling exponent γ of
the susceptibility χ(t) ∼ t−γ as a function of α and ∆.

(d) According to the hyperscaling hypothesis, close to the critical point, the
correlation length assumes the homogeneous form

ξ(t, h) = t−νgξ

(
h

t∆

)
.

Explain why this result is compatible with the hyperscaling identity
dν = 2− α.
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(e) What can you say about the behaviour of the energy gap in the corresponding
quantum ferromagnet?

12 The Ising ferromagnet on a d-dimensional cubic lattice in a magnetic field is
defined by the Hamiltonian

βH = −1

2

∑
ij

σiJijσj − h
∑
i

σi, σi = ±1

where Jij = J if sites i and j are neighbours, and Jij = 0 otherwise.
(a) Show that the partition function, Z =

∑
{σi} exp(−βH[{σi}]) can be

expressed as

Z = C

∫ ∞
−∞

∏
i

dmi exp

[
−1

2

∑
ij

mi[J
−1]ijmj +

∑
i

σi(mi + h)

]

where C denotes a constant.
(b) By expressing J−1 in Fourier space, show that

[J−1]ij =
1

2J

∫
B.Z.

ddq

(2π)d
eiq·(ri−rj)

cos q1 + · · · cos qd
,

where ri denotes the position vector of site i, and the lattice spacing is taken to be
unity. [The momentum space integration runs over the Brillouin zone.]

(c) In the vicinity of the transition temperature, only long-range correlations
are important. Show that in this limit, the partition function can be approximated
by the Landau free energy

βH =

∫
ddx

[
K

2
(∇m)2 +

t

2
m2 + um4 − hm

]
.

Your answer should indicate the dependence of the coefficients K, t, and u on the
microscopic parameters of the theory.

(d) Determine the dependence of the magnetic susceptibility and the heat
capacity in the vicinity of the mean-field transition both above and below the
transition temperature.

13 Explain the meaning of the upper critical dimension?
A tricritical point is described by the Ginzburg-Landau Hamiltonian

βH =

∫
ddr

[
t

2
η2 +

v

6
η6 +

K

2
(∇η)2

]
where the scalar field η represents the order parameter, and t = (T − Tc)/Tc
denotes the reduced temperature.
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(a) In the mean-field approximation, find the dependence of the order
parameter η, Free energy, and heat capacity on the reduced temperature t.

(b) Expanding the Hamiltonian to quadratic order around the mean-field
solution, show that, away from the critical point, the correlation function
〈η(r)η(0)〉 decays exponentially at large distances, and determine the dependence
of the correlation length on the reduced temperature t.

(c) By determining the fluctuation correction to the mean-field Free energy,
determine the corresponding correction to the specific heat.

(d) Using this result, employ the Ginzburg criterion to show that the upper
critical dimension du = 3.

(e) Describe qualitatively how these results are modified if the number of
components of the order parameter are increased.

[−
∫

ddq
(2π)d

eiq·r

q2+ξ−2 ≈ |r|2−d
(2−d)Sd

, |r| � ξ; ξ(3−d)/2

(2−d)Sd|r|(d−1)/2 exp(−|r|/ξ), |r| � ξ.]

14 To quadratic order, the Ginzburg-Landau Hamiltonian for an n-component
field configuration m(x) takes the form

βH[m] =

∫
ddx

[
K

2
(∇m)2 +

t

2
m2 − h ·m

]
where, throughout, we assume that t > 0 and K > 0.

(a) Applying Kadanoff’s momentum shell renormalisation group, integrate
out the degrees of freedom m(q) where Λ/b < |q| < Λ and Λ denotes the
ultraviolet momentum cut-off. As a result, show that the parameters scale as

K ′ = Kb−d−2z2

t′ = tb−dz2

h′ = hz

where z defines the coefficient by which the order parameter is renormalised.
(b) Identify the Gaussian fixed point and show that the singular contribution

to the free energy density f(t, h) ≡ −(lnZ)/V takes the scaling form

fsing.(t, h) = td/2gf

(
h

t1/2+d/4

)
.

(c) Adding to the fixed Hamiltonian the perturbation

un

∫
ddx|m(x)|n

obtain the scaling exponents yn (i.e. u′n = bynun), and show that Gaussian fixed
point is stable in dimensions d > 4.
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15 The one-dimensional lattice Ising ferromagnet is described by the
microscopic Hamiltonian

βH = −
∑
ij

Jijσiσj − h
∑
i

σi,

where the spins σi = ±1, h denotes the magnetic field, and the exchange
interaction varies with separation between sites i and j as Jij = Je−κ|i−j| with
κ� 1.

(a) Show that the partition function can be expressed in the form

Z = C
∑
σi=±1

∫ N∏
k=1

dmk exp

[
−
∑
ij

mi[J
−1]ijmj + 2

∑
i

σimi

]

= C

∫ ∞
−∞

∏
k

dmk exp

[
−
∑
ij

mi[J
−1]ijmj +

∑
i

ln(2 cosh(2mi + h))

]
where C represents some unspecified constant.

(b) For the long-ranged model defined above, show that

Z = C

∫ ∞
−∞

∏
k

dmk exp

[
−
∑
j

(
1

2J sinhκ
(mj −mj+1)2 + U(mj)

)]
,

where U(m) = tanh(κ/2)m2/J − ln[2 cosh(2m+ h)].

(c) Taking the continuum limit, show that the classical partition function is
isomorphic to the quantum partition function of a particle in a double well
potential.

16 Describe in outline Kadanoff’s momentum shell renormalisation group.
Long-range interactions between spins can be described by adding a term

1

2

∫
ddx1

∫
ddx2J(x1 − x2) m(x1) ·m(x2)

to the usual Ginzburg-Landau Hamiltonian

βH[m(x)] =

∫
ddx

[
t

2
m2 +

K2

2
(∇m)2

]
, t > 0.

(a) Setting J(x) ∝ 1/|x|d+σ, show that the Hamiltonian assumes the Gaussian
form

βH[m(q)] =

∫
ddq

(2π)d

[
t

2
+
K2

2
q2 +

Kσ

2
|q|σ

]
m(q) ·m(−q)

where Kσ denotes some (unspecified) constant of proportionality, and
m(q) =

∫
ddx m(x) eiq·x.
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(b) Applying the momentum shell renormalisation group, construct the recursion
relations for (t,K2, Kσ). Show that Kσ is irrelevant for σ > 2. What is the
fixed Hamiltonian in this case?

(c) For σ < 2, show that the spin rescaling factor must be chosen such that
Kσ = K ′σ, in which case K2 is irrelevant. What is the new fixed Hamiltonian?

END OF PAPER
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1 (a) To implement the real space renormalisation, we must integrate
out spins at every other site to obtain a Hamiltonian with half the number of
sites and renormalised coupling constants. Using the identity

q∑
s=1

eK(δs1,s+δs,s2 )+g = eg
{
q − 1 + e2K s1 = s2

q − 2 + 2eK s1 6= s2

!
= eK

′δs1,s2+g′ ,

and comparing the cases σ1 = σ2 and σ1 6= σ2, we have

eg
′
= (q − 2 + 2eK)eg, eK

′
=
q − 1 + e2K

q − 2 + 2eK
.

(b) Setting x = eK
∗
, the fixe point equation is given by

x =
q − 1 + x2

q − 2 + 2x
.

Solving this equation, we find

2x = −(q − 2)±
[
(q − 2)2 + 4(q − 1)

]1/2
= −(q − 2)± q,

i.e. x = 1 or x = 1− q. The latter solution translates to an imaginary value
of k is is therefore unphysical. The former translates to K∗ = 0. Then, for
K � 1,

K ′ ' ln

[
q + 2K + 2K2

q + 2K +K2

]
' K2

q
� K,

showing that the fixed point is stable. Conversely, for K � 1, we have

eK
′ ' 1

2
eK , K ′ = K − ln 2 < K

showing that it is unstable.

(c) For the heirarchical lattice, we have(
q∑
s=1

eK(δσ1,s+δs,σ2 )+g

)2

= e2g

{
(q − 1 + e2K)2 σ1 = σ2

(q − 2 + 2eK)2 σ1 6= σ2

!
= eK

′δσ1,σ2 )+g′ ,

where

eg
′
= (q − 2 + 2eK)2e2g, eK

′
=

(
q − 1 + e2K

q − 2 + 2eK

)2

.

For q = 2, this translates to the relation

eK
′
= cosh2(K), K ′ = 2 ln cosh(K).

From this result, we obtain a non-trivial unstable fixed point at K∗ = 1.28 in
addition to the now stable fixed point at K∗ =∞ and K∗ = 0.
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2 The divergence of the correlation length at a second order phase transition
suggests that, in the vicinity of the transition, the microscopic length-scales are
irrelevant. The critical behaviour is dominated by fluctuations that are
statistically self-similar up to the length scale ξ. Self-similarity allows the gradual
elimination of the correlated degrees of freedom at length scales |x| � ξ, until one
is left with the relatively simple uncorrelated degrees of freedom at the scale of the
correlation length ξ. [5]

(a) In the Fourier representation the Hamiltonian takes the diagonal form

βH =
1

2

∫
ddq

(2π)d
G−1(q)|m(q)|2 − hm(q = 0),

where the anisotropic propagator is given by [3]

G−1(q) = t+Kq2
‖ + Lq4

⊥.

(b) To implement the RG procedure, the first step is to apply a
course-graining by integrating over the fast field fluctuations. Setting

m(q) =

{
m<(q) 0 < |q‖| < Λ/b and 0 < |q|⊥ < Λ/c,
m>(q) Λ/b < |q‖| < Λ or Λ/c < |q|⊥ < Λ,

the fast fluctuations separate from the slow identically for the Gaussian
Hamiltonian. As such, an integration over the fast fluctuations obtains

Z = Z>
∫
Dm< exp

[
−1

2

∫ Λ/b

0

(dq‖)

∫ Λ/c

0

(dd−1q⊥)G−1(q)|m<(q)|2 + hm<(0)

]
,

where the constant Z> is obtained from performing the functional integral
over m>. Applying the rescaling q′‖ = bq‖ and q′⊥ = cq⊥, the cut-off in the
domain of momentum integration is restored. Finally, applying the
renormalisation m′(q) = m<(q)/z to the Fourier field amplitudes, one
obtains

Z = Z>
∫
Dm′(q′)e−(βH)′[m′(q′)],

where the renormalised Hamiltonian takes the form

(βH)′ =
1

2

∫
(ddq)b−1c−(d−1)z2

(
t+Kb−2q′‖

2 + Lc−4q′⊥
4
)
|m′(q′)|2 − zhm′(0).

From the result, we obtain the renormalisation of the coefficients [10]
t′ = tb−1c−(d−1)z2,
K ′ = Kb−3c−(d−1)z2,
L′ = Lb−1c−(d+3)z2,
h′ = hz.
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(c) Choosing parameters c = b1/2 and z = b(d+5)/4 ensures that K ′ = K and
L′ = L and implies the scaling exponents yt = 2, yh = (d+ 5)/4. [3]

(d) From this result we obtain the renormalisation of the free energy density

f(t, h) = b−(d+1)/2f(b2t, b(d+5)/4h).

Setting b2t = 1, we can identify the exponents 2− α = (d+ 1)/4 and
∆ = yh/yt = (d+ 5)/8. [4]

3 The Hamiltonian given in the question represents the canonical form of the
Ginzburg-Landau Hamiltonian for a second order phase transition. In the Landau
theory, the functional integral for the classical partition function is approximated
by its value at the Hamiltonian minimum, viz. [2]

Z ≡ e−βF =

∫
Dm(x)e−βH[m(x) ' exp

[
−minm(x) βH[m(x)]

]
.

For K > 0, the minimal Hamiltonian is given by m(x) = m̄, constant. In this
approximation, the free energy density is given by f = βF

V
= βH[m̄], where

m̄+ 4um̄3 − h = 0. In particular, for h = 0, the magnetisation acquires a non-zero
expectation value when t < 0 with m̄ =

√
−t/4u. Similarly, for t = 0, the

magnetisation varies as m = (h/3u)1/3. From this result, one can infer a phase
diagram in which a line of first order transitions along h = 0 terminates at the
critical point t = 0. Finally, differentiating the condition on m̄ with respect to m̄,
one obtains the susceptibility [4]

χ(t, h = 0) =
∂m

∂h

∣∣∣
h=0

=

{
1/t t > 0

−1/2t t < 0.[
Full credit will be given even if the specific heat is not derived.

]
(a) In the presence of the strain field, the partition function is given by

Z =

∫
DmDφe−βH[m,φ].

Being Gaussian in φ, the integral may be performed exactly and obtains∫
Dφe−

∫
d3x[ c2φ2+gφm2] =

∫
Dφe

−
∫
d3x

[
c
2

(φ− gm
2

c
)2− g

2

2c
m4

]
= const.× e

∫
d3x

[
g2

2c
m4

]
,

leading to the suggested reduction in the quartic coefficient. [4]

(b) While the quartic coefficient u′ = u− g2/2c remains positive, the Landau
theory continues to predict a second order transition at h = t = 0. However,
when the sign is reversed, the Landau Hamiltonian (h = 0)

ψ(m) =
t

2
m2 + u′m4 + vm6
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develops additional minima. By sketching ψ(m) for different parameter
values, one may see that, for u′ < 0 and t = 0 the (degenerate) global
minimum lies at some non-zero value of m̄ while, for t large, the global
minimum lies a m̄ = 0. In between, there exists a line of first order
transitions which merges with the line of second order critical points at the
tricritical point t = u′ = 0.

[
By careful calculation, one may show that the

first order boundary follows the line t = u′2/2v.
]

[4]

(c) Near the tricritical point (u′ = 0 and h = 0), one obtains

∂ψ

∂m
= m(t+ 6vm4) = 0, m̄(t, h = 0) =

{
0 t > 0,

(−t/6v)1/4 t < 0,

implying an exponent β = 1/4. Similarly, for t = 0, one obtains

h = 6vm̄5, m̄(t = 0, h) = (h/6v)1/5

i.e. δ = 5. Finally, for finite h and t, differentiating the defining equation for [4]
m̄, one obtains the susceptibility

χ(t, h = 0) =
∂m̄

∂h

∣∣∣
h=0

= (t+ 30vm̄4)−1,

implying that χ ∼ 1/|t| for t < 0 and t > 0. Thus we find the exponent
γ = 1. [2]

4 Separating the field fluctuations into fast and slow degrees of freedom,
φ(x) = φ<(x) + φ>(x),

Z =

∫
Dφ<e

−βH0[φ<]Dφ>e
−βH[φ>]−U [φ<,φ>]

= Z0
>

∫
Dφ<e

−βH0[φ<]〈e−U [φ<,φ>]〉>

= Z0
>

∫
Dφ<e

−βH0[φ<] + ln〈e−U [φ<,φ>]〉>.

From this result, one obtains the required renormalised Hamiltonian. [5]

(a) Applying the perturbative expansion,

− ln〈e−U [φ<,φ>]〉> ' 〈U [φ<, φ>]〉> +O(U2).

to the sine-Gordon theory, one obtains the required expression for the
Hamiltonian. [2]
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(b) Integrating over the fast field fluctuations, [2]

〈g cos[λ(φ<(x) + φ>(x))]〉> = gRe
[
eiλφ<(x)〈eiλφ>(x)〉>

]
= ge−λ

2〈φ2>(x)〉/2 cos(λφ<(x))

Then, making use of the identity, [2]

〈φ2
>(x)〉 =

∫
>

d2q

(2π)d
1

Kq2
=

1

2πK
(1− b−1)

and applying the rescalings, [2]

q′ = qb, φ′(q′) = φ<(q)/z, φ′(x′) = φ<(x)/ζ,

one obtains the renormalised Hamiltonian [1]

βH ′[φ′] =

∫
d2q

(2π)2

K(b)

2
q′2|φ(q)|2 +

∫
d2x′ g(b) cos [λ(b)φ′(x′)]

where the coefficients are as stated.

(c) Using the expansion, [3]

g(`) = g(0)e2` exp

[
− λ2

4πK
(1− e−`)

]
g(0) + `

dg

d`
+ · · · = g(0)

[
1 + 2`− λ2

4πK
`+ · · ·

]
one recovers the required differential recursion relation. For λ2 > 8πK, g(`)
dimishes under the RG and the system flows towards a free massless theory.
Conversely, for λ2 < 8πK, g(`) grows under RG leading to a confined or
massive theory. When λ2

∗ = 8πK, the Hamiltonian is fixed and the theory
critical. [3]

5 (a) For hi = hj the site energy of a link βHij = 0; for hi = hj ± 1
βHij = K; and βHij →∞ otherwise. Therefore, the former
nij = hi − hj = 0,±1 are the only allowed field configurations. [3]

(b) Taking into account the constraint nij = 0,±1, one may note that the
sum of nij around a plaquette

∑
ij∈plaquette nij = 0. Such a constraint ensures

that the sum of nij around any closed loop must vanish since any loop can
be decomposed into a set of elementary plaquettes. [4]

(c) Then, making use of the identity given in the question to impose the
constraint, the partition function may be written as [6]

Z =
∑

nij=0,±1

e−K|nij |

(∏
i

∫ 2π

0

dθie
i(ni,i+êx+ni+êx,i+êx+êy+ni+êx+êy,i+êy+ni+êy,i)θi

)
,
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where the product runs over all lattice sites i. Noting that each site i is
associated with two bonds along direction êx and êy, the partition function
may be rearranged as

Z =

(∏
i

∫ 2π

0

dθi

)[ ∑
n=0,±1

e−K|n|ei(θi+θi−êy )n

][ ∑
n=0,±1

e−K|n|ei(θi+θi−êx )n

]

=

(∏
i

∫ 2π

0

dθi

)
exp

[
ln(1 + 2e−K cos(θi + θi−êy)) + ln(1 + 2e−K cos(θi + θi−êx))

]
.

Finally, setting θi 7→ −θi on alternate lattice sites, one obtains

Z =

(∏
i

∫ 2π

0

dθi

)
exp

∑
〈ij〉

ln(1 + 2e−K cos(θi − θj))

 .
(d) At low temperatures (K � 1), the logarithm may be expanded as

Z =

(∏
i

∫ 2π

0

dθi

)
exp

2e−K
∑
〈ij〉

cos(θi − θj)

 .
The latter can be identified as the partition function of a two-dimensional
XY model with exchange constant J = 2e−K . This correspondence allows us
to infer that the proliferation of massless fluctuations of the fields θi leads to
a disordering of the system for any non-zero temperature, i.e. spatial
correlations of the height degrees of freedom allow for divergent fluctuations.
However, since the present system lies at the lower critical dimension, one
can infer that the restricted solid on solid model exhibits a topological
Kosterlitz-Thouless phase transition from a phase with power-law
correlations of the order parameter to exponsential correlations. [7]

6 (a,b) Expanding the expression for the area we obtain the partition function

Z =

∫
Dh(x)e−βH[h],

βH = βσA = βσ

∫
dd−1x

[
1 +

1

2
(∇h)2 + · · ·

]
=

βσ

2

∫
(dq)q2|h(q)|2 + · · ·

(c) Making use of the correlator

〈h(q1)h(q2)〉 = (2π)d−1δd−1(q1 + q2)
1

βσq2
1

,
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we obtain the correlator〈
[h(x)− h(0)]2

〉
=

∫
(dq1)(dq2)

(
eiq1·x − 1

) (
eiq2·x − 1

)
〈h(q1)h(q2)〉

=
4

βσ

∫
(dq)

sin2(q · x)

q2
.

By inspection of the integrand, we see that for d ≥ 4, the integral is
dominated by |q| � 1/|x|, and〈

[h(x)− h(0)]2
〉
∼ const.

In three dimensions, the integral is logarithmically divergent and

〈[h(x)− h(0)]〉 ∼ 1

βσ
ln |x|.

Finally, in two dimensions, the integral is dominated by small q and

〈[h(x)− h(0)]〉 ∼ |x|.

This result shows that in dimensions less than 4, a surface constrained only by its
tension is unstable due to long-wavelength fluctuations.

7 To obtain full marks, the answer to the first part of the question should
involve an account of spontaneous symmetry breaking in systems with a
continuous symmetry. Marks will be given for writing a generic expression for the
Ginzburg-Landau free energy describing Goldstone fluctuations; an estimate of the
correlation functions in dimensionality d = 2, 3 and 4; a definition of the lower
critical dimension, and a statement of the Mermin-Wagner theorem. Additional
marks will be given for the mention of examples. It is expected that the
calculation of the Green function for a point charge in d dimensions can be
performed with the use of Gauss’ theorem.

The calculation itself is a simple subset of the first part of the problem. The
idea is that, by virtue of solving the technical part of the question, the student can
use more time for discussion in the first part of the problem.

Applying Gauss’ theorem as in the notes, the real space representation of the
propagator can be found directly,〈

[ϕ(x)− ϕ(0)]2
〉

=
2

(2− d)Sd

1

ρs

(
x2−d − a2−d) ,

where a is the ultraviolet cut-off. The logarithmic dependence in two-dimensions
should be easy to extract. As for the numerical prefactor, if all else fails, it can be
deduced from the answer given.
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8 The phenomenology of Ginzburg-Landau theory is based on the divergence
of the correlation length in the vicinity of a second-order phase transition. This
implies that singular critical properties of the theory depend only on fundamental
symmetry properties of the model and not on the microscopic details of the
Hamiltonian. This include locality, translational or rotational invariance, and scale
invariance.

(a) In the mean-field approximation, the average magnetisation takes the
homogeneous form m = m̄ê` where ê` represents a unit vector along some
arbitrary direction, and m̄ minimises the free energy density

f(m̄) =
βH[m̄]

V
=
t

2
m̄2 + um̄4.

Differentiating, we find that

m̄ = 0, t > 0

=
√
−t/4u, t < 0

(b) Applying the expansion, and making use of the identities

(∇m)2 = (∇φ`)2 + (∇φit)2

m2 = m̄2 + 2m̄φ` + φ2
` + (φit)

2(
m2
)2

= m̄4 + 4m̄3φ` + 6m̄2φ2
` + 2m̄2(φit)

2 +O(φ3)

we find

βH = βH[m̄] +

∫
d2x

K

2

[
(∇φ`)2 + ξ−2

` φ2
` + (∇φit)2 + ξ−2

t (φit)
2
]

where

K

ξ2
`

= t, t > 0

= −2t, t < 0
K

ξ2
t

= t, t > 0

= 0, t < 0

(c) Expressed in Fourier representation, the Hamiltonian is diagonal and the
transverse correlation function is given by

〈φit(q)φjt(q
′)〉 = (2π)dδd(q + q′)δij

1

K(q2 + ξ−2
t )

Turning to the real space correlation function, for t < 0

〈φit(x)φjt(0)〉 =

∫
ddq

(2π)d
eiq·x

Kq2
∼ 1

K|x|d−2
.
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In dimensions d > 2 the correlation function decays at large distances while in
dimensions d ≤ 2 the correlation function diverges. This is consistent with the
Mermin-Wagner theorem which implies the destruction of long-range order due to
Goldstone mode fluctuations.

(d) The quantum Hamiltonian maps directly onto βH in one dimension
higher. The inverse transverse correlation length in βH gives the energy gap
between the ground state and the first excited state in Ĥ. It follows that the
excitations are gapped for t > 0 and gapless for t < 0 and that the energy gap
vanishes as

√
t as t approaches zero from above.

For t < 0, the low-energy spectrum is determined by transverse fluctuations
of the magnetisation. Working in Fourier space, we can write

Ĥ =

∫
ddk

(2π)d

[
|p̂|2

2K
+
K

2

(
k2 + ξ−2

t

)
|m̂|2 +O(m4)

]
. (2)

Each k-mode is a simple harmonic oscillator with frequency ω(k) =
√
k2 + ξ−2

t .
For t < 0, ξ−1

t = 0 and the spectrum is gapless.

(i) 〈m̂(x)〉g.s. = 〈m(x)〉βHd+1
= m̄,

(ii)

〈m̂(x) · m̂()〉g.s. = 〈m(x, τ = 0) ·m(, 0)〉βHd+1
=

m̄2 + 〈φl(, 0)φl(x, τ = 0)〉βHd+1
+ (n− 1)〈φt(, 0)φt(x, τ = 0)〉βHd+1

∼


n exp[−|x|

√
K
t

], t > 0,
n

K|x|d−1 , t = 0,√
−t
4u

+ n−1
K|x|d−1 + exp[−|x|

√
K
−2t

], t ≤ 0,

(iii)

〈eĤτm̂(x)e−Ĥτm̂()〉g.s. = 〈m(x, τ) ·m(, 0)〉βHd+1
=

m̄2 + 〈φl(, 0)φl(x, τ)〉βHd+1
+ (n− 1)〈φt(, 0)φt(x, τ)〉βHd+1

∼


n exp[−

√
x2 + τ 2

√
K
t

], t > 0,
n

K(x2+τ2)
d−1
2
, t = 0,√

−t
4u

+ n−1

K(x2+τ2)
d−1
2

+ exp[−
√
x2 + τ 2

√
K
−2t

], t ≤ 0.

9 Switching to the momentum basis

θ(q) =

∫
d2reiq·rθ(r), θ(r) =

∫
d2q

(2π)2
e−iq·rθ(q),
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the Hamiltonian takes the form

βH =
J

2

∫
d2q

(2π)2
q2|θ(q)|2

According to this result there exist low energy massless fluctuations of the field θ
known as a Goldstone modes. The influence of these fluctuations on the long-range
order in the system can be estimated by calculating the autocorrelator.

In the momentum basis, the autocorrelator of phases takes the form

〈θ(q1)θ(q2)〉 = (2π)2δ2(q1 + q2)
1

Jq2
1

.

from which we obtain the real space correlator〈
(θ(r)− θ())2〉 =

∫
d2q

(2π)2

|1− eiq·r|2

Jq2
= 4

∫
d2q

(2π)2

sin2(q · r)

Jq2

=
1

πJ
ln

(
|r|
a

)
where a represents some lower length scale cut-off. From this result, we see that
the correlation function decays as a power law in two-dimensions corresponding to
quasi-long range order. This is in accord with the Mermin-Wagner theorem which
states that the breaking of a spontaneous symmetry is accompanied by the
existence of massless Goldstone modes which destroy long-range order in
dimensions d ≤ 2.

(a) A vortex configuration of unit charge is defined by

∂θ(r) =
1

|r|
êr × êz

Substituting this expression into the effective free energy, we obtain the vortex
energy

βEvortex =
J

2

∫
d2r

r2
= πJ ln

(
L

a

)
+ βEcore

where a represents some short-distance cut-off and βEcore denotes the core energy.
(b) According to the harmonic fluctuations of the phase field, long-range

order is destroyed at any finite temperature. However, the power law decay of
correlations is consistent with the existence of quasi-long range order. The
condensation of vortices indicates a phase transition to a fully disordered phase.
An estimate for this melting temperature can be obtained from the single vortex
configuration. Taking into account the contribution of a single vortex configuration
to the partition function we have

Z ∼
(
L

a

)2

e−βEvortex
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where the prefactor is an estimate of the entropy. The latter indicates a
condensation of vortices at a temperature J = 2/π.

10 In a second order phase transition an order parameter grows continuously
from zero. The onset of order below the transition is accompanied by a
spontaneous symmetry breaking — the symmetry of the low temperature ordered
phase is lower than the symmetry of the high temperature disordered phase. An
example is provided by the classical ferromagnet where the appearance of net
magnetisation breaks the symmetry m 7→ −m. If the symmetry is continuous, the
spontaneous breaking of symmetry is accompanied by the appearance of massless
Goldstone mode excitations. In the magnet, these excitations are known as spin
waves.

(a) Applying the rules of Gaussian functional integration, one finds that
〈θ(x)〉 = 0, and the correlation function takes the form

G(x,x′) ≡ 〈θ(x)θ(0)〉 = −Cd(x)

K̄
, ∇2Cd(x) = δd(x)

where Cd denotes the Coulomb potential for a δ-function charge distribution.
Exploiting the symmetry of the field, and employing Gauss’,∫
dx ∇2Cd(x) =

∮
dS · ∇Cd, one finds that Cd depends only on the radial

coordinate x, and

dCd
dx

=
1

xd−1Sd
, Cd(x) =

x2−d

(2− d)Sd
+ const.,

where Sd = 2πd/2/(d/2− 1)! denotes the total d-dimensional solid angle.

(b) Using this result, one finds that

〈
[θ(x)− θ(0)]2

〉
= 2

[
〈θ(0)2〉 − 〈θ(x)θ(0)〉

] |x|>a
=

2(|x|2−d − a2−d)

K̄(2− d)Sd
,

where the cut-off, a is of the order of the lattice spacing. (Note that the case
where d = 2, the combination |x|2−d/(2− d) must be interpreted as ln |x|.
This result shows that the long distance behaviour changes dramatically at
d = 2. For d > 2, the phase fluctuations approach some finite constant as
|x| → ∞, while they become asymptotically large for d ≤ 2. Since the phase
is bounded by 2π, it implies that long-range order (predicted by the
mean-field theory) is destroyed.

Turning to the two-point correlation function of m, and making use of the
Gaussian functional integral, obtains

〈m(x) ·m(0)〉 = m̄2Re
〈
ei[θ(x)−θ(0)]

〉
.
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For Gaussian distributed variables 〈exp[αθ]〉 = exp[α2〈θ2〉/2].

We thus obtain

〈m(x) ·m(0)〉 = m̄2 exp

[
−1

2
〈[θ(x)− θ(0)]2〉

]
= m̄2 exp

[
−(|x|2−d − a2−d)

K̄(2− d)Sd

]
,

implying a power-law decay of correlations in d = 2, and an exponential decay
in d < 2. From this result we find

lim
|x|→∞

〈m(x) ·m(0)〉 =

{
m2

0 d > 2,

0 d ≤ 2.

11 (a) From the free energy, one obtains the magnetisation as

m(t, h) ∼ ∂f

∂h
∼ t2−α−∆gm(h/t∆).

In the limit x→ 0, gm(x) is a constant, and m(t, h = 0) ∼ t2−α−∆ (i.e.
β = 2− α−∆). On the other hand, if x→∞, gm(x) ∼ xp, and
m(t = 0, h) ∼ t2−α−∆(h/t∆)p. Since this limit is independent of t, we must
have p∆ = 2− α−∆. Hence m(t = 0, h) ∼ h(2−α−∆)/∆ (i.e.
δ = ∆/(2− α−∆) = ∆/β).

(b) From the magnetisation, one obtains the susceptibility

χ(t, h) ∼ ∂m

∂h
∼ t2−α−2∆gχ(h/t∆)⇒ χ(t, h = 0) ∼ t2−α−2∆ ⇒ γ = 2∆− 2 + α.

(c) Close to criticality, the correlation length ξ is solely responsible for singular
contributions to thermodynamic quantities. Since lnZ(t, h) is dimensionless
and extensive (i.e. ∝ Ld), it must take the form

lnZ =

(
L

ξ

)d
× gs +

(
L

a

)d
× ga

where gs and ga are non-singular functions of dimensionless parameters (a is
an appropriate microscopic length). (A simple interpretation of this result is
obtained by dividing the system into units of the size of the correlation
length. Each unit is then regarded as an independent random variable,
contributing a constant factor to the critical free energy. The number of units
grows as (L/ξ)d. The singular part of the free energy comes from the first
term and behaves as

fsing.(t, h) ∼ lnZ
Ld
∼ ξ−d ∼ tdνgf (t/h

∆)

As a consequence, comparing with the homogeneous expression for the free
energy, one obtains the Josephson identity

2− α = dν
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(d) The energy gap is given by the inverse correlation length along the imaginary
time direction

∆(t, h) = ξ−1
τ (t, h) ∼ tzν ,

where z is the dynamical scaling exponent that relates the divergence of the
correlation length along the temporal and spatial directions. In case of
isotropic behaviour z = 1.

12 (a) Applying the Hubbard-Stratonovich transformation,

exp

[
1

2

∑
ij

σiJijσj

]
= C

∫ ∞
−∞

∏
k

dmk exp

[
−1

2

∑
ij

mi[J
−1]ijmj +

∑
i

miφi

]
,

and summing over the spin configurations, we obtain

Z = C

∫ ∞
−∞

∏
k

dmk exp

[
−1

2

∑
ij

mi[J
−1]ijmj +

∑
i

ln (2 cosh(2(mi + h)))

]
.

To determine J−1 it is convenient to switch to the basis in which J is
diagonal — reciprocal space. Defining the Fourier series

σ(q) =
∑
n

eiq·nσn, σn =

∫ π

−π
(dq)e−iq·nσ(q),

we obtain

1

2

∑
ij

σiJijσj =

∫
(dq)J(q)|σ(q)|2, J(q) =

J

2

∑
ê

eiq·ê

where ê denote the primitive lattice vectors. From this result, we obtain the
expansion

J(q) = J
D∑
d=1

cos qd ≈ D − q2

2
+ · · ·

Inverting and applying the inverse Fourier transform, we obtain

[J−1]ij =

∫
(dq)

eiq·(ni−nj)

J(q)
≈ 1

J

∫
(dq)eiq·(ni−nj)

(
D−1 +

q2

2D
+ · · ·

)
=

1

DJ
δni,nj −

1

2D2J
∇2

ni−nj + · · ·

Applying this expansion, we obtain

Z ≈ C

∫
Dm exp

[
−1

2

∫
ddx

(
m2

DJ
+

1

2D2J
(∇m)2

)
+

∫
ddx ln (2 cosh(2(m+ h)))

]
.
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Expanding the logarithm for small h and m we obtain

Z =

∫
Dme−βH ,

where the effective Ginzburg-Landau Hamiltonian takes the form

βH =

∫
ddx

(
K

2
(∇m)2 +

t

2
m2 + um4 − hm

)
with

K =
1

4D2J
, t =

1

2DJ
− 1, u =

1

12
.

Setting t = 0, we establish the critical point at J−1
c ≡ T−1

c < 2D.
(b-d) An estimate of the mean-field properties of the Ginzburg-Landau

Hamiltonian is straightforward and can be found in the lecture notes.

13 (a) In the mean-field approximation (i.e. η is spatially non-varying), by
minimising the Free energy density, it is straightforward to show that

η̄ =

{
0 t > 0,

(−t/v)1/4 t > 0.

βF̄ =

{
0 t > 0,

−|t|3/2/3v1/2 t < 0.

From this result it is easy to obtain the heat capacity,

Cmf = −T ∂
2f

∂t2
≈ −Tc

∂2f

∂t2
=

{
0 t > 0,

(−vt)−1/2Tc/4 t < 0.

(b) Expanding the Hamiltonian to second order in the vicinity of the mean
field solution, one finds

βH(η)− βH(η̄) =
K

2

∫
ddr

[
(∇η)2 +

η2

ξ2

]
,

1

ξ2
=

{
t/K t > 0,

−4t/K t < 0.

From this result it is straightforward to determine the asymptotic form of the
correlation function using the formula given at the end of the question.

〈η(0)η(r)〉 =
e−|r|/ξ

KSd|d− 2||r|d−2
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This identifies ξ as the correlation length which diverges in the vicinity of the
transition.

(c) Again, in the Gaussian approximation, the free energy and heat capacity
are easily determined.

βF =
1

2

∫
ddq

(2π)d
ln
[
K(q2 + ξ−2)

]
, Cfl = C − Cmf ∝ K−d/2|t|d/2−2

(d) Taking the results for the mean field and fluctuation contribution to the
heat capacity, one obtains,

Cfl

Cmf

∝ |t|
(d−3)/2√
Kd/v

from which one can identify the upper critical dimension as 3.
(e) Most important difference is the appearance of Goldstone modes due to

massless fluctuations of the transverse degrees of freedom. This gives rise to a
power law decay of the correlation function below Tc.

14 14 (a) This question is, to a large extent, bookwork. Part (a) involves
direct application of the RG procedure:

Coarse-Grain: The first step of the RG involves the elimination of fluctuations at
scales a < |x| < ba or Fourier modes with wavevectors Λ/b < |q| < Λ. We
thus separate the fields into slowly and rapidly varying functions,
m(q) = m>(q) + m<(q), where

m(q) =

{
m<(q) 0 < |q| < Λ/b,

m>(q) Λ/b < |q| < Λ.

Since the Ginzburg-Landau functional is Gaussian, the partition function is
separable in the modes and can be reexpressed in the form

Z =

∫
Dm<(q)e−βH[m<]

∫
Dm>(q)e−βH[m>].

More precisely, the latter takes the form

Z = Z>
∫
Dm<(q) exp

[
−
∫ Λ/b

0

ddq

(2π)d

(
t+Kq2

2

)
|m<(q)|2 + h ·m<(0)

]
,

where Z> = exp[−(nV/2)
∫ Λ
Λ/b

(ddq/(2π)d) ln(t+Kq2)]. [Full credit does not

require an evaluation of the functional integral over m>.]
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Rescale: The partition function for the modes m<(q) is similar to the original,
except that the upper cut-off has decreased to Λ/b, reflecting the
coarse-graining in resolution. The rescaling, x′ = x/b in real space, is
equivalent to q′ = bq in momentum space, and restores the cut-off to the
original value.

Renormalise: The final step of the RG is the renormalisation of the field,
m′(x′) = m<(x′)/ζ. Alternatively, we can renormalise the Fourier modes
according to m′(q′) = m<(q′)/z, resulting in

Z = Z>
∫
Dm′(q′)e−βH

′[m′(q′)],

βH ′ =

∫ Λ

0

ddq′

(2π)d
b−dz2

(
t+Kb−2q′2

2

)
|m′(q′)|2 − zh ·m′(0).

As a result of the RG procedure the set of parameters {K, t, h} has transformed
from to a new set 

K ′ = Kb−d−2z2,

t′ = tb−dz2,

h′ = hz.

The singular point t = h = 0 is mapped onto itself as expected. To make the
fluctuations scale invariant at this point, we must ensure that the remaining
parameter in the Hamiltonian K stays fixed. This is achieved by the choice
z = b1+d/2 which implies{

t′ = b2t yt = 2,

h′ = b1+d/2h yh = 1 + d/2.

For the fixed point t = t′, K becomes weaker and the spins become uncorrelated —
the high temperature phase.

(b) From these equations, we can predict the scaling of the Free energy

fsing.(t, h) = b−dfsing.(b
2t, b1+d/2h), b2t = 1,

= td/2gf (h/t
1/2+d/4).

[This implies exponents: 2− α = d/2, ∆ = yh/yt = 1/2 + d/4, and ν = 1/yt = 1/2.
Comparing with the results from the exact solution we can can confirm the
validity of the RG.]

(c) At the fixed point (t = h = 0) the Hamiltonian is scale invariant. By
dimensional analysis x = bx′, m(x) = ζm′(x′) and

(βH)∗ =
K

2
bd−2ζ2

∫
dx′ (∇m′)2, ζ = b1−d/2.
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For small perturbations

(βH)∗ + up

∫
dx |m|p → (βH)∗ + upb

dζp
∫
dx′ |m′|p.

Thus, in general up → u′p = bdbp−pd/2 = bypup, where yp = p− d(p/2− 1), in
agreement with our earlier findings that y1 ≡ yh = 1 + d/2 and y2 ≡ yt = 2. For
the Ginzburg-Landau Hamiltonian, the quartic term scales with an exponent
y4 = 4− d and is therefore relevant for d < 4 and irrelevant for d > 4. Sixth order
perturbations scale with an exponent y6 = 6− 2d and is therefore irrelevant for
d > 3.

15 15

(a) The following equality can be confirmed by integrating out the variables mi on
the right hand side:

exp

[∑
ij

Jijσiσj

]
= C

∫ N∏
k=1

dmk exp

[
−
∑
ij

mi[J
−1]ijmj + 2

∑
i

σimi

]
.

The classical partition function Z =
∑
{σi} e

−βH[σi] is given by

Z = C

∫ N∏
k=1

dmk exp

[
−
∑
ij

mi[J
−1]ijmj +

∑
i

ln (2 cosh(2mi + h))

]
.

(b) To determine [J−1]ij, we transform to Fourier space. In particular, for the
model at hand, after some algebra, one finds that the eigenvalues of Jij are
given by

J(q) =
∞∑

n=−∞

eiqnJe−κ|n| =
J

c− b cos q

where c = cothκ and b = 1/ sinhκ. Making use of this result we obtain

[J−1]ij =

∫ π

−π

dq

2π

e−iq(ni−nj)

J(q)

= c, i = j

= b/2, i± 1 = j

Therefore

Z = C

∫ ∏
k

dmk exp

[
− b

2J

∑
i

(mi −mi+1)2 −
∑
i

U(mi)

]
where U(m) = (c− b)m2/J − ln[2 cosh(2m+ h)]. In particular
c− b = tanh(κ/2).
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(c) For small m and h the effective free energy can be expanded as

U(m) = − ln 2 +
t

2
m2 +

4

3
m4 − 2hm+ · · ·

where t/2 = tanh(κ/2)/J − 2. Evidently, at zero magnetic field, the effective
potential U(m) is quartic. For t < 0, the potential takes the form of a double
well.

(d) The path integral for a particle in a potential well is given by

Z =

∫
Dr(τ) exp

[
−1

h

∫ ∞
0

dτ ′
(m

2
ṙ2 + U(r)

)]
By identifying r with m, and τ with x, the partition function of the Ising
model is seen to be equivalent to the path integral of a particle in a double
well potential where the inverse temperature β is equivalent to the length of
the spin chain L.

16 16
The divergence of the correlation length at a second order phase transition

implies self-similarity of spatial correlations. This, in turn, implies that the form of
the free energy remains invariant under coordinate rescaling. This invariance is
exploited in the renormalisation group procedure: The scaling of the parameters of
the Ginzburg-Landau Hamiltonian under coordinate rescaling allows an
identification of the fixed theory and the exposes the nature of the critical point.
Operationally, the renormalisation procedure is implemented in three steps
described in detail in the question:

(a) Expressed in a Fourier representation

m(x) =

∫
ddq

(2π)d
m(q)eiq·x

With this definition, the long-range coupling of the Hamiltonian takes the
form

1

2

∫
ddq

(2π)d
J(q)m(q) ·m(−q), J(q) =

∫
ddxJ(x)eiq·x = Kσ|q|σ

With this result we obtain the expression shown in the text.

(b) Coarse-Grain: The first step of the RG involves the elimination of fluctuations
at scales a < |x| < ba or Fourier modes with wavevectors Λ/b < |q| < Λ.
Applied to the Gaussian model described in the text, the fields can be
separated into slowly and rapidly varying functions,
m(q) = m>(q) + m<(q), where

m(q) =

{
m<(q) 0 < |q| < Λ/b,

m>(q) Λ/b < |q| < Λ.
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Since the Ginzburg-Landau functional is Gaussian, the partition function is
separable in the modes and can be reexpressed in the form

Z =

∫
Dm<(q)e−βH[m<]

∫
Dm>(q)e−βH[m>].

More precisely, the latter takes the form

Z = Z>
∫
Dm<(q) exp

[
−
∫ Λ/b

0

ddq

(2π)d

(
t+K2q

2 +Kσ|q|σ

2

)
|m<(q)|2

]
,

where Z> represents some irrelevant constant.

Rescale: The partition function for the modes m<(q) is similar to the
original, except that the upper cut-off has decreased to Λ/b, reflecting the
coarse-graining in resolution. The rescaling, x′ = x/b in real space, is
equivalent to q′ = bq in momentum space, and restores the cut-off to the
original value.

Renormalise: The final step of the RG is the renormalisation of the field,
m′(x′) = m<(x′)/ζ. Alternatively, we can renormalise the Fourier modes
according to m′(q′) = m<(q′)/z, resulting in

Z = Z>
∫
Dm′(q′)e−βH

′[m′(q′)],

βH ′ =

∫ Λ

0

ddq′

(2π)d
b−dz2

(
t+K2b

−2q′2 +Kσb
−σ|q′|σ

2

)
|m′(q′)|2.

As a result of the RG procedure the set of parameters {t,K2, Kσ} has
transformed from to a new set

t′ = tb−dz2,

K ′2 = K2b
−d−2z2,

K ′σ = Kσb
−d−σz2.

Setting K ′2 = K2, the fluctuations are made scale invariant by the choice
z = b1+d/2 from which one obtains the scaling relations{

t′ = b2t yt = 2,

K ′σ = Kσb
2−σ yσ = 2− σ.

Thus for σ > 2, the parameter Kσ scales to zero. In this case the fixed
Hamiltonian is simply

βH∗ =

∫
ddx

K2

2
(∇m)2
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(b) For σ < 2 setting K ′σ = Kσ, z = (σ + d)/2 and one obtains{
t′ = bσt yt = σ,

K ′2 = K2b
σ−2 y2 = σ − 2.

In this case K2 scales to zero and the fixed Hamiltonian takes the form

βH∗ =
1

2

∫
ddx1

∫
ddx2J(x1 − x2)m(x1) ·m(x2)
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