Smaller is different and more

Antonio M. García-García EPSRC Career Acceleration Cavendish Laboratory, Cambridge University

http://www.tcm.phy.cam.ac.uk/~amg73/

Pedro Ribeiro Dresden

Santos & Way Santa Barbara PRB, 86, 064526 (2012) PRL 108, 097004 (2012) PRB 84,104525 (2011) Editor's Suggestion Arxiv:1212.6779

Tezuka Kyoto

Sangita Bose Bombay

Altshuler Columbia

Klaus Kern Stuttgart

Lobos Maryland

0 nm

Why?

Boring?

Mermin-Wegner theorem Low dimensions =

No superconducivity

Exciting?

Beauty

Meso+Super Quantum Control Enhancement

Enhancement?

How to enhance SC substantially?

with **control**

\$10⁶ Question

Mechanism of SC in cuprates?

\$10 Question

Thin Films? JJ array?

Metal	т _с (°К)	T_c/T_{c0}	d (Å)	pO
Al	3.0	2.6	40	0.19
Ga	7.2	6.5		0.20
Sn	4.1	1,1	110	0.31
In	3.7	1.1	110	0.36
Pb	7.2	1.0		0.53

Abeles, Cohen, Cullen, Phys. Rev. Lett., 17, 632 (1966)

Crow, Parks, Douglass, Jensen, Giaver, Zeller....

A.M. Goldman, Dynes, Tinkham...

Shape Resonances

Blatt, Thompson Phys. Lett. 5, 6 (1963)

A.M. Goldman et al.

PRL 62 2180 (1989) PRB 47 5931 (1993)

Recent

Atomic scale control

Shih et al., Science 324, 1314 (2009) Xue et al., Science 306, 1915 (2004)

Xue et al., Nat Phys, 6 (2010),104.

Nanowires R <<ξ

Tinkham et al. Nature 404, 971 (1990)

Superconductor Insulator transition

Ultrasmall Grains

T = 0 δ/ Δ₀ ~ 1

von Delft, Braun, Larkin, Sierra, Dukelsky, Yuzbashyan, Matveev, Smith, Ambegaokar

Supercon ductivity?

Tinkham et al., PRL 74, 3244 (1995)

Richardson

It's exact. I did it 20 years ago BCS fine until δ/Δ₀ ~ 1/2
 BCS sharp transition
 Richardson no transition

J. von Delft et al., Phys. Rep., 345, 61 (2001)

Richardson's equations

Von Delft, Yuzbashyan, Dukelsky, Marsiglio,Braun Sierra, Ambegaokar

 $\mathbf{D} \equiv$

Ò

No enhancement

and

Thermal Fluctuations

Scalapino, et al.

PRB 84,104525 (2011) Editor's Suggestion

Quantum + Thermal? T, $\delta/\Delta_0 << 1$

Divergences at intermediate T

Rossignoli and Canosa Ann. of Phys. 275, 1, (1999)

$$\Delta(\tau) = s(\tau)e^{i\phi(\tau)}$$
$$s^{2}(\tau) = s_{0}^{2} + \delta s^{2}(\tau)$$
$$\phi(\tau) = \phi_{0} + 2\pi M\tau/\beta + \delta\phi(\tau)$$

Ribeiro and AGG, Phys. Rev. Lett. 108, 097004 (2012)

Is enhancement of superconductivity possible?

Cuprates high T_c Heterostructures

Higher T_c!! Intrinsic inhomogeneities

Iron Pnictides Heterostructures

Xue et al. Nature Communications 3, 931 (2012)

Enhancement of T_c by disorder

Fractal distributions of dopants enhances SC in cuprates

Bianconi, et al., Nature 466, 841 (2010)

Inhomogeneities Higher T_c

PRL 108, 017002 (2012)

$\Delta >> \delta$ Grains

Heiselberg (2002): harmonic potentials, cold atom

Kresin, Ovchinnikov, Boyaci (2007) : Spherical, too high T_c

Peeters, et al, (2005-): BCS, BdG in a wire, cylinder..

Devreese (2006): Richardson equations in a box

Olofsson (2008): Estimation of fluctuations in BCS

Chaotic

Al grain $k_{F} = 17.5 \text{ nm}^{-1}$ $\Delta_{0} = 0.24 \text{mV}$

For L< 9nm leading correction comes from density-density

AGG et al., PRL 100, 187001 (2008) AGG et al., PRB 83, 014510 (2011)

L = 6nm, Dirichlet, δ/Δ_0 =0.67

L= 6nm, Neumann, $\delta/\Delta_{0,}=0.67$

L = 8nm, Dirichlet, δ/Δ_0 =0.32

L = 10nm, Dirichlet, δ/Δ_0 ,= 0.08

Single, Isolated Sn nano-grains

7 nm

Kern

Bose

R ~ 4-30nm

B closes gap

Almost hemispherical

S. Bose, AGG et al., Nature Materials 9, 550 (2010)

True

long-range order in nanograins?

Josephson junctions

Mason, Goldbart et al, Nature Physics 8 59 (2012)

James Mayoh and AGG, in preparation

d = 1

Quasi long-range order

1d + Dissipation = Long range order Giamarchi, Blatter, Zaikin, Fisher, Lobos..

Why not long-range order in 1d?

A. Lobos Maryland

M. Tezuka Kyoto

Phase coherence in 1d by power-law hopping AGG et al., arXiv:1212.6779

1d Hubbard + power-law hopping

$$\begin{aligned} \mathcal{H} &= -\sum_{l \neq m, \sigma}^{L} \left(t_{lm} \hat{c}_{l,\sigma}^{\dagger} \hat{c}_{m,\sigma} + \text{H.c.} \right) - \mu \sum_{l=1,\sigma}^{L} \left(\hat{n}_{l,\sigma} - \frac{1}{2} \right) \\ &- |U| \sum_{l=1}^{L} \left(\hat{n}_{l,\uparrow} - \frac{1}{2} \right) \left(\hat{n}_{l,\downarrow} - \frac{1}{2} \right), \quad t_{lm} = t/|l - m|^{\alpha} \\ &\left| U \right| \gg t \end{aligned}$$

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{|U| L}{4} - \mu \sum_{l} (\hat{n}_{l} - 1) \\ &+ \frac{4t^{2}}{|U|} \sum_{l \neq m} \left[\frac{(\hat{n}_{l} - 1) \hat{n}_{m} - \hat{\Delta}_{l}^{\dagger} \hat{\Delta}_{m}}{|l - m|^{2\alpha}} + \text{H.c.} \right] \end{aligned}$$

Previous

Bosonization

$$\begin{split} \rho\left(x\right) &= \left[\rho_{0} - \frac{\nabla\phi(x)}{\pi}\right] \sum_{p} e^{2ip(\pi\rho_{0}x - \phi(x))} \\ \Delta\left(x\right) &= \rho_{0} e^{-i\theta(x)} \sum_{p} e^{2ip(\pi\rho_{0}x - \phi(x))}, \\ \left[\nabla\phi\left(x\right), \theta\left(y\right)\right] &= i\pi\delta\left(x - y\right) \\ \hline \mathbf{Phase} & \mathbf{Density} \\ \langle\Delta(x)\rangle &= \langle \hat{c}_{x,\uparrow}^{\dagger} \hat{c}_{x,\downarrow}^{\dagger} \rangle \propto \langle e^{-i\theta(x)} \rangle \qquad \delta\rho\left(x\right) \simeq -\nabla\phi\left(x\right)/\pi \\ \mathcal{H}_{\text{eff}} &= \int dx \left[\tilde{\mu} \frac{\nabla\phi\left(x\right)}{\pi} + \frac{uK}{2\pi} \left(\nabla\theta\left(x\right)\right)^{2} + \frac{u}{2\pi K} \left(\nabla\phi\left(x\right)\right)^{2} \right] \\ &- g \frac{\pi u \rho_{0}^{2}}{4Ka^{1-2\alpha}} \int_{|x-x'|>a} dx dx' \frac{\cos\left[\theta\left(x\right) - \theta\left(x'\right)\right]}{|x-x'|^{2\alpha}}. \end{split}$$

Self-consistent harmonic approximation (SCHA)

$$S_{0} = \frac{1}{2\beta L} \sum_{\mathbf{q}} g_{0}^{-1} (\mathbf{q}) \theta_{\mathbf{q}}^{*} \theta_{\mathbf{q}}$$

$$F_{\text{var}} = F_{0} + T \left\langle S - S_{0} \right\rangle_{0}$$

$$g_{0}^{-1} (\mathbf{q}) = \frac{K}{\pi u} \omega_{m}^{2} + \frac{uK}{\pi} k^{2} + \frac{2\pi u \rho_{0}^{2}}{K a^{2-2\alpha}} \int_{a}^{L} dr \frac{1 - \cos kr}{r^{2\alpha}}$$

$$\times \exp \left[-\frac{1}{\beta L} \sum_{\mathbf{q}'} (1 - \cos k'r) g_{0} (\mathbf{q}') \right]$$

$$g_{0}^{-1}\left(\mathbf{q}\right) = \frac{K}{\pi u}\omega_{m}^{2} + \frac{uK}{\pi}k^{2} + \eta\left|k\right|^{2\alpha-1}$$

$$\alpha < 3/2$$
Long-range order $\alpha > 3/2$ Quasi long-range order

$$\left< \Delta(x_i) \right> \sim \left< e^{i\theta(x_i)} \right> \neq 0$$

Phase slips suppressed

$$d = 1$$
 BUT $d_{eff} = 2/(2\alpha - 1)$

$$d_{eff} > 1$$

Phase coherence

Bosonization:Correlations

Numerical: DMRG

From SC to Quantum magnetism

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{|U| L}{4} - \mu \sum_{l} (\hat{n}_{l} - 1) \\ &+ \frac{4t^{2}}{|U|} \sum_{l \neq m} \left[\underbrace{\frac{(\hat{n}_{l} - 1) \hat{n}_{m} - \hat{\Delta}_{l}^{\dagger} \hat{\Delta}_{m}}{|l - m|^{2\alpha}} + \text{H.c.} \right] \end{aligned}$$

Anderson Pseudo-spin representation

$$\hat{n}_l \rightarrow \hat{S}_l^z + 1/2$$

Variable-Range Interactions in Trapped Ion Quantum Simulators

Islam, Monroe.. 1210.0142, Bollinger, Britton... Nature 484, 489 (2012)

Raman transitions

 $< \alpha < 3$

(anti)Ferromagnetic Transitions

Frustration

Spin Liquids

Quantum Magnetism

Nano meets high

Holographic grains

Finite Size + Strong interactions ?

Tough for even conventional superconductors

Way Santa Barbara Holographic superconductivity in confined geometries?

Santos Santa Barbara

AGG, et al., PRB, 86, 064526 (2012)

Holographic principle

Maldacena's conjecture

AdS/CFT correspondence

t'Hooft, Susskind, Weinberg, Witten....

Extra dimension? Geometrization of Wilson RG

Holography beyond string theory

Easy to compute in the gravity dual

Detailed dictionary

An answer looking for a question

I do not know

Complex scalar

I know that

Spontaneous breaking U(1) at low T

Finite µ

Simplest dual gravity theory

$$S = \int d^4x \,\sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D\psi|^2 - m^2 |\psi|^2 \right]$$

$$D = \nabla - iqA$$
 $\psi \equiv \text{complex scalar}$

Metric

$$\begin{split} ds^2 &= -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2(dx^2 + dy^2) \\ &= -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2(dR^2 + R^2d\theta^2) \\ &\quad f(r) = \frac{r^2}{L^2} \left(1 - \frac{r_0^3}{r^3}\right) \,, \end{split}$$

Equations of motion:

$$\partial_{r}^{2}|\psi| + \frac{1}{r^{2}f}\partial_{x}^{2}|\psi| + \left(\frac{f'}{f} + \frac{2}{r}\right)\partial_{r}|\psi| + \frac{1}{f}\left(\frac{A_{t}^{2}}{f} - m^{2}\right)|\psi| = 0$$

$$\partial_{r}^{2}A_{t} + \frac{1}{r^{2}f}\partial_{x}^{2}A_{t} + \frac{2}{r}\partial_{r}A_{t} - \frac{2|\psi|^{2}}{f}A_{t} = 0$$

Boundary
conditions:
$$\mathbf{r} = \mathbf{r_0} \quad \mathbf{r} \to \infty \quad |\psi| = \frac{\psi^{(1)}}{r} + \frac{\psi^{(2)}}{r^2} + O\left(\frac{1}{r^3}\right)$$
$$\mathbf{A_t} = \mathbf{0} \qquad A_t = \mu - \frac{\rho}{r} + O\left(\frac{1}{r^2}\right)$$

How
small?
$$\mu(x) = \mu_0 \left[\frac{1 - \epsilon + \epsilon \cosh\left(\frac{2x}{\sigma}\right) + \cosh\left(\frac{\ell_x}{\sigma}\right)}{\cosh\left(\frac{2x}{\sigma}\right) + \cosh\left(\frac{\ell_x}{\sigma}\right)} \right]$$

 $\langle \mathcal{O} \rangle = \sqrt{2} \psi^{(2)}$

Dictionary:

"Superconductivity" only for $I < I_c$

Mean field behavior

Fluctuations?

No thermal fluctuations

Large N artefact

Interactions depend on system size! PRB, 86, 064526 (2012)

TheoryHeterostructuresCollections of grainsTopologyNon-equilibrium

Experiments

Control on high T_c heterostructures

Control on grains arrangements

Substantial enhancement of T_c

THANKS!