Problem Set II

Lent 2023

Perturbative Renormalisation Group Questions

1. Perturbative RG (adpated from 2018 Part III NatSci Tripos): Consider the longwavelength expansion of the Hamiltonian of the 2-dimensional XY model:

$$
\beta \mathcal{H}[\phi(\mathbf{r})]=\int d^{2} \mathbf{r}\left(\frac{K}{2}(\nabla \phi)^{2}+u(\nabla \phi)^{4}\right),
$$

where $\phi(\mathbf{r})$ is the azimuthal angle that describes the transverse fluctuations of the magnetisation. Longitudinal fluctuations can be assumed to be frozen out. \mathbf{r} spans 2-dimensional Euclidean space.
(a) By integrating out the Fourier modes of $\phi(\mathbf{r})$ with wavevectors $\Lambda e^{-l}<|\mathbf{q}|<\Lambda$, implement the momentum-shell renormalisation group procedure to first order in u and derive the following flow equations

$$
\begin{aligned}
\frac{d K}{d l} & =\frac{4 u \Lambda^{2}}{K \pi} \\
\frac{d u}{d l} & =-2 u
\end{aligned}
$$

Let

$$
G(r, K, u) \equiv\left\langle e^{i \phi(\mathbf{r})-i \phi(\mathbf{0})}\right\rangle_{\beta \mathcal{H}},
$$

where the expectation value with respect to the above Hamiltonian depends on the parameters (K, u).
(b) Show that

$$
G(r, K, u=0)=\frac{1}{(r / a)^{\frac{1}{2 \pi K}}}
$$

where a is the lattice constant.
(c) Show that an RG trajectory starting at the point $\left(K_{0}, u_{0}\right)$ in the (K, u) plane flows towards the point $\left(\sqrt{K_{0}^{2}+4 u_{0} \Lambda^{2} / \pi}, 0\right)$.
(d) Considering an infinitesimal RG flow from l to $l+\delta l$ starting at the point ($K \gg 1, u$), show that

$$
\begin{equation*}
G(r, K, u)=e^{-\frac{\delta l}{2 \pi K}} G\left(r(1-\delta l), K+\frac{d K}{d l} \delta l, u+\frac{d u}{d l} \delta l\right) . \tag{1}
\end{equation*}
$$

Phase Transitions and Collective Phenomena
(e) Now, consider a series of infinitesimal RG flows from $l=0$ to $l=\ln \frac{r_{0}}{r}$, starting at the point $\left(K_{0}, u_{0}\right)$ and ending at the point $\left(K\left(\ln \frac{r_{0}}{r}\right), u\left(\ln \frac{r_{0}}{r}\right)\right)$, to show that

$$
\begin{equation*}
G\left(r_{0}, K_{0}, u_{0}\right)=\exp \left(-\int_{0}^{\ln \left(r_{0} / r\right)} \frac{d l}{2 \pi K(l)}\right) G\left(r, K\left(\ln \frac{r_{0}}{r}\right), u\left(\ln \frac{r_{0}}{r}\right)\right) . \tag{2}
\end{equation*}
$$

(f) Hence, show that the asymptotic limit of the correlator is given by

$$
G\left(r_{0}, K_{0}, u_{0}\right) \stackrel{r_{0} / r \rightarrow \infty}{=}\left(1+\mathcal{O}\left(u_{0}\right)\right) \frac{1}{\left(r_{0} / a\right)^{\frac{1}{2 \pi K_{*}}}},
$$

i.e. the long-distance physics is given by the quadratic theory, but with a renormalised coupling constant $K_{*}=\sqrt{K_{0}^{2}+4 u_{0} \Lambda^{2} / \pi}$.

The next problem concerns the ϵ-expansion of the Ginzburg-Landau Hamiltonian to second order. Although outlined in the lectures, this problem leads you through a detailed investigation of the $\mathrm{O}(n)$ fixed point. In attacking this problem one may wish to consult a reference text such as Chaikin and Lubensky (p. 263).
2. Using Wilson's perturbative renormalisation group, the aim of this problem is to obtain the second-order $\epsilon=4-d$ expansion of the Ginzburg-Landau functional

$$
\beta H=\int d \mathbf{x}\left[\frac{t}{2} \mathbf{m}^{2}+\frac{K}{2}(\nabla \mathbf{m})^{2}+u\left(\mathbf{m}^{2}\right)^{2}\right],
$$

where \mathbf{m} denotes an n-component field.
(a) Treating the quartic interaction as a perturbation, show that an application of the momentum shell RG generates a Hamiltonian of the form

$$
\beta H\left[\mathbf{m}_{<}\right]=\int_{0}^{\Lambda / b}(d \mathbf{q}) \frac{G^{-1}(\mathbf{q})}{2}\left|\mathbf{m}_{<}(\mathbf{q})\right|^{2}-\ln \left\langle e^{-U}\right\rangle_{\mathbf{m}_{>}}, \quad G^{-1}(\mathbf{q})=t+K \mathbf{q}^{2}
$$

where we have used the shorthand $(d \mathbf{q}) \equiv d \mathbf{q} /(2 \pi)^{d}$.
(b) Expressing the interaction in terms of the Fourier modes of the Gaussian Hamiltonian, represent diagrammatically those contributions from the second order of the cummulant expansion. [Remember that the cummulant expansion involves only those diagrams which are connected.]
(c) Focusing only on those second order contributions that renormalise the quartic interaction, show that the renormalised coefficient u takes the form

$$
\widetilde{u}=u-4 u^{2}(n+8) \int_{\Lambda / b}^{\Lambda}(d \mathbf{q}) G(\mathbf{q})^{2}
$$

Comment on the nature of those additional terms generated at second-order.
(d) Applying the rescaling $\mathbf{q}=\mathbf{q}^{\prime} / b$, performing the renormalisation $\mathbf{m}_{<}=z \mathbf{m}$, and arranging that $K^{\prime}=K$, show that the differential recursion relations take the form $\left(b=e^{\ell}\right)$

$$
\begin{aligned}
\frac{d t}{d \ell} & =2 t+4 u(n+2) G(\Lambda) K_{d} \Lambda^{d}-u^{2} A(\mathbf{q}=0) \\
\frac{d u}{d \ell} & =(4-d) u-4(n+8) u^{2} G(\Lambda)^{2} K_{d} \Lambda^{d}
\end{aligned}
$$

(e) From this result, show that for $d<4$ the Gaussian fixed point becomes unstable against a new fixed point (known as the $\mathrm{O}(n)$ fixed point). [Remember to be consistent in keeping terms of definite order in $\epsilon!$] Linearising in the vicinity of the new fixed point, show that the scaling dimensions take the form

$$
y_{t}=2-\left(\frac{n+2}{n+8}\right) \epsilon+O\left(\epsilon^{2}\right), \quad y_{u}=-\epsilon+O\left(\epsilon^{2}\right) .
$$

Sketch the RG flows for $d>4$ and $d<4$.
(f) Adding the magnetic field dependent part of the Hamiltonian, show that to leading order in ϵ, the magnetic exponent y_{h} is unchanged from the mean-field value.
(g) From the scaling relations for the free energy density and correlation length

$$
\begin{aligned}
f\left(g_{1}=\delta t, h\right) & =b^{-d} f\left(b^{y_{t}} \delta t, b^{y_{h}} h\right) \\
\xi(\delta t, h) & =b^{-1} \xi\left(b^{y_{t}} \delta t, b^{y_{h}} h\right)
\end{aligned}
$$

determine the critical exponents ν, α, β, and γ. [Recall: $\xi \sim(\delta t)^{-\nu}, C \sim(\delta t)^{-\alpha}$, $\left.m \sim(\delta t)^{\beta}, \chi \sim(\delta t)^{-\gamma}.\right]$

Optional Problem for Enthusiasts: The final problem in this set is optional and involves another investigation of an ϵ-expansion this time applied to continuous spins near two-dimensions. In contrast to the $4-\epsilon$ expansion of the GinzburgLandau Hamiltonian described above, a non-trivial fixed point emerges already at first order. The aim of this calculation is to study properties of the fixed point in the vicinity of two-dimensions. This calculation repeats steps first performed by Polyakov (Phys. Lett. 59B, 79 (1975)) in a seminal work on the properties of the non-linear σ-model. Once again, this calculation should be attempted with reference to a standard text such as Chaikin and Lubensky (p. 341).
3. ** Optional Question on Continuous Spin Systems Near Two-Dimensions: The aim of this problem is to employ Wilson's perturbative renormalisation group, to obtain the $\epsilon=d-2$ expansion of the n-component non-linear σ-model

$$
\mathcal{Z}=\int D \mathbf{S}(\mathbf{x}) \delta\left(\mathbf{S}^{2}(\mathbf{x})-1\right) \exp \left[-\frac{K}{2} \int d \mathbf{x}(\nabla \mathbf{S})^{2}\right]
$$

In the vicinity of the transition temperature, it is convenient to expand the spin degrees of freedom around the (arbitrary) direction of spontaneous symmetry breaking, $\mathbf{S}_{0}(\mathbf{x})=(0, \cdots 0,1)$,

$$
\mathbf{S}(\mathbf{x})=\left(\Pi_{1}(\mathbf{x}), \cdots \Pi_{n-1}(\mathbf{x}), \sigma(\mathbf{x})\right) \equiv(\Pi(\mathbf{x}), \sigma(\mathbf{x})),
$$

where $\sigma(\mathbf{x})=\left(1-\Pi^{2}\right)^{1 / 2}$.
(i) Substituting this expression, and expanding σ in powers of Π, show that the Hamiltonian takes the form

$$
\beta H=\frac{K}{2} \int d \mathbf{x}\left[(\nabla \Pi)^{2}+\frac{1}{2}\left(\nabla \Pi^{2}\right)^{2}+\cdots\right] .
$$

(ii) Treating this expansion to quadratic order, show that the lower critical dimension is 2 .
(iii) Taking $\sigma>0$, and using the expression (true when $\sigma>0$)

$$
\delta\left(\Pi^{2}+\sigma^{2}-1\right)=\frac{1}{2\left(1-\Pi^{2}\right)^{1 / 2}} \delta\left(\sigma-\left(1-\Pi^{2}\right)^{1 / 2}\right)
$$

show that the partition function can be written in the form

$$
\begin{aligned}
\mathcal{Z} & =\int D \Pi(\mathbf{x}) \exp \left[-\frac{\rho}{2} \int d \mathbf{x} \ln \left(1-\Pi^{2}\right)\right] \\
& \times \exp \left\{-\frac{K}{2} \int d \mathbf{x}\left[(\nabla \Pi)^{2}+\left(\nabla\left(1-\Pi^{2}\right)^{1 / 2}\right)^{2}\right]\right\}
\end{aligned}
$$

where $\rho \equiv(N / V)=\int_{0}^{\Lambda}(d \mathbf{q})$ denotes the density of states.
(iv) Polyakov's Perturbative Renormalisation Group: Expanding the Hamiltonian perturbatively in Π, show that $K\left\langle\Pi^{2}\right\rangle \sim O(1), K\left(\nabla \Pi^{2}\right)^{2} \sim O\left(K^{-1}\right)$, and $\rho \Pi^{2} \sim$ $O\left(K^{-1}\right)$.
This suggests that we define

$$
\beta H_{0}=\frac{K}{2} \int d \mathbf{x}(\nabla \Pi)^{2}
$$

as the unperturbed Hamiltonian and treat

$$
U=\frac{K}{2} \int d \mathbf{x}(\Pi \cdot \nabla \Pi)^{2}-\frac{\rho}{2} \int d \mathbf{x} \Pi^{2}
$$

Phase Transitions and Collective Phenomena
as a perturbation.
(v) Expand the interaction in terms of the Fourier modes and obtain an expression for the propagator $\left\langle\Pi_{\alpha}\left(\mathbf{q}_{1}\right) \Pi_{\beta}\left(\mathbf{q}_{2}\right)\right\rangle_{0}$. Sketch a diagrammatic representation of the components of the perturbation.
(vi) Perturbative Renormalisation Group: Applying the perturbative RG procedure, and integrating out the fast degrees of freedom, show that the partition function takes the form

$$
\mathcal{Z}=\int D \Pi_{<} e^{-\delta f_{b}^{0}-\beta H_{0}\left[\Pi_{<}\right]-\ln \left\langle e^{\left.-U\left[\Pi_{<}, \Pi\right\rangle\right\rangle}\right\rangle_{0}^{>}},
$$

where δf_{b}^{0} represents some constant.
(vii) Expanding to first order, identify and obtain an expression for the two diagrams that contribute towards a renormalisation of the coupling constants. (Others either vanish or give a constant contribution.) [Note: the density of states is given by $\left.\rho=(N / V)=\int_{0}^{\Lambda}(d \mathbf{q})=b^{d} \int_{0}^{\Lambda / b}(d \mathbf{q}) \cdot\right]$ As a result, show that the renormalised Hamiltonian takes the form

$$
\begin{aligned}
-\beta H\left[\Pi_{<}\right]= & \delta f_{b}^{0}+\delta f_{b}^{1}-\frac{\widetilde{K}}{2} \int_{0}^{\Lambda / b} d \mathbf{x}\left(\nabla \Pi_{<}\right)^{2}+\frac{\rho}{2} b^{-d} \int_{0}^{\Lambda / b} d \mathbf{x}\left|\Pi_{<}\right|^{2} \\
& -\frac{K}{2} \int_{0}^{\Lambda / b} d \mathbf{x}\left(\Pi_{<\alpha} \nabla \Pi_{<\alpha}\right)^{2}+O\left(K^{-2}\right)
\end{aligned}
$$

where $\widetilde{K}=K\left(1+I_{d}(b) / K\right)$ and $\delta f_{b}^{0}, \delta f_{b}^{1}$ are constants. Specify the function $I_{d}(b)$. (viii) Applying the rescaling $\mathbf{x}^{\prime}=\mathbf{x} / b$ and renormalising the spins,

$$
\mathbf{S}^{\prime}=\frac{\mathbf{S}}{\zeta}, \quad \Pi_{<}=\zeta \Pi^{\prime}
$$

obtain an expression for the renormalised coupling constant K^{\prime}.
To determine ζ, it is necessary to evaluate the average of the renormalised spin $\langle\mathbf{S}\rangle_{0}=\left\langle\left(\Pi_{<1}+\Pi_{>1}, \cdots\left(1-\Pi_{<}^{2}-\Pi_{>}^{2}\right)^{1 / 2}\right)\right\rangle_{0}$. Expanding, we find

$$
\begin{aligned}
\langle\mathbf{S}\rangle_{0}^{\rangle} & =\left(\Pi_{<1}, \cdots, 1-\Pi_{<}^{2} / 2-\left\langle\Pi_{>}^{2}\right\rangle / 2\right) \\
& \approx\left(1-\left\langle\Pi_{>}^{2}\right\rangle / 2\right)\left(\Pi_{<1}, \cdots, 1-\Pi_{<}^{2} / 2\right)=\zeta \mathbf{S}^{\prime}
\end{aligned}
$$

From this expression, show that $\zeta=1-(n-1) I_{d}(b) / 2 K$.
(ix) Using the expression for K^{\prime} and ζ, show that the differential recursion relation takes the form

$$
\frac{d K}{d \ell}=(d-2) K-(n-2) K_{d} \Lambda^{d-2},
$$

where $b=e^{\ell}$. Setting the temperature $T=K^{-1}$, obtain the recursion relation $d T / d \ell$ and confirm that the fixed point is given by

$$
T^{*}=\frac{d-2}{(n-2) K_{d} \Lambda^{d-2}}=\frac{2 \pi \epsilon}{(n-2)}+O\left(\epsilon^{2}\right),
$$

where $d=2+\epsilon$. Sketch the RG flow diagram for $d>2, d=2$ and $d<2$, for various values of n.
(x) Linearising the RG flow in the vicinity of the fixed point, obtain the thermal exponent y_{t} to leading order in ϵ. Using this result, obtain the correlation length exponent $\nu=1 / y_{t}$.
(xi) Adding a term $-\int d \mathbf{x h} \cdot \mathbf{S}$ show that the magnetic exponent takes the form

$$
y_{h}=2+\frac{n-3}{2(n-2)} \epsilon+O\left(\epsilon^{2}\right)
$$

(xii) Using an exponent identity, obtain the critical exponent γ. Setting $d=3$ and $n=3$, how does this estimate compare to the best estimate of 1.38 .

