Problem Set II

Lent 2023

Perturbative Renormalisation Group Questions

1. Perturbative RG (adpated from 2018 Part III NatSci Tripos): Consider the longwavelength expansion of the Hamiltonian of the 2-dimensional XY model:

$$\beta \mathcal{H}[\phi(\mathbf{r})] = \int d^2 \mathbf{r} \left(\frac{K}{2} \left(\nabla \phi \right)^2 + u \left(\nabla \phi \right)^4 \right),$$

where $\phi(\mathbf{r})$ is the azimuthal angle that describes the transverse fluctuations of the magnetisation. Longitudinal fluctuations can be assumed to be frozen out. \mathbf{r} spans 2-dimensional Euclidean space.

(a) By integrating out the Fourier modes of $\phi(\mathbf{r})$ with wavevectors $\Lambda e^{-l} < |\mathbf{q}| < \Lambda$, implement the momentum-shell renormalisation group procedure to first order in u and derive the following flow equations

$$\frac{dK}{dl} = \frac{4u\Lambda^2}{K\pi},$$
$$\frac{du}{dl} = -2u.$$

Let

$$G(r, K, u) \equiv \langle e^{i\phi(\mathbf{r}) - i\phi(\mathbf{0})} \rangle_{\beta\mathcal{H}},$$

where the expectation value with respect to the above Hamiltonian depends on the parameters (K, u).

(b) Show that

$$G(r, K, u = 0) = \frac{1}{(r/a)^{\frac{1}{2\pi K}}}$$

where a is the lattice constant.

(c) Show that an RG trajectory starting at the point (K_0, u_0) in the (K, u) plane flows towards the point $(\sqrt{K_0^2 + 4u_0\Lambda^2/\pi}, 0)$.

(d) Considering an infinitesimal RG flow from l to $l + \delta l$ starting at the point $(K \gg 1, u)$, show that

$$G(r, K, u) = e^{-\frac{\delta l}{2\pi K}} G\left(r\left(1 - \delta l\right), K + \frac{dK}{dl}\delta l, u + \frac{du}{dl}\delta l\right).$$
(1)

(e) Now, consider a series of infinitesimal RG flows from l = 0 to $l = \ln \frac{r_0}{r}$, starting at the point (K_0, u_0) and ending at the point $\left(K\left(\ln \frac{r_0}{r}\right), u\left(\ln \frac{r_0}{r}\right)\right)$, to show that

$$G(r_0, K_0, u_0) = \exp\left(-\int_0^{\ln(r_0/r)} \frac{dl}{2\pi K(l)}\right) G\left(r, K\left(\ln\frac{r_0}{r}\right), u\left(\ln\frac{r_0}{r}\right)\right).$$
(2)

(f) Hence, show that the asymptotic limit of the correlator is given by

$$G(r_0, K_0, u_0) \stackrel{r_0/r \to \infty}{=} (1 + \mathcal{O}(u_0)) \frac{1}{(r_0/a)^{\frac{1}{2\pi K_*}}},$$

i.e. the long-distance physics is given by the quadratic theory, but with a renormalised coupling constant $K_* = \sqrt{K_0^2 + 4u_0\Lambda^2/\pi}$.

The next problem concerns the ϵ -expansion of the Ginzburg-Landau Hamiltonian to second order. Although outlined in the lectures, this problem leads you through a detailed investigation of the O(n) fixed point. In attacking this problem one may wish to consult a reference text such as Chaikin and Lubensky (p. 263).

2. Using Wilson's perturbative renormalisation group, the aim of this problem is to obtain the second-order $\epsilon = 4 - d$ expansion of the Ginzburg-Landau functional

$$\beta H = \int d\mathbf{x} \left[\frac{t}{2} \mathbf{m}^2 + \frac{K}{2} (\nabla \mathbf{m})^2 + u(\mathbf{m}^2)^2 \right],$$

where \mathbf{m} denotes an *n*-component field.

(a) Treating the quartic interaction as a perturbation, show that an application of the momentum shell RG generates a Hamiltonian of the form

$$\beta H[\mathbf{m}_{<}] = \int_{0}^{\Lambda/b} (d\mathbf{q}) \frac{G^{-1}(\mathbf{q})}{2} |\mathbf{m}_{<}(\mathbf{q})|^{2} - \ln \left\langle e^{-U} \right\rangle_{\mathbf{m}_{>}}, \qquad G^{-1}(\mathbf{q}) = t + K \mathbf{q}^{2},$$

where we have used the shorthand $(d\mathbf{q}) \equiv d\mathbf{q}/(2\pi)^d$.

(b) Expressing the interaction in terms of the Fourier modes of the Gaussian Hamiltonian, represent *diagrammatically* those contributions from the second order of the cummulant expansion. [Remember that the cummulant expansion involves only those diagrams which are *connected*.]

(c) Focusing only on those second order contributions that renormalise the quartic interaction, show that the renormalised coefficient u takes the form

$$\widetilde{u} = u - 4u^2(n+8) \int_{\Lambda/b}^{\Lambda} (d\mathbf{q}) G(\mathbf{q})^2.$$

Comment on the nature of those additional terms generated at second-order.

(d) Applying the rescaling $\mathbf{q} = \mathbf{q}'/b$, performing the renormalisation $\mathbf{m}_{<} = z\mathbf{m}$, and arranging that K' = K, show that the differential recursion relations take the form $(b = e^{\ell})$

$$\frac{dt}{d\ell} = 2t + 4u(n+2)G(\Lambda)K_d\Lambda^d - u^2A(\mathbf{q}=0),$$

$$\frac{du}{d\ell} = (4-d)u - 4(n+8)u^2G(\Lambda)^2K_d\Lambda^d.$$

(e) From this result, show that for d < 4 the Gaussian fixed point becomes unstable against a new fixed point (known as the O(n) fixed point). [Remember to be consistent in keeping terms of definite order in ϵ !] Linearising in the vicinity of the new fixed point, show that the scaling dimensions take the form

$$y_t = 2 - \left(\frac{n+2}{n+8}\right)\epsilon + O(\epsilon^2), \qquad y_u = -\epsilon + O(\epsilon^2).$$

Sketch the RG flows for d > 4 and d < 4.

(f) Adding the magnetic field dependent part of the Hamiltonian, show that to leading order in ϵ , the magnetic exponent y_h is unchanged from the mean-field value.

(g) From the scaling relations for the free energy density and correlation length

$$\begin{aligned} f(g_1 = \delta t, h) &= b^{-d} f(b^{y_t} \delta t, b^{y_h} h), \\ \xi(\delta t, h) &= b^{-1} \xi(b^{y_t} \delta t, b^{y_h} h). \end{aligned}$$

determine the critical exponents ν , α , β , and γ . [Recall: $\xi \sim (\delta t)^{-\nu}$, $C \sim (\delta t)^{-\alpha}$, $m \sim (\delta t)^{\beta}$, $\chi \sim (\delta t)^{-\gamma}$.]

Optional Problem for Enthusiasts: The final problem in this set is *optional* and involves another investigation of an ϵ -expansion this time applied to continuous spins near two-dimensions. In contrast to the $4 - \epsilon$ expansion of the Ginzburg-Landau Hamiltonian described above, a non-trivial fixed point emerges already at first order. The aim of this calculation is to study properties of the fixed point in the vicinity of two-dimensions. This calculation repeats steps first performed by Polyakov (Phys. Lett. **59B**, 79 (1975)) in a seminal work on the properties of the non-linear σ -model. Once again, this calculation should be attempted with reference to a standard text such as Chaikin and Lubensky (p. 341).

3. ** Optional Question on Continuous Spin Systems Near Two-Dimensions: The aim of this problem is to employ Wilson's perturbative renormalisation group, to obtain the $\epsilon = d - 2$ expansion of the *n*-component non-linear σ -model

$$\mathcal{Z} = \int D\mathbf{S}(\mathbf{x})\delta\left(\mathbf{S}^{2}(\mathbf{x}) - 1\right)\exp\left[-\frac{K}{2}\int d\mathbf{x}\left(\nabla\mathbf{S}\right)^{2}\right].$$

In the vicinity of the transition temperature, it is convenient to expand the spin degrees of freedom around the (arbitrary) direction of spontaneous symmetry breaking, $\mathbf{S}_0(\mathbf{x}) = (0, \dots 0, 1),$

$$\mathbf{S}(\mathbf{x}) = (\Pi_1(\mathbf{x}), \cdots \Pi_{n-1}(\mathbf{x}), \sigma(\mathbf{x})) \equiv (\Pi(\mathbf{x}), \sigma(\mathbf{x})),$$

where $\sigma(\mathbf{x}) = (1 - \Pi^2)^{1/2}$.

(i) Substituting this expression, and expanding σ in powers of Π , show that the Hamiltonian takes the form

$$\beta H = \frac{K}{2} \int d\mathbf{x} \left[(\nabla \Pi)^2 + \frac{1}{2} \left(\nabla \Pi^2 \right)^2 + \cdots \right].$$

(ii) Treating this expansion to quadratic order, show that the lower critical dimension is 2.

(iii) Taking $\sigma > 0$, and using the expression (true when $\sigma > 0$)

$$\delta\left(\Pi^2 + \sigma^2 - 1\right) = \frac{1}{2(1 - \Pi^2)^{1/2}}\delta\left(\sigma - (1 - \Pi^2)^{1/2}\right),$$

show that the partition function can be written in the form

$$\begin{aligned} \mathcal{Z} &= \int D\Pi(\mathbf{x}) \exp\left[-\frac{\rho}{2} \int d\mathbf{x} \ln(1-\Pi^2)\right] \\ &\times \exp\left\{-\frac{K}{2} \int d\mathbf{x} \left[(\nabla\Pi)^2 + \left(\nabla(1-\Pi^2)^{1/2}\right)^2\right]\right\}, \end{aligned}$$

where $\rho \equiv (N/V) = \int_0^{\Lambda} (d\mathbf{q})$ denotes the density of states.

(iv) Polyakov's Perturbative Renormalisation Group: Expanding the Hamiltonian perturbatively in Π , show that $K\langle \Pi^2 \rangle \sim O(1)$, $K(\nabla \Pi^2)^2 \sim O(K^{-1})$, and $\rho \Pi^2 \sim O(K^{-1})$.

This suggests that we define

$$\beta H_0 = \frac{K}{2} \int d\mathbf{x} \left(\nabla \Pi \right)^2,$$

as the unperturbed Hamiltonian and treat

$$U = \frac{K}{2} \int d\mathbf{x} \left(\Pi \cdot \nabla \Pi \right)^2 - \frac{\rho}{2} \int d\mathbf{x} \, \Pi^2,$$

as a perturbation.

(v) Expand the interaction in terms of the Fourier modes and obtain an expression for the propagator $\langle \Pi_{\alpha}(\mathbf{q}_1)\Pi_{\beta}(\mathbf{q}_2)\rangle_0$. Sketch a diagrammatic representation of the components of the perturbation.

(vi) *Perturbative Renormalisation Group*: Applying the perturbative RG procedure, and integrating out the fast degrees of freedom, show that the partition function takes the form

$$\mathcal{Z} = \int D\Pi_{\leq} e^{-\delta f_b^0 - \beta H_0[\Pi_{\leq}] - \ln \left\langle e^{-U[\Pi_{\leq},\Pi_{\geq}]} \right\rangle_0^>},$$

where δf_b^0 represents some constant.

(vii) Expanding to first order, identify and obtain an expression for the *two* diagrams that contribute towards a renormalisation of the coupling constants. (Others either vanish or give a constant contribution.) [Note: the density of states is given by $\rho = (N/V) = \int_0^{\Lambda} (d\mathbf{q}) = b^d \int_0^{\Lambda/b} (d\mathbf{q})$.] As a result, show that the renormalised Hamiltonian takes the form

$$-\beta H[\Pi_{<}] = \delta f_{b}^{0} + \delta f_{b}^{1} - \frac{\widetilde{K}}{2} \int_{0}^{\Lambda/b} d\mathbf{x} (\nabla \Pi_{<})^{2} + \frac{\rho}{2} b^{-d} \int_{0}^{\Lambda/b} d\mathbf{x} |\Pi_{<}|^{2} - \frac{K}{2} \int_{0}^{\Lambda/b} d\mathbf{x} (\Pi_{<\alpha} \nabla \Pi_{<\alpha})^{2} + O(K^{-2}),$$

where $\widetilde{K} = K(1 + I_d(b)/K)$ and δf_b^0 , δf_b^1 are constants. Specify the function $I_d(b)$. (viii) Applying the rescaling $\mathbf{x}' = \mathbf{x}/b$ and renormalising the spins,

$$\mathbf{S}' = rac{\mathbf{S}}{\zeta}, \qquad \Pi_{<} = \zeta \Pi',$$

obtain an expression for the renormalised coupling constant K'.

To determine ζ , it is necessary to evaluate the average of the renormalised spin $\langle \mathbf{S} \rangle_0 = \langle (\Pi_{<1} + \Pi_{>1}, \cdots, (1 - \Pi_{<}^2 - \Pi_{>}^2)^{1/2}) \rangle_0$. Expanding, we find

From this expression, show that $\zeta = 1 - (n-1)I_d(b)/2K$.

(ix) Using the expression for K' and ζ , show that the differential recursion relation takes the form

$$\frac{dK}{d\ell} = (d-2)K - (n-2)K_d\Lambda^{d-2},$$

where $b = e^{\ell}$. Setting the temperature $T = K^{-1}$, obtain the recursion relation $dT/d\ell$ and confirm that the fixed point is given by

$$T^* = \frac{d-2}{(n-2)K_d\Lambda^{d-2}} = \frac{2\pi\epsilon}{(n-2)} + O(\epsilon^2),$$

where $d = 2 + \epsilon$. Sketch the RG flow diagram for d > 2, d = 2 and d < 2, for various values of n.

(x) Linearising the RG flow in the vicinity of the fixed point, obtain the thermal exponent y_t to leading order in ϵ . Using this result, obtain the correlation length exponent $\nu = 1/y_t$.

(xi) Adding a term $-\int d\mathbf{x} \mathbf{h} \cdot \mathbf{S}$ show that the magnetic exponent takes the form

$$y_h = 2 + \frac{n-3}{2(n-2)}\epsilon + O(\epsilon^2).$$

(xii) Using an exponent identity, obtain the critical exponent γ . Setting d = 3 and n = 3, how does this estimate compare to the best estimate of 1.38.