
Phase Transitions and Collective
Phenomena

Anson Cheung
achc2@cam.ac.uk

January 2021



ii

Preface

The fundamental goal of statistical mechanics is to provide a framework in which the
microscopic probabilistic description of systems with large numbers of degrees of free-
dom (such as the particles which constitute a gas) can be reconciled with the description
at the macroscopic level (using equilibrium state variables such as pressure, volume and
temperature). When we first meet these ideas they are usually developed in parallel with
simple examples involving collections of weakly or non-interacting particles. However,
strong interactions frequently induce transitions and lead to new equilibrium phases of
matter. These phases exhibit their own characteristic fluctuations or elementary excita-
tions known as collective modes. Although a description of these phenomena at the
microscopic level can be quite complicated, the important large scale, or long-time “hy-
drodynamic” behaviour is often simple to describe. Phenomenological approaches based
on this concept have led to certain quantum as well as classical field theories that
over recent years have played a major role in shaping our understanding of condensed
matter and high energy physics.

The goal of this course is to motivate this type of description; to establish and begin
to develop a framework in which to describe critical properties associated with classical
and quantum phase transitions; and, at the same time, to emphasise the importance
and role played by symmetry and topology. Inevitably there is insufficient time to
study such a wide field in any great depth. Instead, the aim will always be to develop
fundamental concepts.

The phenomenological Ginzburg-Landau theory has played a pivotal rôle in the
development of our understanding critical phenomena in both classical and quantum
statistical mechanics, and much of our discussion will be based on it. The majority
of the course will be involved in developing the important concept of universality in
statistical mechanics and establish a general framework to describe critical phenomena
— the scaling theory and the renormalisation group.
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Synopsis

⊲ Introduction to Critical Phenomena: Concept of Phase Transitions; Order
Parameters; Response Functions; Universality. [1]

⊲ Ginzburg-Landau Theory: Mean-Field Theory; Critical Exponents; Symme-
try Breaking, Goldstone Modes, and the Lower Critical Dimension; Fluctuations
and the Upper Critical Dimension; Importance of Correlation Functions; Ginzburg
Criterion. [3]

⊲ Scaling: Self-Similarity; The Scaling Hypothesis; Kadanoff’s Heuristic Renormal-
isation Group (RG); Gaussian Model; Fixed Points and Critical Exponent Identi-
ties; Wilson’s Momentum Space RG; Relevant, Irrelevant and Marginal Parameters;
†ǫ-expansions. [4]

⊲ Topological Phase Transitions: Continuous Spins and the Non-linear σ-
model; XY-model; Algebraic Order; Topological defects, Confinement, the Kosterlitz-
Thouless Transition and †Superfluidity in Thin Films. [2]

⊲ Quantum Phase Transitions: Classical/Quantum Mapping; the Dynamical
Exponent; Quantum Rotors; †Haldane Gap; †Asymptotic Freedom; †Quantum Crit-
icality. [2]

Material indicated by a † will be included if time allows.
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