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W
e are surrounded by materials that are comprised of electrons and nuclei

which not only feel particle-particle electromagnetic forces but also obey

the long-accepted laws of quantum mechanics. The interplay of strong interactions

and quantum mechanics can cause the constituent particles to display collective

behaviour which is markedly different from that of the separate particles. In this

thesis, collective phenomena in semiconductors, atomic gases, and around quantum

critical points have inspired separate research projects.

Degenerate semiconductors: Assuming that there is a large number of degen-

erate conduction band minima provides a useful route to developing an exact

analytical treatment of semiconductors. The new formalism, which was also

verified computationally, gives an exact expression for the total electron energy,

and provides convenient access to the electron dynamical response.

Ultracold atomic gases: These are a new tool that offer investigators an exquisite

level of control over a many-body system. Firstly we show how an atomic

gas could be used to unravel a long-standing mystery about textured

superconductors, secondly we explore the properties of collective modes, and

thirdly we investigate a novel form of ferromagnetism.

Critical phenomena in correlated quantum systems: As the temperature

falls thermal excitations give way to quantum fluctuations. These can couple

leading to unexpected phases; firstly we search for a putative textured phase

that could preempt the first order ferromagnetic transition, and secondly

predict a metaelectric phase transition in ferroelectrics.
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Preface

T
his thesis describes work done between October 2006 and April 2009 in the

Theory of Condensed Matter (TCM) group at the Cavendish Laboratory,

Cambridge, under the supervision of Dr P.D. Haynes and Prof. B.D. Simons. Chp. 1

reviews the field and introduces the tools used in this thesis. Subsequent chapters

contain original material that is in preparation for submission to peer review or is

published elsewhere as follows:

Chapter 2: G.J. Conduit, A many-flavor electron gas approach to electron-hole

drops, Phys. Rev. B, 78:035111, 2008 [1].

Chapter 3: G.J. Conduit and P.D. Haynes, Diffusion Monte Carlo study of a

valley-degenerate electron gas and application to quantum dots, Phys. Rev. B,

78:195310, 2008 [2].

Chapter 4: G.J. Conduit, P.H. Conlon and B.D. Simons, Superfluidity at the

BEC-BCS crossover in two-dimensional Fermi gases with population and mass

imbalance, Phys. Rev. A, 77:053617, 2008 [3].

Chapter 6: G.J. Conduit and B.D. Simons, Itinerant ferromagnetism in atomic

Fermi gases: Influence of population imbalance, Phys. Rev. A, 79:053606,

2009 [4].

This thesis is my own work and contains nothing which is the outcome of

work done in collaboration with others, except as specified in the text and

Acknowledgements. This thesis does not exceed 60,000 words, including tables,

footnotes, bibliography and appendices, but excluding photographs and diagrams.

G.J. Conduit

Cambridge, April 2009
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Chapter One

Scope of this thesis

P
hysicists try to uncover the basic axioms of nature by studying a wide range

of phenomena that lay the foundations of the physical sciences. One important

aspect of real-life systems is that they are made up of multitudinous component

particles. A good example of such a many-body system is a metal in which a mobile

sea of electrons moves amongst a rigid background lattice of ions. The behaviour

of the electrons is particularly interesting because each one interacts with all of the

other electrons according to the long-standing laws of electromagnetism. Since the

electrons all interact with each other, they can all move together and display new

collective or cooperative behaviour that one electron by itself cannot achieve. One

example of collective behaviour is the alignment of electron spins in ferromagnetism.

Another crucial facet is that an electron’s motion is governed by the well-established

laws of quantum mechanics, which causes the electrons to have counterintuitive

properties such as wave-particle duality. However, in condensed matter physics the

interplay of strong interactions between the particles and quantum mechanics leads

to novel phenomena that are the subject of cutting edge research.

The foundations of condensed matter physics [5] were laid down by Bloch in

the 1930’s through a revolutionary understanding of non-interacting electrons in

a periodic potential. Following developments in the band theory of electrons,

the next stage in furthering a description of electrons moving through a lattice

1
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was the formulation of the nearly free and tight binding theories. A perturbative

approach to dealing with electron-electron interactions developed through the 50’s,

60’s, and 70’s where a tool borrowed from high energy physics – Feynman diagrams

– was applied to perform infinite order summations over the electron-electron

interactions. Following in the historical development of condensed matter physics

from no interactions, to weak interactions and then perturbative summations, from

the 70’s strong interactions became the main focus of theorists. The consequences

of strong particle-particle interactions were found to lie in two main categories that

unite the research described in this thesis:

Renormalise the properties of the particles: In this arena I have harnessed

the traditional vehicle of condensed matter physics – the study of electrons in

solids. In Sec. 1.2 I introduce a project that exposes how the interactions

between electrons in semiconductors changes their energy and dynamical

response.

Drive the system into new phases of matter: This thesis pursues two themes

of research in this domain. Firstly, in Sec. 1.3 I describe how to take advantage

of the opportunity presented by a novel many-body system, an ultracold

atomic gas, to unravel long-standing mysteries in the solid state, as well as to

explore fundamentally new many-body physics. Secondly, in Sec. 1.4, inspired

by recent experiments, I introduce two projects that study how quantum

fluctuations change the behaviour of strongly correlated systems in the vicinity

of a phase transition.

Condensed matter physics is typically studied either through experiment, computer

simulations, or analytics. Before describing the separate research projects I briefly

review the universal transferable theoretical tools employed throughout this thesis.

1.1 Analytical toolkit

A major roadblock in condensed matter physics is how to approach the many-body

Schrödinger equation. Though in general it cannot be solved exactly, a number of

useful approximate methods to tackle it are outlined in Table 1.1. Those at the top
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Table 1.1: Some analytical and computational approaches to studying condensed matter physics.
The system properties and typical size are shown.

Application Analytical approach
Computational

approach

Particles

present

Macroscopic and
topological effects

Linear response functions [6] Newtonian [7] > 10000

Ginzburg-Landau (GL) theory [8]
Scaling theory and renormalisation
group [8]

Atomic dynamics Nearly free electrons [9] Pair potentials [10] 1000

Tight binding [9]
Semi-empirical
tight binding [10]
HF [9]

Electronic states k · p perturbation theory [9] DFT [11] 100
DMFT [12]
GW [13]

Binding energies Infinite order perturbation theory [14] QMC [15] 10
Functional path integral [8, 16, 17]
Exact analytical solution [18]

of the table can describe macroscopic and topological effects in large systems. Those

at the bottom are suitable for systems containing only a few particles (that could be

periodically repeated through the system), but can predict electronic structure and

achieve chemical accuracy (∼ 0.01eV). In this thesis we adopt three independent

approaches whose basic features are outlined below: a functional integral formalism

to derive analytic results, and complementary Quantum Monte Carlo (QMC) and

DFT computational methods that were used to study the system numerically.

The functional integral approach aims to calculate the quantum partition

function, which is a summation over all possible states of the system. In general

this is not tractable, but one approach is to focus attention on those terms which

make the most significant contribution to the summation over the states. First one

identifies the dominant term, and then accounts for a small subset of related terms,

but discards the less relevant high energy contributions. This powerful method is

introduced more fully in App. A.2.

Computer simulations allow investigators to perform experiments without their

apparatus. They also have other advantages over traditional experiments; firstly,

quantities inaccessible to an experiment can be probed; and secondly system

parameters, for example lattice spacing, can be changed at will. The QMC

calculations [15] we use are ab initio, meaning that they calculate the wave function
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from first-principles following an algorithm outlined in App. A.4. Another approach

is to use some already-known information about the state to simplify the calculation;

a common method is to assume that the system is locally uniform and use a well-

established functional for the dependence of local energy with electron density. The

implementation of DFT that is employed in this thesis is described in App. A.5.

Having reviewed the tools we now describe the backdrops for the three research

arenas presented in this thesis: semiconductors, ultracold atomic gases, and critical

phenomena.

1.2 Electron gases of many flavours

Our first arena in which to explore the consequences of strong interactions is

the correlations between electrons in semiconductors. Here we will find that the

interactions of the electrons with the background ionic lattice will, rather than

complicate the system, instead change the dynamics of the electrons dramatically.

This enables a powerful approximation that will provide an efficient vehicle with

which to model the correlations between the electrons.

An electron moving through a vacuum has a dispersion relation p2/2me, where p

is momentum and me is the electron mass. However, an electron moving inside

a solid interacts with the periodic background ionic lattice which introduces a

renormalisation of the electron energy that depends on the electron’s momentum.

In fact, around a minimum of the energy we can do away with having to consider

the ions by replacing their effect on the energy of each electron with a single

renormalisation of the electron mass, giving it a new effective mass given by

1/m∗ = d2ǫ/dk2/~2 for an electron at wave vector k; in the non-interacting case

the electron simply has the dispersion ǫ = ~
2k2/2me, and so we would recover the

bare electron mass.

Semiconductors are an intermediary between metals and insulators – they

contain relatively few thermally excited conducting electrons. The effective mass

of these conduction band electrons is controlled not only by the interaction of the

electrons with the lattice, but also the interaction of the conduction band electrons

with all the other electrons present – the valence band electrons. These flow out of
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Figure 1.1: The Si band structure high-
lighted by points that were found with
inverse-photoemission (above Fermi surface)
and photoemission (below Fermi surface),
taken from Ortega and Himpsel [19]. The
solid curve shows the results of an ab initio

quasiparticle calculation by Zhu and Louie
[20]. The Fermi energy is at E = 0 eV; below
are valence bands with holes at “H”; above
conduction bands with degenerate minima
at “E”.

the way of a conduction band electron, acting like the backflow of a fluid. The

effective mass now changes with momentum, so is best summarised by a non-

parabolic dispersion profile for the electrons, which is shown for Silicon (Si) in

Fig. 1.1. For the conduction band electrons, the minimum in the energy dispersion is

no longer at p = 0, but is now six-fold degenerate and part-way out to the Brillouin

zone boundary.

Si is not unique in having degenerate conduction band valleys; in fact many

semiconductors have degenerate minima. The number of valleys presents a new

parameter, which we call the number of “flavours”, with which to analyse the

materials. Additional motivation to study many-flavour electron-hole liquids stems

from the opportunity to probe the formation of electron-hole drops in, for example,

the Germanium (Ge) crystal in Fig. 1.2. A many-flavour approximation presents

a new handle to probe strongly correlated physics. In Chp. 2 we derive analytical

results for the correlation energy and electron dynamical response. Then, in Chp. 3

we verify those results computationally, and apply the method to analyse quantum

dots and also the electron-hole drop shown in Fig. 1.2.

1.3 Strongly correlated phases in atomic gases

Eighty years after Bose-Einstein Condensation (BEC) was predicted it was revealed

in the velocity distribution of an ultracold atomic gas [22–24], which is shown in

Fig. 1.3. Since then, research in atomic gases has grown explosively, driven forwards
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Figure 1.2: Photograph of a long-lived
electron-hole drop in Ge. The width of the
photo corresponds to 1.5mm on the crystal.
Taken from Wolfe et al. [21].

Figure 1.3: Velocity-distribution of a gas
of Rubidium atoms; left: just warmer than
a BEC; centre: at the appearance of the
condensate; right: deep in the BEC regime.
Taken from Anderson et al. [22].

by two key developments which have enlarged the range of physics that can be

investigated with the system:

1. The ability to tune the interaction strength by a Feshbach resonance [25–28].

This tool gives investigators unprecedented control over interactions and has

enabled the observation of the BEC-BCS crossover [29–31] in fermionic atomic

gases. The mechanism of the Feshbach resonance is outlined in Sec. 1.3.1.

2. The gas can be constrained into either one, two, or three dimensions with

a strong optical potential [32], or alternatively could be held in a periodic

potential [33, 34]. This readily adaptable external potential has enabled

manipulation and control of a many-body system beyond that currently

achievable in solid state systems. For example, an atomic gas in an optical

lattice can now be used to simulate the dynamics of another complex quantum

system [35, 36].
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Figure 1.4: A cloud of Strontium atoms
taken during cooling. The atoms are visible
because they are still photoluminescent and
have not yet reached quantum degeneracy.
Taken from the MIT & Harvard Center for
Ultracold Atoms.

Atomic gases now offer investigators a unique level of control over a many-body

system. There are two ways to take advantage of this exquisite regulation: firstly, in

Sec. 1.3.2 and Sec. 1.3.3, I introduce two projects that demonstrate how atomic gases

place experimentalists in the unique position to unravel a long-standing mystery

about solid state superconductivity, and secondly, in Sec. 1.3.4, I take advantage of

the opportunity atomic gases pose to explore new many-body physics. To motivate

these projects further, I first outline the typical experimental setup used to study

atomic gases.

The atomic gas is created by liberating a hot (∼ 800K) gas of atoms from the

surface of a solid. Cooling then takes place in two phases. Firstly, the gas is cooled

using a detuned laser, from which each photon absorbed delivers an impulse that

reduces the kinetic energy of atoms. This technique can achieve temperatures down

to ∼ 10−7K, such as the gas shown in Fig. 1.4. This is not yet cold enough to

reach the regime of quantum degeneracy, and further cooling requires the atoms to

collide with each other. Because collisions exchange energy, some atoms are allowed

to escape from the trap and evaporate, leaving the remainder cooled. Although

bosons can collide, fermions cannot, so require a second sympathetic atomic species

to carom. This technique allows the regime of quantum degeneracy to be reached,

with temperatures as low as ∼ 10−9K. Although the ground state at such low

temperatures is an uninspiring solid, its formation requires three-body collisions

and the atomic gas is so rarefied that such collisions occur infrequently.
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Figure 1.5: Atomic gas confined to the
intersection of three laser beams. The atoms
are observed from low-light fluorescence
after brief illumination with resonant laser
light. Taken from Chapman Research Labs.

As the atoms are not charged they are difficult to trap. One way of imposing

an external potential is an Optical Lattice (OL), which is a periodic potential set

up by two or more interfering laser beams1 [33]. This can allow a potential to be

created that is similar to the periodic potential in a solid, but allows the periodicity

and potential strength to take a large range of values. Alternatively, the atoms

can be confined at the intersection of three laser beams as shown in Fig. 1.5. One

final possibility is that those atoms with a magnetic moment may be contained by

a magnetic field gradient2, generated by an anti-Helmholtz configuration of coils.

Before describing the two systems studied in this thesis I also outline the

Feshbach resonance, which has enabled the full control of the interaction strength

in atomic gases.

1.3.1 Feshbach resonance

One remarkable capability that ultracold atom gases give to researchers is the

complete control of particle-particle interactions. This is achieved by taking

advantage of a Feshbach resonance, by which the relative internal energy level of

the atoms are tuned by varying an external magnetic field [37].

1The atoms feel the dipole force F = α(ωL)∇(|E(r)|2)/2. This is due to the spatially varying
Alternating Current (ac)-Stark effect shift of the atoms in an off-resonant laser beam.

2The atoms with magnetic moment m feel force F = ∇(m · B). Earnshaw’s theorem states
that there is neither a global minimum nor a global maximum in a magnetic field, therefore the
weak-field seeking atoms can be trapped only where the magnitude of the magnetic field has a local
minimum.
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Figure 1.6: Left: the two-channel model for Feshbach resonance. The state energies vary with
interatomic separation. There are two channels: in the open channel the particles are free whereas
those in the closed channel are bound. The energy spacing between the channels can be controlled
by an external magnetic field B. Three different possibilities for the particles are shown, that lead
to binding energy EB and scattering length kFa as shown by the red and blue lines respectively.
Right, upper: experimental measurement of scattering length of Cr atoms, taken from Physikalisches
Institut, Universität Stuttgart; right lower: scattering length of K atoms from Regal and Jin [38].

To understand the Feshbach resonance we need to consider both the open and

closed channels in a two-channel model, as shown in Fig. 1.6. The atoms are prepared

so that they are unbound in an open-channel state, whilst they would be bound

in the closed-channel state. The open-channel and closed-channel state magnetic

moments differ by µ so that the relative energy of closed and open-channel states

µB can be shifted by varying the external magnetic field B. If the magnetic field

is chosen so that the energy of one particular closed-channel bound state is near to

the open-channel energy then resonant coupling occurs and the scattering between

the two opposite spin particles is modified. As shown, backed-up by experimental

measurements in Fig. 1.6, the scattering can be either repulsive, attractive, or the

particles can form a bound pair at the BEC-BCS crossover [39, 40]. As described

in App. A.1, the scattering is naturally described in terms of a scattering length a,

which is positive for repulsion and negative for attraction.

Having laid down the key principles that underpin how to use ultracold atomic

gases to probe many-body physics, we now proceed to describe the three projects

researched in this thesis.
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Figure 1.7: The formation of a Cooper
pair in (a) a BCS state, (b) a FFLO
instability caused by an imbalance between
the two Fermi surfaces. The two particle
species are denoted by different shading, the
Fermi surfaces by the solid lines and pairing
momentum q by the dotted line.

(a) (b)

EF,↑

EF,↓

EF,↑ = EF,↓

kk

−k
q − k

q

1.3.2 Introduction to the FFLO state

Ever since the discovery of the Meissner effect [9], an external magnetic field has

been an important probe of the superconducting state. When a superconductor is

placed in a magnetic field set to the upper Chandrasekhar-Clogston limit [41, 42] the

Bardeen, Cooper, and Schrieffer (BCS) state can be destroyed and the total energy

lowered by the gas becoming polarised, with the spins aligned along the magnetic

field.

This heuristic picture was not bettered until the proposal of a modulated

superconducting phase at the Chandrasekhar-Clogston cross-over. According to

the BCS theory of superconductivity, Cooper pairs are formed of two fermions with

different spins from opposite sides of the Fermi surface so that the pair overall

has zero total momentum, as shown in Fig. 1.7. If the Fermi surfaces of the two

species have different radii because of an external magnetic field then pairing is

not so straightforward. A majority spin particle with momentum k couples to a

minority spin particle with momentum q−k. The pair has non-zero total momentum

k + (q − k) = q whose magnitude is equal to the difference in Fermi momenta

|q| = kF,↑ − kF,↓; the case q = 0 corresponds to the standard BCS theory. The

Cooper pair now has a finite centre-of-mass momentum q, which is fed through

to the gap parameter having a spatial modulation with wave vector q, this Fulde-

Ferrel-Larkin-Ovchinnikov (FFLO) state was first predicted by Fulde and Ferrell [43]

and Larkin and Ovchinnikov [44]. The FFLO state has never been unambiguously

experimentally observed [45] as it is easily disrupted by scattering off impurities.

Although the FFLO state might be difficult to observe in the solid state, in Chp. 4

we show how ultracold atomic gases now offer a unique opportunity to unravel this

long-standing mystery. The ultracold atom gas is free from the impurities that

plague the solid state. Additional motivation to use ultracold atom gases arises
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1/q ct

Figure 1.8: The collective mode of a
string of particles at two sequential instants
separated by time t. The red particle
highlights a crest as it moves to the right.

because they offer an exquisite level of control over the Fermi surfaces of the two

species, adjusted through either population or mass imbalance.

1.3.3 Collective modes

The microscopic details of the particle behaviour are often not readily accessible by

looking at their individual excitations. Instead, if the particles are in a strongly

correlated state then their macroscopic properties provide a window into their

microscopic behaviour. One way to probe the macroscopic action of the particles is

to study their collective modes. These are the fundamental collective excitations of

the particles, much like the transverse motion of particles in a rope highlighted in

Fig. 1.8, which travels to the right with a characteristic speed c. This velocity is an

important property of the collective modes of a superfluid state of an atomic gas as

it is allied to the Landau critical velocity of the superfluid – the maximum speed of

dissipationless flow.

In Chp. 5 we are motivated by our study of the FFLO state presented in Chp. 4

and the ongoing experiments of John Thomas at Duke University to search for the

collective modes in a two-dimensional atomic gas with both population and mass

imbalance.

1.3.4 Introduction to itinerant ferromagnets

The two projects just described address the impact of attractive interactions on

pair correlations. However, a conjugate research arena is to study whether repulsive

interactions acting between particles can lead to magnetic phases. In this thesis we

address this question in two projects, firstly here with an ultracold atomic gas, and

later in Sec. 1.4.1 we examine putative textured ferromagnetism in the solid state.
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Each electron in a solid carries a spin, which has an associated magnetic field.

When the spins of all the electrons in a solid align they generate a macroscopic

magnetic field. There are two broad classes of ferromagnetism [46], in the first the

electrons are confined to particular atoms and so become localised in real space. The

second type of ferromagnetism is due to the alignment of the magnetic moments

of the conduction band electrons, that is the itinerant electrons that are free to

move between atomic sites, and so are localised in momentum space. This type

of magnetism occurs, for example, in Zirconium 2-Zinc (ZrZn2) [47, 48], Uranium

Digermanide (UGe2) [49], MnSi [50, 51], and Cobalt (II) Sulphide (CoS2) [52].

It has recently been established that at low temperatures the onset of itinerant

ferromagnetism is unexpectedly first order rather than second order [53–58]. The

solid state system is still beset with complications due to coupling to the lattice,

however, as outlined in Chp. 6 atomic gases now provide a vehicle to study in detail

how the quantum fluctuations affect the ferromagnetic transition.

Atomic gases not only allow us to probe ferromagnetism in a controlled

environment but to introduce an additional twist that will enable even richer physics

to be studied in Chp. 6. One feature of cold atom gases is that they may be created

with an unequal spin population. There is no mechanism by which the spins can flip,

so the population imbalance is a conserved quantity, which is preserved throughout

the experiment. This has important ramifications; for example, when favourable,

the ferromagnetic moment must be formed in-plane.

1.4 Critical phenomena in correlated quantum systems

The final major research theme in this thesis is critical phenomena that emerge in

strongly correlated solid state systems. At high temperatures thermal excitation

causes fluctuations that drive the phase transition. At low temperatures, however,

the phase transition is driven by the quantum fluctuations that now dominate the

system. Near to existing phase transitions, quantum fluctuations can push the

system into novel phases of matter that are the subject of cutting edge research

[59], an early example of which is the emergence of superconductivity in Cerium

Palladium Silicon (CePd2Si2), as reproduced in Fig. 1.9 [60, 61]. A chief reason



1.4. CRITICAL PHENOMENA IN CORRELATED QUANTUM SYSTEMS 13

Figure 1.9: Emergence of superconductiv-
ity in the antiferromagnet CePd2Si2, taken
from Mathur et al. [61].

is that close to a transition the relevant excitations become highly degenerate so

new phases of matter emerge. However, before the system can enter the novel

phase, a different physics of the fluctuation dynamics might dominate, namely the

fluctuations might couple leading to a first order phase transition. There is a strong

precedent [62–64] to study the coupling of a fluctuating field ψ to the principal field

φ. If the two fields couple through a parameter a then the total action might be

described by a Landau expansion (see App. A.3.1)

S[φ,ψ] = rφ2 + uφ4 + aφ2ψ + bψ2

= rφ2 + (u− a2/4b)φ4 + b(ψ + aφ2/2b)2

S[φ] = rφ2 + (u− a2/4b)φ4 , (1.1)

where to go from the second to third line we have integrated out the field ψ using

the tools described in App. A.2. Whatever the sign of the coupling a, we see that it

always tends make the fourth order term coefficient φ4 more negative and so drive

the phase transition first order. Here we look for a similar mechanism, but focus

on the coupling of the relevant field to orthogonal components of itself. We will

concentrate our research on two topical solid state systems, itinerant ferromagnets

and ferroelectrics, which are both introduced below.
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Figure 1.10: Left: resistance anomaly in Sr3Ru2O7 that is indicative of scattering off a spin
crystal, taken from Grigera et al. [65]. Right: kink of magnetisation in ZrZn2 that is indicative of
a metamagnetic phase, taken from Uhlarz et al. [47].

1.4.1 Textured itinerant ferromagnetism

This project focuses on recent experimental evidence highlighted in Fig. 1.10 that

hints at anomalous phase behaviour at the first order ferromagnetic phase transition

in Sr3Ru2O7 [65] and ZrZn2 [47]. Inspired by the atomic gas study in Chp. 6,

in Chp. 7 we go onto ask whether the first order ferromagnetic phase transition

might be preempted by a textured ferromagnetic phase that is consistent with the

experimental evidence.

Additional motivation to search for a textured phase arises from an analogy to

the FFLO state studied in Chp. 4 [66, 67] which provides a precedent for searching for

a putative textured phase that preempts a first order transition. This is highlighted

by the Ginzburg-Landau expansion of the action that, for both the FFLO state and

the itinerant ferromagnet, is expected to take the form

S[φ] = rφ2 + uφ4 + vφ6 +
2

3
u(∇φ)2 − hφ , (1.2)

where φ is the magnetisation. The coefficient u of the fourth-order term and the

lowest order gradient term are inextricably linked as both stem from a product of

four Green functions dominated by contributions from around the Fermi surface.
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Both terms are expected to turn negative together, and so the first order transition,

driven by a negative quartic term, is expected to be preempted by a textured phase

caused by a negative gradient term.

1.4.2 Displacive ferroelectrics

Ferroelectricity is the spontaneous electric polarisation of a material that can be

reversed by the application of an external electric field. There are two main

classes of ferroelectric, which are referred to as order-disorder and displacive. In

an order-disorder ferroelectric there is a dipole moment in each unit cell, but at

high temperatures they are pointing in random directions. Upon lowering the

temperature and going through the phase transition the dipoles rotate to all point

in the same direction within a domain. In a displacive ferroelectric, such as

Barium Titanate (BaTiO3), Strontium Titinate (SrTiO3), and Potassium Tantalate

(KTaO3), at high temperature each unit cell has no dipole moment. On lowering the

temperature the unit cells all spontaneously polarise leading to an asymmetric shift

in the equilibrium ion positions and hence a permanent dipole moment. Here we

focus on the displacive ferroelectric transition, which the prevailing theory predicts

remains second order down to low temperatures. However, in Chp. 8 we are

motivated by the recent work of Taniguchi et al. [68] that provides strong evidence

for a first order ferroelectric transition and recent experimental results [69] shown in

Fig. 1.11 that show that the inverse dielectric constant has an unexpected minimum

consistent with coupling between phonon modes. Inspired by the mechanism of the

first order ferroelectric transition explored in Chp. 6, we consider how orthogonal

optical phonon modes couple in order to search for a putative first order displacive

ferroelectric phase transition.
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Figure 1.11: Observation of a minimum in the inverse dielectric constant in both (a) SrTiO3, and
(b) KTaO3 in the neighbourhood of the quantum critical point on the paraelectric side. Taken from
Rowley et al. [69].



Part I

Electron gases of many flavours

Electron gases in multivalley semiconductors and semimetals have

an unusual dispersion that distinguishes between electrons with the

same momentum. This allows us to associate a new quantum

number, the flavour, with each electron. In the limit of many

flavours being present new analytical results for the properties of

the electron gas can be derived, which are presented in Chp. 2. We

take advantage of the opportunity to computationally verify these

results and apply the formalism to quantum dots in Chp. 3.

17





Chapter Two

Many-flavour electron gas

approach to electron-hole drops

I
n this chapter a Many-Flavour Electron Gas (MFEG) is analysed, such as could

be found in a multi-valley semiconductor or semimetal. Using the re-derived

polarisability for the MFEG an exact expression for the total energy of a uniform

MFEG in the many-flavour approximation is found; the interacting energy per

particle is shown to be −0.574447(Eha
3/4
0 m∗3/4)n1/4 with Eh being the Hartree

energy, a0 Bohr radius, and m∗ particle effective mass. The short characteristic

length-scale of the MFEG motivates a local density approximation, allowing a

gradient expansion in the energy density, and the expansion scheme is applied to

electron-hole drops, finding a new form for the density profile and its surface scaling

properties.

The content of this chapter stems from the recent publication Conduit [1].

2.1 Introduction

For some semiconductors, at low temperatures and high density, electrons and

holes condense into electron-hole drops, which provide a good testing ground

for understanding effects of electron-electron interactions [70]. Some of the

19
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semiconductors (and also semimetals) that electron-hole drops form in [71, 72],

such as Si, Ge, and diamond have conduction band minima near the Brillouin

zone boundary, for example Si has six degenerate valleys, see Fig. 2.1, a Ge-Si

alloy has ten degenerate valleys, and Pb1−x−ySnxMnyTe has twelve valleys in the Σ

band [73]. When the material is strained, valley degeneracy reduces [74–78], which

can be experimentally probed [79–88], meaning that valley degeneracy could be

regarded as a control parameter. Because of this, as well as degeneracy being large

in some semiconductors, valley degeneracy might be a good parameter with which

to formulate a theory of electron-hole drops.

Previous theoretical analyses of electron-hole drops [78, 89–94] used an expansion

of the energy density with parameters found from separate energy calculations [77].

An alternative approach is to assume that each valley contains a different type of

fermion, denoted by an additional quantum number, which we shall call the flavour,

the total number of flavours (valleys) is ν. Further motivation to study flavours

stems from the fact that in some previous studies of multiply degenerate systems

the number of flavours has not been well defined, for example heavy fermions [95–97],

charged domain walls [98], a super-strong magnetic field [72], and spin instabilities

[99, 100]. Cold atom systems in optical lattices [101–103] have a well defined number

of flavours but weak interactions between particles. In electron-hole drops however

the number of flavours is well defined and interactions are strong.

The ground state energy and pair correlation function of a free MFEG were

examined using a numerical self-consistent approach for the local field correction by

Gold [104], and superconductivity was studied by Cohen [105]. Following the method

of Keldysh and Onishchenko [72], Andryushin et al. [71] studied the behaviour of

the free MFEG by summing over all orders of Green’s function contributions, they

found an exact expression for the correlation energy of a MFEG (which dominates

the interacting energy in the extreme many-flavour limit). This chapter describes

the derivation of a more versatile formalism, based on a path integral, which gives

an exact expression for the total energy of the MFEG; the theory could apply with

as few as six flavours where the exchange energy assumed small by Andryushin et al.

[71] would be significant.
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Figure 2.1: The Si band structure in the
[100] direction generated with a LDA-DFT
approximation by a plane-wave pseudopo-
tential method [106]. The Fermi energy is
at E = 0 eV; below are valence bands with
holes at H; above conduction bands, the bold
parabolic curve signifies the first conduction
band valley with electrons at E.

As well as studying the uniform case, the previously unstudied density response

of a MFEG not constrained to be uniform is investigated. The screening

length-scales of the MFEG are shown to be short relative to the inverse Fermi

momentum, suggesting that a Local Density Approximation (LDA) might be a

good approximation, motivating a gradient approximation. This gradient expansion

is then applied to analyse the electron-hole drop density profile, and to simulate

effects of strain the scaling of drop surface thickness and tension with number of

flavours is examined.

In a MFEG with ν flavours at low temperatures the relationship between the

number density of electrons n and Fermi momentum pF is

n =
νp3

F

3π
2
. (2.1)

When the electrons have multiple flavours, each Fermi surface encloses fewer states

so pF ∝ ν−1/3. The local band curvature governs the electron effective mass, the

band structure is often such that the holes relax into a single valence band minimum

at the Γ point (see Fig. 2.1); here holes are assumed to be heavy and spread out

uniformly providing a jellium background.

The Thomas-Fermi approximation predicts a screening length κ−1 =

(4πe2g)−1/2, where g is the Density of States (DOS) at the Fermi surface. The DOS

is dependent on the number of flavours as g ∝ ν
√
EF ∝ ν2/3 and so κ−1 ∝ ν−1/3.

The ratio of the inverse Fermi momentum length-scale to the screening length varies

with number of flavours as pF/κ ∝ ν−2/3. This chapter takes the many flavour limit
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Figure 2.2: The dark grey ellipsoids
show Fermi surfaces of electrons in the
six degenerate conduction band valleys in
Si. E(q) is the energy with momentum q

measured with respect to the Γ point, ǫi(p)
is energy with momentum p measured with
respect to the centre of the ith valley.
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ν ≫ 1, in which the screening length is smaller than the inverse Fermi momentum,

κ−1 ≪ p−1
F , the many-flavour limit therefore means that the wave vectors of the

strongest electron-electron interactions obey q ≫ pF, this is the opposite limit to

the Random-Phase Approximation (RPA) which assumes that pF ≫ κ. Physically

this means the characteristic length-scales of the MFEG are short so a LDA can be

used in Sec. 2.3 to develop a gradient expansion.

The conduction band energy spectrum is characterised by two spectra E(q) and

ǫi(p) as shown in Fig. 2.2. There are two energy functions: E(q) gives the energy

in the band structure at momentum q; ǫi(p) = p2/2m denotes the kinetic energy

at momentum p with respect to the centre of the ith valley (the dispersions of all

valleys are assumed to be the same and isotropic so that ǫi(p) = ǫ(p). Andryushin

et al. [71] have outlined a method of calculating a scalar effective mass for anisotropic

valleys).

Physical manifestations of the many-flavour limit include effects where the DOS

at the Fermi surface (energy EF) is important; from Eqn. (2.1) the DOS of a

particular flavour i shrinks as gi(EF) ∝ pF ∝ ν−1/3 whereas the DOS of all flavours

grows since g(EF) =
∑ν

i=1 gi(EF) = νg1(EF) ∝ ν2/3. With increasing flavours, more

electrons are within ∼ kBT of the Fermi surface hence are able to be thermally

excited, therefore the heat capacity of the MFEG, C = 12k2
BT (ν/3π

2n)2/3/5,

increases with number of flavours. The Stoner criterion [107, 108] for band

ferromagnetism states that for opposite spin electrons interacting with positive
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exchange energy U , ferromagnetism occurs when g(EF)U ≥ 1. With increasing

number of flavours the total DOS g(EF) ∝ ν2/3 increases so that the Stoner criterion

becomes more favourable. However, this analysis does not take into account the

curvature of the DOS at the Fermi surface which can be an important factor in

determining whether ferromagnetism occurs [109, 110]. The effect of the total

DOS is also seen in the paramagnetic susceptibility, this is proportional to the

total DOS at the Fermi surface so is expected to increase with number of flavours.

Analogously one can compare a transition metal with narrow d-bands that leads to

a large DOS at the Fermi surface with a simple metal that has broader free electron

conduction bands and so a lower DOS at the Fermi surface. Similar to many flavour

systems, transition metals are experimentally observed [111] to have a significantly

higher specific heat capacity and greater magnetic susceptibility than typical simple

metals. The simple scaling relationships with number of flavours for heat capacity

and magnetisation provide additional motivation to analyse a MFEG in more detail.

This chapter uses the atomic system of units, that is e2 = ~ = m = 1/(4πǫ0) = 1,

but is modified so that m denotes an appropriate effective mass for the electron-hole

bands, which is the same for all valleys. This mass m = mem
∗ can be expressed as a

multiple of the electron mass me and the dimensionless effective mass m∗. The units

of length are then a∗0 = a0/m
∗ where a0 is the Bohr radius, units of energy are those

of an exciton, E∗
h = Ehm

∗, where Eh is the Hartree energy. These six quantities,

defined to be unity, give the standard atomic units when m∗ = 1. For the important

relationships that are derived in this chapter particular to the MFEG, the full units

are shown explicitly for clarity. Throughout this chapter density is denoted by both

n (number density of particles) and rs (Wigner-Seitz radius).

In this chapter, firstly a new formalism for the uniform system is derived. In

Sec. 2.1.1 the system polarisability is found, in Sec. 2.2.1 the general quantum

partition function is derived, and in Sec. 2.2.2 the uniform MFEG total energy is

calculated. Secondly, we examine the system with non-uniform density: in Sec. 2.3

a gradient expansion in the density for the total energy is found and is applied

to electron-hole drops in Sec. 2.4, whose density profile and surface properties are

calculated.
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2.1.1 Polarisability

In this section the MFEG polarisability is derived. Though the result for the

polarisability is the same as previous work [71, 112], the derivation is presented here

since an assumption made leads to an applicability constraint on the many-flavour

theory (in Sec. 2.2.3), and the MFEG polarisability is an important quantity that

will feature prominently in two main results of this chapter: the Sec. 2.2 derivation

of the MFEG interacting energy and the derivation of the gradient expansion (see

Sec. 2.3).

The polarisability ΠMF
0 (q,ω), where the superscript “MF” (many-flavour)

denotes this is only for a MFEG, at wave vector q and Matsubara frequency ω

is given by the standard Lindhard form

ΠMF
0 (q,ω) =

ν∑

i,j=1

δi,j
4π

3

∫
nF (ǫi (p))− nF (ǫj (p + q))

iω + ǫi (p)− ǫj (p + q)
dp , (2.2)

where nF(ǫi) = 1/(eβ(ǫi−µ) +1) is the Fermi-Dirac distribution, β = 1/kBT , and µ is

the chemical potential. In the standard expression for the polarisability the Fermi-

Dirac distribution would contain the energy spectrum E(p) but in the MFEG each

electron is in a particular valley so the polarisability should be re-expressed in terms

of the energy dispersion of each valley ǫi(p) (see Fig. 2.2) and the contributions

must be summed over the valleys i and j. Eqn. (2.13) shows that a large Coulomb

potential energy penalty V (q) ∝ 1/q2 inhibits exchange between different valleys so

that the Kronecker delta δi,j removes cross-flavour terms, and as all of the conduction

valleys have the same dispersion a factor of ν will replace the remaining summation

over valleys. Supposing each conduction valley has a locally quadratic isotropic

dispersion relationship (with effective mass m), symmetrising results in

ΠMF
0 (q,ω) =

ν

4π
3

∫ nF

(∣
∣1
2q− p

∣
∣2 /2

)

− nF

(∣
∣1
2q + p

∣
∣2 /2

)

iω − p · q dp . (2.3)

In Sec. 2.2.2 it is shown that the typical momentum exchange q ∼ (~a
−1/4
0 )n1/4

is large relative to the Fermi momentum, therefore the two volumes in momentum

space of integration variable p, defined by the two Fermi-Dirac distributions are far
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apart relative to their radii q/2 ≫ pF, and the temperature is sufficiently low so

that the high energy tails of the two distributions have negligible overlap. Within

these approximations the simple form for the polarisability is

ΠMF
0 (q,ω) = − n

(ω/q)2 + q2/4
, (2.4)

this expression agrees with the many-flavour polarisability found by Andryushin

et al. [71] and Beni and Rice [112].

The standard Lindhard form for the polarisability, when taken in the same q ≫
pF limit as imposed by the many-flavour system agrees with Eqn. (2.4). In the

static limit where frequencies are small compared to the momentum transfer q2 ≫
(~3/a∗20 E

∗
h)ω, the polarisability varies as q−2. In this limit, one Green’s function

is restricted by the sum over Matsubara frequencies to lie inside the Fermi surface

whilst the other gives the polarisability dependence of 1/ǫ(q) ∼ q−2 due to the

excited electron’s kinetic energy.

The derivation of the polarisability accounted only for intra-valley scattering,

which means that in the MFEG the same terms contribute [71] as in the RPA for

the standard electron gas. Therefore diagrammatically, as detailed in App. A.6,

in the polarisability all electron loops are empty, the polarisability contains only

reducible diagrams, which is denoted by the polarisability subscript “0”.

2.2 Analytic formulation

Having reviewed the derivation of the polarisability of the system it is now used

to formulate two complementary components of the many-flavour theory. The first

is the derivation of the energy of a uniform system; we begin by calculating the

general quantum partition function in Sec. 2.2.1 and continue for the homogeneous

case in Sec. 2.2.2. The validity of the many-flavour approach for a uniform MFEG is

investigated in Sec. 2.2.3. The second part of the formalism is a gradient expansion

of the energy density, looked at in Sec. 2.3. Finally, the uniform and gradient

expansion parts of the formalism will be brought together to study the model system

of electron-hole drops in Sec. 2.4.
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2.2.1 Partition function

To derive an expression for the total energy of the system a functional path integral

method is followed, which is a flexible approach that should be extendable to

investigate further possibilities such as modulated states and inter-valley scattering.

The derivation of the functional integral phenomenology is outlined in App. A.2.

Fermion field variables ψ are used to describe the electrons irrespective of flavour

in the dispersion E(p̂). Overall the system is electrically neutral, so in momentum

representation the q = 0 element is ignored. The repulsive charge-charge interaction

acting between electrons is V (r) = e2/r, we explicitly include the dependence on

electron charge e (even though it is defined to be unity) so that the charge can be

set equal to zero to recover the non-interacting theory. For generality we consider

stationary charges Q(r) embedded in the MFEG which have a corresponding static

potential U(r). The quantum partition function for the MFEG written as a Feynman

path integral is then

Z =

∫∫

Dψ̄Dψ exp

(∫∫

ψ̄(r,τ) (−iω̂ + E (p̂)− µ)ψ(r,τ)drdτ

)

× exp

{
1

2

∫∫∫
[
ψ̄(r′,τ)ψ(r′,τ)−Q(r′)

]
V (r− r′)

[
ψ̄(r,τ)ψ(r,τ)−Q(r)

]
dr′drdτ

}

.

(2.5)

This expression for the quantum partition function differs from that used for an

electron gas (which has just a single flavour) only by the operator E(p̂) which gives

the appropriate energy dispersion. To recover the standard electron gas result,

which has a free particle dispersion relationship centred at the Γ point, one should

set E(p) = p2/2me. For the MFEG, as outlined in Fig. 2.2, E(p) represents

the dispersion relationship of the whole conduction band, but no approximation

concerning the flavours has yet been made, so the formalism applies for any number

of flavours with a suitable energy dispersion relationship.

To make the action quadratic in the fermion variable ψ, the Hubbard-
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Stratonovich transformation [113] introduces an auxiliary boson field φ(r,τ)

Z =

∫

Dφ exp

(

−βΩ

2

∑

q 6=0,ω

φ(q,ω)(q2/4π)φ(−q,− ω) +

†
︷ ︸︸ ︷

πe2βn

2

∑

q 6=0

4π

q2

)

×
∫∫

Dψ̄Dψ exp

(∫∫

ψ̄(r,τ)
(

−iω̂ + E (p̂) + Û − µ+ ieφ̂
)

ψ(r,τ)drdτ

)

. (2.6)

Following the prescription laid out in App. A.2.5, the direct decoupling channel

[113] was chosen as the relevant contributions come from a RPA-type contraction of

operators.

The term labelled with a (†) exclusive of both fermion variables ψ and the

auxiliary field φ, physically removes the electron self-interaction included when

expressing the auxiliary field in a Fourier representation. Integrating over the

fermion variables ψ and using ln(detÂ) = Tr(lnÂ) gives Z =
∫

e−S[φ]Dφ, where

the action S[φ] is

S[φ] =
βΩ

2π

∑

q 6=0,ω

φ(q,ω)(q2/4π)φ(−q,− ω)− 2πe2βn
∑

q 6=0

1

q2

− Tr
(
ln
(
−iω̂ + E (p̂) + ieφ̂+ Û − µ
︸ ︷︷ ︸

Ĝ−1
φ

))
. (2.7)

Due to its similarity to an inverse Green function, Ĝ−1
φ is used to denote the

argument of the logarithm, the subscripts “φ” or “0” denote whether the inverse

Green’s function includes the auxiliary field or is free.

Finally, we note for use later that the ground state total energy per particle

EG = Eint + E0 can be split into two components. The interacting energy is Eint

(found in Sec. 2.2.2) and the non-interacting energy is

E0 =
3

10

(

3π
2n

ν

)2/3
, (2.8)

which is the energy with interaction between charges switched off (e = 0). It falls

with increasing number of electron flavours due to the shrinking Fermi surface.
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2.2.2 Homogeneous Coulomb gas

So far, up to Eqn. (2.7), the formalism is exact, however to perform the functional

integral over bosonic variable φ an approximation must be made. To proceed one

notes that with no external potential U(r) = 0 the saddle-point auxiliary field of

the action (Eqn. (2.7)) is φ = 0, fluctuations in the action are expanded about the

saddle point solution in φ giving the expression

S[φ] = ln(Ĝ−1
0 ) + Tr

(

φ̂V̂ −1φ̂− 1

2

‡
︷ ︸︸ ︷

φ̂Ĝ0φ̂Ĝ0

)

− 1

4
Tr
(

φ̂Ĝ0φ̂Ĝ0φ̂Ĝ0φ̂Ĝ0

)

+O(φ6)− e2

2
βn
∑

q 6=0

4π

q2
. (2.9)

Terms are now kept to quadratic order in φ, this is equivalent to the RPA, analogous

to the terms kept in the derivation of the many-flavour polarisability, see Sec. 2.1.1.

This approximation will place a constraint on the validity of the formalism that is

further examined in Sec. 2.2.3.

The product of two Green’s functions in the quadratic term in φ, labelled (‡),
is identified with the polarisability Π0, this is still expressed in terms of the general

energy spectrum E(p) so is not yet necessarily many-flavour and does not carry

the superscript “MF” used in Sec. 2.1.1. Following a multi-dimensional Gaussian

integral over the fluctuating field φ (to quadratic order) the quantum partition

function is

Z =
∏

q,ω

(
q2/4π− e2Π0(q,ω)

)− 1
2 exp




β

2

∑

q 6=0

4πe2

q2
n



 . (2.10)

In the low temperature limit we consider the free energy to get EG =

−limβ→∞(ln(Z)/β) = E0+Eint to get the interacting energy per particle, normalised

so that Eint = 0 with no interactions (e = 0),

Eint =
1

2n

(
∫∫

ln

(

1− 4πe2

q2
Π0(q,ω)

)
dωdq

(2π)4
− e2n

∑

q 6=0

4π

q2

)

. (2.11)

This equation remains general and is not necessarily in the many-flavour limit, it is
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in agreement with previous expressions for the interacting energy [74] studied not

in the many-flavour limit, but which use alternative forms for the polarisability. If

the standard (single flavour) electron gas form for the polarisability, the Lindhard

function, is used then it is possible to recover, in the high density limit, the Gell-

Mann Brückner [114] expression for the total energy.

However, to proceed, one should now assume many-flavours and use the

appropriate polarisability, Eqn. (2.4). The many-flavour polarisability summed

over all Matsubara frequencies in the zero temperature limit β → ∞ satisfies

1
β

∑

ω ΠMF
0 (q,ω) = −n. This is used to substitute for the electron density n in

the final term in Eqn. (2.11) to yield the many-flavour result

Eint =
1

2n

∫∫ (

ln

(

1− 4πe2

q2
ΠMF

0 (q,ω)

)

+
4πe2

q2
ΠMF

0 (q,ω)

)
dωdq

(2π)4
. (2.12)

To evaluate the interacting energy one first substitutes for the many-flavour

polarisation using Eqn. (2.4), makes the change of variables Ω = ω/q2 and Q =

q/n1/4, and re-arranges to get

Eint = −n1/4

A3D
︷ ︸︸ ︷

1

(2π)3

∫∫
16πe2

1 + 4Ω2
−Q4 ln

(

1 +
16πe2/Q4

1 + 4Ω2

)

dΩdQ . (2.13)

The integral is independent of density and number of flavours, so is the numerical

factor A3D = (E∗
ha

∗3/4
0 )Γ(−5/4)Γ(3/4)/(2π

5/4) ≈ 0.574447(E∗
ha

∗3/4
0 ) that was

evaluated analytically1. The interacting energy is therefore

Eint = −A3Dn
1/4 , (2.14)

which is independent of the number of flavours. In evaluating Eqn. (2.13) the main

contribution to the integral over Q = q/n1/4 is at a momentum q ∝ (~a
∗−1/4
0 )n1/4,

so the interaction and screening length-scale in a MFEG is λ ∼ ~/q ∝ a∗1/40 n−1/4 ≪
~/pF, which is shorter than the Fermi momentum length-scale.

1This differs from the value reported by Andryushin et al. [71] and Keldysh and Onishchenko

[72] of A3D = 32(2π)3/421/2(E∗
ha

∗3/4
0 )/(5Γ2(1/4)) by a factor of 29/4. The result presented here was

confirmed by three separate methods: analytically, numerically, and by comparing with the results
of QMC simulations on the many-flavour system that are described in more detail in Chp. 3 [2].
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The interacting energy Eint = Eex + Ecorr can be split into exchange energy

Eex and correlation energy Ecorr. The interacting energy is independent of number

of flavours, the exchange energy, Eex = −(3/2)(3n/πν)1/3 [104], falls with number

of flavours, therefore the correlation energy dominates over the exchange energy

in the interacting energy in the many-flavour limit. In terms of the total energy,

the correlation energy also dominates over the non-interacting energy, the kinetic

energy that falls with number of flavours as E0 ∝ ν−2/3. The increasing importance

of the correlation energy can be understood further by considering the electron pair

correlation function. With increasing number of flavours the length-scales between

electrons of the same flavour increase as ∝ ν1/3rs and thus exchange energy and

kinetic energy reduce whereas the correlation energy depends only on the distance

rs between electrons so is unaffected by the number of flavours present. Andryushin

et al. [71] and Keldysh and Onishchenko [72] found the Eqn. (2.14) expression to

be the correlation rather than interacting energy, neglecting the exchange energy

which is small in the extreme many flavour limit. In Sec. 2.2.3 the expression for

the interacting energy is compared with self-consistent numerical calculations [104]

on a MFEG with up to six flavours.

The interacting energy of a standard electron gas with a single flavour [104] is

more negative than that of a MFEG, which in turn is more negative than that of a

Bose condensate [115], this could be due to the reducing negativity of the exchange

energy, important in the single flavour system, but zero in the Bose condensate. In

these two extreme systems, the single flavour electron gas and the Bose condensate,

there is no notion of valley degeneracy, and therefore the intermediate system, the

MFEG, might be expected at most to have only a weak dependence on number

of valleys. In fact, the interacting energy of the MFEG, over the range of density

found in Sec. 2.2.3, contains no dependence on the number of valleys. The absence

of flavour dependence is also present in the universal behaviour for the exchange-

correlation energy in electron-hole liquids proposed by Vashishta and Kalia [116].

The non-interacting energy term E0 ∝ (n/ν)2/3 favours low electron density, the

interacting term Eint = −A3Dn
1/4 favours high electron density, therefore the total

energy per particle has a minimum as a function of density of EGmin ∝ −ν2/5 at
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nmin ∝ ν8/5. The presence of a minimum in energy with density of the MFEG is

consistent with the results of Andryushin et al. [71] and Brinkman and Rice [74]

who analysed conduction electrons in a semiconductor. One consequence of this

minimum is the possibility of a low density phase coexisting with excitons.

Before analysing the non-uniform system in detail in Sec. 2.3 we can make

qualitative arguments about its expected behaviour within a potential well.

According to Thomas-Fermi theory, an electron gas in a slowly varying attractive

potential has a constant chemical potential. The electron gas is least dense at the

edges of the potential and is densest at the centre of the well. In a MFEG, due to

the negative interacting energy Eint = −A3Dn
1/4 favouring high electron density,

the density is expected to further reduce at the edges of the attractive potential and

increase at the centre of the well. In a repulsive potential the opposite should occur.

2.2.3 Density limits

In this section we will derive approximate expressions for the upper and lower density

limits over which the many-flavour limit applies, these will be used to check the

theory against numerical results [104] and to predict a lower bound on the number

of flavours required for the theory to apply.

To find the upper density limit one notes that Eqn. (2.13) implies that an

acceptable upper limit to the momentum integral would scale as q = α(~a
∗−1/4
0 )n1/4,

the constant α ≈ 4 was determined numerically and was chosen to give the q upper

limit on the integral that recovered 95 % of the interacting energy. Additionally,

the two regions of integration defined by the Fermi Dirac distributions in Eqn. (2.3)

must not overlap, requiring that q/2 ≥ pF. Combining these requires that for the

many-flavour limit to apply the density must satisfy na∗30 ≪ (α12ν4)/(21234
π

8).

Physically the breakdown at high density is due to the strongest interactions taking

place on length-scales longer than the inverse length p−1
F .

The low density limit is derived by considering the expansion of the action in

the auxiliary boson field φ, Eqn. (2.9). In order to evaluate the Gaussian functional

integral over the bosonic variable φ it is necessary to neglect the quartic term in φ,

valid only when investigating the system with respect to its long-range behaviour,
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that is pF~a∗0 ≫ 1 [113], and therefore na∗30 ≫ ν/3π
2. The breakdown at low density

can be understood because the MFEG is effectively a boson gas, all electrons will

be in the Γ state (k = 0) and there is no exchange energy.

The upper and lower critical density limits can be combined to conclude that

the many-flavour limit result for interacting energy applies for densities that obey

0.03ν ≪ na∗30 ≪ 0.005ν4; this density range increases as ν4 with number of flavours,

the scaling relationship is the same as the applicable density range of the correlation

energy found by Andryushin et al. [71], though they did not provide estimates of

numerical factors.

Using the above high and low density limits it is possible to estimate the

minimum number of flavours required for the theory to apply. This is done by

setting the lower and upper estimates for the allowable density to be equal, which

gives ν ' 2, this estimate is approximate due to the possible inaccuracies in the

upper and lower critical densities used in its derivation. As the upper and lower

critical densities have been set equal, the many-flavour theory will apply here only

over a very narrow range of densities, but this range widens with increasing number

of flavours as ν4. An alternative limit can be found by comparing the interaction

energy predicted by the theory over the expected density range of applicability with

the results of Gold [104]. Their numerical self-consistent approach gives interaction

energies accurate to approximately 3 % when compared with single-flavour electron

gas QMC calculations [117, 118] and some initial many-flavour QMC calculations

[2]. At two flavours the interacting energy predicted by the many-flavour theory

is ∼ 10 % more positive than the self-consistent numerical results [104] indicating

the many-flavour theory does not apply at two flavours. For six flavours over the

predicted allowed density range the many-flavour theory is between ∼ 0 % and ∼ 4 %

more positive than the numerical results, which indicates that the many-flavour

theory can be applied within the predicted range of applicability (0.5 < rs/a
∗
0 < 1).

The theory should be applicable in common multi-valley compounds, such as silicon

which has six conduction band valleys, and to those with more valleys [73]. This

result is corroborated by the results of QMC calculations on systems with between

6 and 24 flavours, which are described in more detail in Chp. 3 [2].
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In the first half of this chapter a new versatile formalism to describe a MFEG

has been developed that could apply in systems containing approximately six or

more degenerate conduction valleys. An exact expression for the total energy of the

uniform MFEG was found and the applicable density range derived. The next step

is to investigate the response of the MFEG to an external potential. A gradient

approximation is developed in Sec. 2.3 and this is applied to electron-hole drops in

Sec. 2.4.

2.3 Gradient correction

In Sec. 2.1 it was shown that the typical length-scales of the MFEG are short q ≫ pF,

motivating a LDA. This motivation is in addition to the usual reasons for the success

of the LDA in DFT [11] – that the LDA exchange-correlation hole need only provide

a good approximation for the spherical average of the exchange-correlation hole and

obey the sum rule [119]. In this section the LDA is used with the polarisability

derived in Sec. 2.1.1 to develop a gradient correction to the energy density that

allows the theory to be applied to a non-uniform MFEG.

The typical momentum transfer in the MFEG is q ∼ (~a
∗−1/4
0 )n1/4 hence

the shortest length-scale over which the LDA may be made is approximately

(a
∗1/4
0 /~)n−1/4 and the maximum permissible gradients in electron density are

|∇n|max ∼ qn ∼ (~a
∗−1/4
0 ))n5/4. The gradient expansion will break down for short

scale phenomena, for example a Mott insulator transition. To derive an energy

density gradient expansion we follow Hohenberg and Kohn [120] and Rice [90] and

consider an external charge distribution next(q) that couples to the induced charge

distribution nind(q) with Coulomb energy density

−1

2

∑

q

4πe2

q2
next(q)nind(q) . (2.15)

One now substitutes for next(q) using the relative permittivity 1/ǫ(q) = 1 +

nind(q)/next(q) = 1/(1−4πΠMF
0 /q2) and the many-flavour polarisability Eqn. (2.4).

The highest order term in 1/q2 gives the induced charge Coulomb energy, the term

of order q2 is associated with a gradient expansion, in real space this gives the
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expansion for the total energy per particle

EG +
(∇n)2

8n2
+O

(
(∇n)4

)
, (2.16)

here EG is ground state energy of the uniform system found in Sec. 2.2.2. The form

of the energy correction is similar to the von Weizsäcker term [121], although here it

is larger, having a coefficient of 1/8 rather than 1/72 as in the von Weizsäcker case.

The difference can be qualitatively understood by considering the Fermi surfaces

involved in the two cases for a given wave vector q, in the many-flavour case the

Fermi surfaces involved in the integral of Eqn. (2.3) do not overlap as q/2 ≫ pF

so there is a large volume in Fermi space available hence a large coefficient of 1/8,

whereas in the ordinary electron gas (single flavour) the same Fermi surfaces do

overlap, as now q/2≪ pF, reducing the volume available for integration so reducing

the coefficient to 1/72.

The gradient correction for the energy could be used in analytical approximations

or as a DFT functional. This energy density expansion allows the MFEG to

be applied to a variety of systems, its use for studying electron-hole drops is

demonstrated in Sec. 2.4.

2.4 Electron-hole drops

In this section the MFEG is used to investigate the properties of electron-hole

drops. An electron-hole drop is a two-phase system: a spherical region of a MFEG

surrounded by an exciton gas [112]. The density profile, surface thickness and surface

tension of drops are investigated; the scaling of surface thickness and tension with

number of flavours is also found since this can be experimentally probed through

externally imposed strain reducing the valley degeneracy [76].

There have been four main theoretical methods used to analyse an electron-hole

drop in silicon and germanium, semiconductors which have six and four flavours

respectively. Rice [91] fitted an analytic form to the energy density minimum

and included the lowest order of a local gradient correction, from the equation

for energy density an analytic form for the density profile was derived. A similar
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approach was used by Sander et al. [89] and Rice [90] to study the surface structure

in more detail. The second approach [92, 93], which was also applicable to situations

with an external magnetic field and uniaxial strain, conserved momentum, particle

number and pressure balance at the drop surface, the resulting equations were then

solved numerically. A third approach followed by Kalia and Vashishta [78] used

a Padé approximant for the energy density [77] derived specifically for silicon and

germanium but did not include a gradient correction factor. The fourth approach

of Reinecke et al. [94] again used a Padé approximant for the energy density and

also included a gradient correction factor. The latter two approaches assumed an

exponential density profile for the drop. These four methods all use approximate

forms for the energy density, an advantage of the many-flavour approach is that the

exact form for the analytic energy density (within the many flavour assumption)

can be used to solve for the drop density profile. Whilst analytic forms for the inner

and outer density profile as well as a model for the entire profile can be derived, the

general problem must be solved numerically. With an exact form for the density

profile, electron-hole drop surface effects can be studied.

Local charge neutrality is assumed so that the density of electrons and holes are

everywhere identically equal. A LDA with gradient correction is used so the drop

energy density is written as the sum of the local non-interacting, local interacting

and the lowest order term in a gradient expansion,

ε(r) =
3

10

(
3π

2

ν

)2/3

n(r)5/3 −A3Dn(r)5/4 +
(∇n(r))2

8n(r)
. (2.17)

The total energy of a drop is
∫
ε(r)dr and the total number of electrons in the drop is

∫
n(r)dr. The total energy is minimised with respect to electron density n(r) whilst

keeping a constant number of electrons in the drop by applying the Euler-Lagrange

equation with a Lagrange multiplier µ, which represents the chemical potential. If

the drop has spherical symmetry the density must satisfy

2rn
d2n

dr2
+ 4n

dn

dr
− r

(
dn

dr

)2

= 16

(
3π

2

ν

)2/3

rn8/3 − 40A3Drn
9/4 − 32µrn2 . (2.18)

The boundary conditions are specified at the centre of the drop, where the density
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takes the equilibrium homogeneous MFEG value and the density is smooth, namely

n(0) = n̄ and n′(0) = 0. The differential equation Eqn. (2.18) cannot be solved

analytically for n(r), but a solution, n(r) = n̄, exists for µ = 0 which corresponds to

the homogeneous MFEG, that is a drop containing an infinite number of electrons.

Before solving the differential equation numerically, two approximate schemes are

developed, one that applies near the drop centre and the other near the drop edge,

and their predictions are compared with existing density profile forms.

Near the centre of the drop a perturbation solution about the equilibrium density,

n(r) = n̄+ ∆n(r) where ∆n(r)≪ n̄, is considered. The solution to Eqn. (2.18) for

the density is then

n(r) = n̄+
8µn̄

Q2

(

1− sinh(Qr)

Qr

)

. (2.19)

This density profile is characterised by an exponential reduction of the density away

from n̄ at the centre. The energy Q2 is physically the rate of change of energy per

unit volume with respect to changing particle density, with

Q2 =
64

3

(
3π

2

ν

)2/3

n̄2/3 − 45A3Dn̄
1/4 − 32µ . (2.20)

The second approximation scheme applies in the drop tail where electron density

is low, n(r) ≪ n̄. The term containing the chemical potential is disregarded as it

is arbitrarily small for the large drops under investigation, the non-interacting and

interacting energy terms contain higher powers of density so are negligibly small. In

this regime the solution to Eqn. (2.18) is

n(r) =







n0

(
1
r − 1

r0

)2
r < r0 ,

0 r ≥ r0 .
(2.21)

Here n0 and r0 are variational parameters which must be fitted to a numerical

solution. This analytic form shows that the electron-hole drop has a definite outer

radius r0, which is approached parabolically, it is also noted that in the drop tail
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the solution obeys the differential equation

1

r2
d

dr

(

r2
dn1/2

dr

)

= ∇2n1/2 = 0 . (2.22)

If electron density is mapped onto a wave function ψ through n = |ψ|2 then the

solution Eqn. (2.21) obeys Schrödinger’s equation at low energy, that is ∇2ψ = 0.

The implied Schrödinger equation is for a low density MFEG with negligible

interaction between electrons due to their large separation, consistent with the

original assumption of low density in the drop tail.

Previous studies of electron-hole drops [78, 91, 94] had a solution with the same

exponential form both inside and outside of the drop, our inner functional form,

an exponential, agrees with previous work [78, 91, 94], but our outer functional

form, a quadratic-like polynomial, does not agree with the exponential decay seen in

previous work. However, at the outside of the drop density is low and the arguments

of Sec. 2.2.3 show the many flavour theory, which requires that the density satisfies

n≫ 0.03ν, does not apply here. The other theories [78, 91, 94] also do not apply in

the low density region so both the many-flavour and previous theories fail to agree

only where they are not applicable.

Using just the solution for the density in the drop tail Eqn. (2.21), a reasonable

analytical approximation for the density profile of the whole drop is

n(r) =

(
1

n0(1/r − 1/r0)
+

1

n̄

)−1

. (2.23)

This solution has the correct functional form at both the inside (n(r) → n̄) and

outside of the drop and extrapolates smoothly in between. It can be fitted to

the actual solution using parameters n0 and r0. However, the general differential

equation is solved numerically giving the density profile shown in Fig. 2.3. The

numerical solution is well approximated in the inner and outer regions by Eqn. (2.19)

and Eqn. (2.21) respectively, and the model Eqn. (2.23) provides a good fit to the

numerical solution, having just a slightly too shallow gradient around the median

density but it agrees at both the centre and outside of the well.

To allow us to compare properties of electron-hole drops predicted using many-
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Figure 2.3: The density profile of a
12 flavour electron-hole drop with density
parameter rs = 1. The numerical solution
is shown by the dotted line, analytical
approximations to the inside (outside) of
the drop by the dashed (dot-dashed) lines,
and a best fit model fitted to the numerical
solution by the solid line.
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Figure 2.4: The surface tension γ of the
12 flavour drop of radius rm is shown using
the solid line and pluses based on the left-
hand y-axis. The variation of the surface
thickness D is shown using the dashed line
and crosses based on the right-hand axis,
each point represents a separate simulation.
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flavour theory with other work [78, 94], one can characterise the electron-hole drop

properties through its surface thickness D and tension γ. The surface thickness

D is the width over which the density falls from 90 % to 10 % of its homogeneous

equilibrium value n̄. The total surface energy is the difference between the energy

per unit area of the MFEG in the drop and the energy of the same number of

particles at equilibrium density in a homogeneous system. The surface tension γ is

the total surface energy divided by the characteristic drop surface area, here taken

to be the area of the spherical surface at the median density, which corresponds to a

characteristic drop radius rm. The results of numerical calculations in Fig. 2.4 show

both the surface tension and surface thickness of the drop tend to constant values as

the drop size increases. For large drops the boundary becomes approximately flat so

the surface thickness becomes independent of drop radius, as does the surface tension

since its major contribution comes from the drop boundary. We now examine the

surface thickness and tension more carefully in turn.
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Figure 2.5: The variation of surface ten-
sion (dashed line and crosses) and surface
thickness (solid line and pluses) with number
of flavours present, the straight line fits are
used to give the exponents of the scaling
parameters.

To derive an approximate expression for the surface thickness we use the

analytical approximation Eqn. (2.19) to the density profile of the inside of the drop,

which gives the density reduction from the drop centre

∆n(r) = − 4µn̄

Q3/2r
eQr . (2.24)

From this, the surface thickness D over which density falls from 90 % to 10 % is

given in the large drop limit rm ≫ D by

D ≈ ln 9

Q
. (2.25)

In the given example in Fig. 2.3 (12 flavours) this predicts that the surface

thickness is D ≈ 0.8a∗0, which is of similar size to the result found by numerical

solution of Eqn. (2.18) of ∼ 1.1a∗0, but indicates that the approximation for surface

thickness in Eqn. (2.25) is not able to produce accurate results. The values for

surface thickness of drops found using the many-flavour theory can be compared with

results from other approximations. For the six flavour gas in the large drop limit

the many-flavour theory approximation Eqn. (2.25) predicts a thickness of 1.2a∗0,

and exact numerical integration of the many-flavour theory Eqn. (2.18) predicts

thickness 1.6a∗0. The silicon six flavour result of Kalia and Vashishta [78] has a

surface thickness of 1.6a∗0, which is in good agreement with the many-flavour result.

Having used many-flavour theory to predict the density profile and surface

thickness of an electron-hole drop, it is interesting to examine their scaling

relationships with number of flavours. This is because the scaling relationships
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can be experimentally probed [76] by comparing the surface thickness before and

after putting the material under a strain which reduces the valley degeneracy, for

example in silicon from six to two flavours. These scaling relations will also allow

the many-flavour results to be further compared with previous theoretical work. In

Sec. 2.2.2 it was shown that the expected MFEG uniform density is n̄ ∝ ν8/5, and

from Eqn. (2.20) Q2 ∝ ν2/5, which with Eqn. (2.25) predicts surface thickness to

scale as D ∝ ν−1/5. This scaling prediction for surface thickness can be compared

with numerical results for the variation of surface thickness with number of flavours

in Fig. 2.5, found by solving the differential equation Eqn. (2.18). The coefficient for

surface thickness D ∝ να is α = −0.19995(7) in good agreement with the predicted

value of −1/5. We can also qualitatively compare our scaling result with numerical

results [78, 94] from studies of the electron-hole drop in silicon. These studies

compared results for silicon found at the unstrained six flavour with the results at

two flavours to attempt to model the effect of stress reducing valley degeneracy.

Though two flavour calculations cannot be accurately given by the many-flavour

theory, the qualitative variation of surface tension and surface thickness should be.

The variation of surface thickness with number of flavours D ∝ ν−1/5 is weak, for

silicon from six to two flavours the many-flavour theory, assuming it is valid, predicts

that the thickness increases by a factor of 1.2. This compares reasonably with the

numerical results of Ref. [78], which predicts an increase in surface thickness by a

factor of ∼ 1.1.

The dominating contribution to surface energy is at the boundary of the drop so

the surface tension in large drops is approximately the gradient term in the energy

density, Eqn. (2.16) (the main contribution to the surface tension) multiplied by the

surface thickness D

γ ≈ (∇n)2

8n̄
D ≈ n̄

8D
, (2.26)

where we use the additional approximation ∇n ≈ n̄/D. Finally, with the

relationship found above, D ∝ ν−1/5, and n̄ ∝ ν8/5 found in Sec. 2.2.2, this predicts

surface tension varies with number of flavours as γ ∝ ν9/5. The numerical results

of Fig. 2.5, found by solving the differential equation Eqn. (2.18) exactly, predict a
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coefficient for γ ∝ να of α = 1.8004(3) in good agreement with the analytical result,

9/5. For silicon, reducing the number of flavours from six to two, the above result

predicts that surface tension reduces by a factor of 7. This qualitatively agrees with

the variation seen by Refs. [78, 94] of a reduction by a factor of 3, though comparison

is difficult due to the presence of holes and there being too few flavours present for

the many-flavour theory to be fully applicable.

2.5 Conclusions

This chapter describes a new formalism for calculating the behaviour of a MFEG.

In the many-flavour limit the Fermi momentum reduces as pF ∝ ν−1/3 so is small

compared with the momenta associated with the strongest interactions. Intra-valley

interactions are more significant than inter-valley.

The behaviour of a homogeneous MFEG in the limit of many-flavours

was derived. Specifically the exact interacting energy per particle is Eint =

−0.574447(E∗
ha

∗3/4
0 m∗1/4)n1/4; making it energetically favourable for the MFEG to

be dense. The formalism was found to apply with as few a six flavours over the

density range 0.03ν ≪ na∗30 ≪ 0.005ν4.

The MFEG has short characteristic length-scales which motivates a LDA. A

gradient expansion of the energy density with the lowest order term |∇n|2/8n was

derived, which was applied to electron-hole drops to study their density profile and

surface properties. Surface thickness was found to scale as D ∝ ν−1/5, surface

tension as γ ∝ ν9/5.

In Chp. 3 [2] we compare our analytical results with those from computer

simulations to verify our findings for the uniform MFEG, its polarisability and the

gradient expansion. This allows the limits over which the many-flavour limit applies

to be derived more accurately, which in turn enables the formalism to be applied to

more physical systems.





Chapter Three

Diffusion Monte Carlo study of

a valley degenerate electron gas

and application to quantum dots

I
n this chapter a MFEG in a semiconductor with a valley degeneracy ranging

between 6 and 24 is analysed using Diffusion Monte Carlo (DMC) calculations.

The DMC results compare well with an analytic expression derived in Chp. 2

for the total energy to within ±1 % over an order of magnitude range of density,

which increases with valley degeneracy. For Bi2Te3 (six-fold valley degeneracy) the

applicable charge carrier densities are between 7×1019cm−3 and 2×1020cm−3. DMC

calculations distinguished between an exact and a useful approximate expression for

the 24-fold degenerate MFEG polarisability for wave numbers 2pF < q < 7pF. The

analytical result for the MFEG is generalised to inhomogeneous systems by means

of a gradient correction, the validity range of this approach is obtained. Employed

within a density-functional theory calculation this approximation compares well with

DMC results for a quantum dot.

The material making up this chapter was recently published in Conduit and

Haynes [2].
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3.1 Introduction

Good quantum numbers, that describe conserved quantities as a quantum system

evolves, derive their significance from their connection to the powerful conservation

laws of physics. In addition to the familiar examples of spin and crystal momentum,

under some circumstances electrons in solids can have an additional quantum

number that distinguishes them, which we call the flavour ; we denote the total

number of flavours by ν. One example of such a system are semiconductors and

semimetals that have degenerate conduction-band valleys, where the flavour denotes

the electron’s valley. Examples of multi-valley semiconductors include Ge, which as

shown in Fig. 3.1 has four degenerate valleys (N.B. not eight, as valleys at the

Brillouin zone vertices overlap), Si has six degenerate valleys, a Ge-Si alloy has

ten degenerate valleys, and Pb1−x−ySnxMnyTe has twelve valleys in the Σ band

[73]. The system has been experimentally realized as an electron-hole liquid that

forms in drops [1, 71]. In these systems the number of flavours (the number of

valleys) is well defined and there are strong Coulomb interactions between particles

which motivates the analysis. This is in contrast to several other systems in which

the number of flavours is poorly defined such as heavy fermions [95–97], charged

domain walls [98], a super-strong magnetic field [72], and spin instabilities [99, 100];

or where the number of flavours is well defined but interactions between particles

are weak such as ultracold atoms in optical lattices [101–103].

The properties of a MFEG in a semiconductor were first studied analytically

for the normal phase by Andryushin et al. [71], and for the superconducting

phase by Cohen [105]. In Chp. 2 [1] we extended the MFEG analysis by

finding an energy functional and gradient expansion, which allowed the study of

inhomogeneous systems. However, the analytical treatment was limited to consider

the same contributions to the energy as in the random phase approximation (these

contributions dominate in the many-flavour limit). To go further requires numerical

calculations, the only example of which for a MFEG to date [104] used a self-

consistent approach for the local field correction formulated by Singwi et al. [122]

Singwi, Tosi, Land & Sjölander (STLS), see also Ref. [123]. The method was later

applied to charge impurities by Bulutay et al. [124]. The calculations of Ref. [104]
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Figure 3.1: The Ge band-structure in the
[111] direction calculated using a plane-
wave pseudopotential method [106]. The
Fermi energy is at E = 0eV; below are
valence bands with the holes centred around
H, above are conduction bands. The first
conduction band valley is highlighted in
bold, low-lying conduction-band electrons
are centred around C.

were performed for ν ≤ 6, too few flavours to gauge the applicability of the analytic

many-flavour approximation, which in Chp. 2 [1] we estimated to apply at around

six or more flavours.

In this chapter we follow the suggestion of Gold [104], and present the results of

what are expected to be more accurate DMC [15, 125–127] calculations on the MFEG

for ν ≤ 24, which should allow us to verify the analytical MFEG approach. We then

examine aspects of the many-flavour approximation that have not yet been studied

computationally: in Sec. 3.4 we compare the analytical density-density response

function derived in Sec. 3.1.2 with that predicted using DMC. Once verified this

allows us in Sec. 3.5 to employ a gradient expansion within DFT to find the ground

state of a quantum dot, we compare results with DMC calculations and examine

the validity of the gradient expansion.

We adopt the atomic system of units: that is e2 = ~ = m = 1/(4πǫ0) = 1. The

massm = mem
∗ is defined to be the electron mass, me, multiplied by a dimensionless

effective mass m∗ appropriate for the conduction-band valleys, which when m∗ =

1 will recover standard atomic units. We assume the valleys all have the same

dispersion profile and so the same effective mass, Andryushin et al. [71] outlined

a method of calculating a scalar effective mass for anisotropic valleys. With the

above definitions, energy is given in terms of an exciton E∗
h = Ehm

∗, where Eh is

the Hartree energy, and length a∗0 = a0/m
∗ in terms of the Bohr radius a0. To

denote density we use both the number density of conduction-band electrons n and

the Wigner-Seitz radius rs.
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Before presenting the numerical results, to orient the discussion, we describe the

basic physics of the MFEG and review the analytical results of Chp. 2 [1] that will

be computationally verified in this chapter.

3.1.1 Introduction to a MFEG

In a low temperature MFEG, the number of flavours ν, number density of

conduction-band electrons n, and Fermi momentum pF are related through

n =
νp3

F

3π2
. (3.1)

At fixed electron density, the Fermi momentum reduces with increasing number

of flavours as pF ∝ ν−1/3, so each Fermi surface encloses fewer states. The

semiconductor hole band-structure often has a single valence-band minimum at the

Γ point, such as in Ge, see Fig. 3.1, hence we assume the holes are heavy and are

uniformly distributed, providing a jellium background.

For a constant number density of particles, the density of states at the Fermi

surface, g, rises with increasing number of flavours as g ∝ ν
√
EF ∝ ν2/3. Therefore,

the screening length estimated with the Thomas-Fermi approximation [9] is κ−1 =

(4πe2g)−1/2 ∝ ν−1/3, and the ratio of the screening to Fermi momentum length-scale

varies with number of flavours as pF/κ ∝ ν−2/3. In the many-flavour limit ν ≫ 1,

the screening length is much smaller than the inverse Fermi momentum, κ−1 ≪ p−1
F ,

and so the dominant electron-electron interactions have characteristic wave vectors

which obey q ≫ pF. This is in direct contrast to the RPA where pF ≫ κ, although

in both the many-flavour and the RPA, the same Green function contributions with

empty electron loops dominate diagrammatically [1, 71]. As is outlined in App. A.6,

these diagrams contain the greatest number of different flavours of electrons, and

as ν ≫ 1 therefore have the largest matrix element. Since q ≫ pF, the typical

length-scales of the MFEG are short, this indicates that a LDA could be applied.

This motivation is in addition to the usual reasons for the success of the LDA in

DFT [11], namely that the LDA exchange-correlation hole need only provide a good

approximation for the spherical average of the exchange-correlation hole and obey
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the sum rule [119].

3.1.2 Polarisability

In the many-flavour limit the exact result for the polarisability of a MFEG at wave

vector q, and Matsubara frequency ω is [1, 71, 112]

Π0(ω,q) =
ν

2π2

{

ω

q

[

tan−1

(
q/2 + pF

ω/q

)

− tan−1

(
q/2− pF

ω/q

)]

− (ω/q)2 + p2
F − q2/4

2q
ln

[

(ω/q)2 + (q/2 + pF)2

(ω/q)2 + (q/2− pF)2

]

− pF

}

, (3.2)

which in the many-flavour limit is approximately

Π0(ω,q) = − n

(ω/q)2 + q2/4
+O(ν−2/3) . (3.3)

This quantity governs the density-density response of the MFEG so is important

to verify. Since Eqn. (3.3) has a simple form it can be used to calculate further

properties of the MFEG [1], such as homogeneous energy in Sec. 3.1.3 and the

gradient expansion in Sec. 3.1.4, which further motivates its numerical verification.

3.1.3 Homogeneous energy

Starting from the approximate expression for polarisability, Eqn. (3.3), it can be

shown that the total energy of a MFEG, including all the exchange and correlation

contributions is [1]

E =
3

10

(
3π2

ν

)2/3

n5/3 −

Eint
︷ ︸︸ ︷

A3Dn
5/4 , (3.4)

where A3D = Γ(−5/4)Γ(3/4)/(2π5/4)(E∗
ha

∗3/4
0 ) ≈ 0.574447(E∗

ha
∗3/4
0 ) and Eint

denotes the interacting energy (which would be zero if electron-electron interactions

were ignored).

In Chp. 2 [1] it was suggested that this relation for the total energy applies over

a density range, at 99 % accuracy, 0.03ν ≪ na∗30 ≪ (0.074ν)4, which widens with
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number of flavours as ν4 (see also Ref. [71]). Considering the number of flavours

where the range of validity vanishes indicates that the many-flavour limit will apply

if there are ten or more flavours. An alternative estimate for the density range is

found in Sec. 3.4.1 by comparing the analytical result with DMC calculations.

3.1.4 Gradient correction

The applicability of the LDA in a MFEG motivates the search for a gradient

expansion to the energy Eqn. (3.4) as a way to analyse inhomogeneous systems

such as electron-hole drops and quantum dots. The typical momentum transfer

in the MFEG is q ∼ 4(~a
∗−1/4
0 )n1/4, which defines the shortest length-scale over

which a LDA can be made, therefore, the maximum permissible gradient in electron

density is |∇n|max ∼ qn ∼ 4(~a
∗−1/4
0 )n5/4. A gradient expansion will break down

for phenomena with short length-scales, for example mass enhancement [128]. If

electron density is smoothly varying then starting from Eqn. (3.3), the gradient

correction to the energy for a MFEG is [1]

E = E0 +
1

8

(∇n)2

n
, (3.5)

where E0 is the energy of a homogeneous MFEG with density n, see Eqn. (3.4). As

discussed in Sec. 3.1.1, this gradient expansion would be useful for DFT calculations

and so its computational verification is important.

3.2 Computational method

In this section we briefly describe the two computational methods that we used,

Variational Monte Carlo (VMC) and DMC [15], which are introduced in more detail

in App. A.4. They are both QMC methods, chosen since DMC gives the exact

ground state energy subject to the fixed node approximation, and both are expected

to give more accurate results than the STLS approach used by Gold [104].

The VMC method uses a normalisable and differentiable trial wave function ΨT,

of the form discussed below. The Metropolis algorithm [129] is used to sample the

wave function probability density |ΨT|2 using a random walk, and make an estimate
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of the local energy EL(r) = ΨT(r)−1ĤΨT(r). In order to obtain the ground state

one could minimise the spatial average of the local energy with respect to the free

parameters in the trial wave function. However, it is computationally more stable

to minimise the variance in the estimates of the local energy. As VMC obeys the

variational principle by construction, it yields an upper bound to the true ground

state energy.

The more accurate DMC algorithm is a stochastic method that begins with a trial

or guiding wave function, in this case the optimised VMC trial wave function. The

DMC method is based on imaginary time evolution, which when using the operator

e−t(Ĥ−ET) projects out the ground state wave function from the trial wave function,

and yields an estimate of the ground state energy, ET. The nodal surface on which

the wave function is zero (and across which it changes sign) is fixed [127, 130] to be

that of the trial wave function, this ensures that the fermionic exchange symmetry

is maintained. The DMC algorithm produces the exact ground state energy subject

to the fixed node approximation, and is also variational so gives an accurate upper

bound to the true ground state energy once the population control bias and finite

time-step bias are eliminated. The algorithm used closely follows that described in

Ref. [131].

In our QMC calculations we use a Slater-Jastrow [15, 132, 133] trial wave

function. The Slater part of the wave function is a product of determinants, each

one corresponding to a different electron spin or flavour. Each determinant is over

the spatial orbitals of electrons occupying the lowest energy levels. The determinant

changes sign when rows or columns are swapped, this ensures that the wave function

is antisymmetric under exchange of electrons with the same flavour and spin. The

Slater wave function itself is not the ground state of an interacting electron gas, so to

improve the wave function, variational degrees of freedom that account for two-body

correlations are included within a Jastrow factor. The Jastrow factor is symmetric

under particle exchange so does not alter the particle exchange symmetry of the wave

function. Furthermore, the Jastrow factor is always positive so does not alter the

wave function nodal surface. The Jastrow factor contains a two-body polynomial

term u(rij) = F (rij)
∑6

l=2 αlr
l
ij , a power series form [133] in electron separation
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rij with optimisable parameters, αl. The term F (rij) ensures that the Kato cusp

conditions are satisfied [134]. To ensure that electron-electron correlations do not

extend beyond the simulation cell, the term is cutoff at the Wigner-Seitz radius.

To treat longer-ranged correlations, the Jastrow factor includes a two-body plane-

wave expansion, p(rij) =
∑

A,GA
aA cos(GA · rij). Those reciprocal lattice vectors,

{GA}, that are related by the point group symmetry (denoted by A) of the Bravais

lattice share the same optimisable parameters, aA. To ensure accuracy we checked

the stability of the VMC results when the expansion order of the u and p terms

was increased. At all densities the Jastrow factor optimised cutoff lengths took the

maximum allowed value (the Wigner-Seitz radius).

The DMC calculations were performed with 57 different reciprocal lattice vectors

and, following Ortiz and Ballone [135], Ceperley [117], and Ceperley and Alder [118],

further VMC calculations were performed at other system sizes (27, 33, 57, and 81

reciprocal lattice vectors) to derive the parameters to extrapolate the DMC energy to

infinite system size. Additionally, all the DMC results were extrapolated to have zero

time-step between successive steps in the electron random walk. In DMC simulations

the acceptance probability of a proposed step in the random walk exceeded 99 %.

We used 300 DMC configurations, comparable to the 200-300 used by Ortiz and

Ballone [135], and checked for population control bias by ensuring that ground state

energy estimates did not vary with a changing number of configurations. All the

QMC calculations were performed using the CASINO computer program [136].

3.3 Homogeneous MFEG

We start with the simplest possible system to analyse numerically, the homogeneous

MFEG, this provides not only a suitable system to validate both theory (Sec. 3.1.3)

and the QMC many-flavour calculations, but should also confirm the range of

densities over which the many-flavour approximation applies. The 3D homogeneous

electron gas (ν = 1) has been studied before using QMC [117, 118, 135] and these

studies provide a useful guide to the method we should follow.

To calculate the interaction energy Eint we subtracted the theoretical Thomas-

Fermi kinetic energy from the DMC ground state energy (see Eqn. (3.4)). At each
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of 6, 12, 18, and 24 flavours we performed five DMC calculations and interpolated to

find where theory and DMC results agree to within ±1%. Results in Fig. 3.2 show

that for ν > 6 the theory applies over at least an order of magnitude in density to

an accuracy of ±1 % – the theory can be applied at fewer flavours than expected.

For fewer than ∼ 12 flavours the valid logarithmic range of the theory increases

with ν, the 18 and 24 flavour results show a dramatic increase in the range of

validity, especially on the high density side. In the limit of many flavours (ν > 12)

the expected 99 % range of validity 0.03ν ≪ na∗30 ≪ (0.074ν)4 is approximately

consistent with the computationally predicted ±1 % region, therefore the minimum

number of flavours required for all aspects of the many-flavour theory to be valid is

approximately ten.

For Si with m∗ = 1.08 the many-flavour limit applies to an accuracy of ±1 %

for a charge carrier concentration between 4 × 1023cm−3 and 1 × 1024cm−3, this

is greater than the typical maximum carrier density ∼ 1 × 1021cm−3 and so in Si

the formalism is not applicable. In systems with a low effective mass, for example

the ν = 6 material Bi2Te3 used in thermoelectric cooling, which has m∗ = 0.06

[137–139], the required charge carrier concentration is between 7 × 1019cm−3 and

2×1020cm−3, which compares favourably with the typical maximum carrier density

∼ 1 × 1021cm−3 and so the many-flavour limit formalism could be applied to low

effective mass materials.

The STLS estimates for the ground state energy [104] at ν = 1 were ∼ 3.4% less

negative than the DMC results of Ortiz and Ballone [135], and at ν = 6 were ∼ 3.1%

less negative than our DMC results. This represents a significant difference between

our and the STLS results when looking for the 1% range of validity, highlighting the

need for the more accurate DMC calculations. The range of validity at ±1 % up to at

least 24 flavours is to the high density side of the minimum in the total energy seen

in Fig. 3.2, but the minimum nmin ∝ ν8/5 lies within the region of validity for higher

ν. nmin is the density expected to be seen in physical systems such as electron-hole

drops, the good agreement of the theory with DMC results at this density indicates

that the theory could be usefully applied to investigate the properties of physical

systems, one example pursued in Chp. 2 [1] was the application to electron-hole
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Figure 3.2: The lower panel shows the
fractional difference of DMC interaction
energy EDMC from the model Eint with
MFEG density n (and Wigner-Seitz radius
rs) for different numbers of flavours, the
dotted lines show ±1% disagreement. The
central panel bars highlight the numerical
region of applicability, the gray shaded area
represents the analytically predicted region
of ±1% applicability. The upper panel shows
the total energy for 6, 12, 18 and 24 flavour
electron gases.
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3.4 Static density-density response

Having verified the homogeneous system behaviour we may now proceed and

computationally examine inhomogeneous behaviour through the static density-

density (linear) response function Eqn. (3.3). The polarisability is an important

quantity that was used in Chp. 2 [1] to develop both homogeneous theory and

the gradient correction, the density-density response function itself also governs the

electrical response properties, for example polarisation, screening, and behaviour in

an external potential; it is therefore useful to verify this response before applying

the theory to model systems. We examine 1/ǫ(q), the quantity that is probed

experimentally [140].

DMC has previously been used to find the static density-density response of

single-flavour systems: Sugiyama et al. [141] applied the method to charged bosons,

the density-density response of the electron gas was calculated by Moroni et al.
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[142] (in two dimensions), and Bowen et al. [143] and Moroni et al. [144] (three

dimensions). However, density-density response has not been studied numerically

in a many-flavour system. Here we employ two methods to find the density-density

response function. The more accurate and computationally efficient method of

calculating the response is to examine the ground state energy, calculated using

DMC. A VMC energy based estimate and an estimate using the induced electron

density are used to check the accuracy of the trial wave function.

Before the results are described in Sec. 3.4.3, we outline the theory behind the

two methods used to estimate the response, firstly in Sec. 3.4.1 by using the ground

state energy variation, and secondly in Sec. 3.4.2 through the magnitude of the

periodic density modulation.

3.4.1 Ground state energy variation

To calculate the density-density response we use a weak probe so that the density

response is solely due to the properties of the homogeneous system. We apply a

static (ω = 0) monochromatic perturbative external potential U(r) = Uq cos(q · r)
to the homogeneous MFEG, corresponding to the background charge having an

additional sinusoidal variation next(r) = nq cos(q · r). The external potential and

external charge are linked [141] through Poisson’s equation by

next(k) =
Uqq

2

8π
(δk,q + δk,−q) . (3.6)

We assume that different Fourier components are independent, the density response

to an external potential with wave vector q and frequency ω is only at that wave

vector and frequency so the induced charge is nind(k) =
(

〈n̂k〉Uq
− 〈n̂k〉0

)

(δk,q +

δk,−q). Here 〈n̂k〉Uq
is the expectation value of the charge density Fourier component

at wave vector k with an applied external potential Uq, and 〈n̂k〉0 is the same but in

the homogeneous case with no external potential. Linear response theory gives the

static density-density response function as the ratio of the induced charge density
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and the perturbing external charge density so

1

ǫ(q)
= 1 +

8π

Uqq2

(

〈n̂q〉Uq
− 〈n̂q〉0

)

. (3.7)

If the external potential is small relative to other typical energies the density response

is determined solely by the properties of the homogeneous MFEG. We can expand

in small Uq so that

〈n̂k〉Uq
− 〈n̂k〉0 ≈ Uq

d 〈n̂k〉
dUq

∣
∣
∣
∣
Uq=0

= Uq

d2E

dU2
q

∣
∣
∣
∣
Uq=0

, (3.8)

where the induced charge density is calculated by considering the dependence of the

ground state energy E on the magnitude of the external field. Substituting this into

Eqn. (3.7) gives an expression for the density-density response

1

ǫ(q)
= 1 +

8π

q2
d2E

dU2
q

∣
∣
∣
∣
Uq=0

. (3.9)

To recover the density-density response function at a particular wave vector,

several QMC calculations were performed at that wave vector for different

amplitudes of the external field. A polynomial fit was made to the ground state

energy so as to extract the second derivative. To investigate the lowest order

polarisability the applied external field should be as small as possible yet still give

statistically significant results, to ensure this we checked that the ground state energy

showed only quadratic behaviour with applied field amplitude. A further convenient

way to check the perturbing field is sufficiently small is to ensure the electric field

of the external potential is less than the typical electric field strength between two

neighbouring electrons, e/r2s .

3.4.2 Induced charge density measurement

As the external potential is perturbative we use the same plane-wave basis set as

employed for the calculations on the homogeneous MFEG described in Sec. 3.3. To

account for the modulating density, following Moroni et al. [142], Bowen et al. [143],

and Moroni et al. [144] we introduce a new q term into the Jastrow factor of the
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form

q(ri) = b cos(q · ri) , (3.10)

where b is an optimisable parameter, ri the position of the ith electron, and the wave

vector q corresponds to that of the perturbative external potential. As b is small, the

charge density induced by the perturbative external potential is nind ≈ 2b cos(q ·ri).
From Eqn. (3.6) and Eqn. (3.7) it follows that

1

ǫ(q)
= 1 +

8πb

q2Uq

. (3.11)

The optimised value of b was found by variance minimisation during a VMC

calculation. The relationship then allows us to derive an estimate for the density-

density response function for each separate Uq, typically four values were averaged

to give a final estimate for the density-density response.

3.4.3 Results

We chose to find the polarisability for a MFEG with ν = 24 and rs = 0.6a∗0. This lies

at the lower bound of the range of validity near to the minimum in the energy (see

Fig. 3.2) at a density expected to be seen in physical systems. This density was also

chosen since it had most of the polarisability curve 0.25 < 1/ǫ ≤ 1 in the region of

applicability q ≥ 2pF. Boundary conditions mean that the external potential must

be periodic over the simulation cell, therefore the external potential wave vector q

must be a reciprocal lattice vector. We checked that if the Jastrow factor q term

wave vector was changed so that it was incommensurate with the external potential

then following optimisation b = 0 within statistical errors; this verified the linear

response assumption that Fourier components are independent.

The results of the calculation are shown in Fig. 3.3. The DMC results obtained

by considering the variation in ground state energy (see Sec. 3.4.1) better fits the

exact than approximate expression for the polarisability, and though error bars are

large can distinguish between the two within one standard deviation. This shows

that QMC results can exceed the accuracy of the approximation made in Eqn. (3.3),
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Figure 3.3: The density-density response
1/ǫ versus the wave vector |q| of a MFEG
with ν = 24 and rs = 0.6a∗0. The
solid curve shows the exact result 1/ǫexact

(Eqn. (3.2)), the dotted curve the Eqn. (3.3)
approximation. The shaded grey region
|q|/2 < pF is where the many-flavour limit
breaks down. The points show the values
for the permittivity calculated from QMC
results, the circle is from charge modulated,
the triangle from VMC energy and the cross
from DMC energy. The lower panel plots
the actual response, the upper panel shows
the deviation of response from the exact
theoretical result Eqn. (3.2) with standard
error bars.
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though that estimate remains useful. The positive agreement verifies the theory and

confirms the accuracy of the CASINO simulations.

The ground state energies calculated by VMC were used in the same way as

the DMC results to find the density response and provide a reasonable fit, though

here error bars are large so comparison is difficult. Following the prescription in

Sec. 3.4.2 we also derived values for the density-density response function using

the charge density modulation at the wavelength of the perturbing potential, Uq.

These values agreed within statistics though carried a larger uncertainty than those

derived using the ground state energy. Both of these alternative methods appear to

underestimate the density-density response. These results are consistent, a smaller

charge density response gives a smaller coefficient in the Jastrow factor q term and a

smaller reduction in ground state energy. Nevertheless, the reasonable agreement of

both VMC estimates and to the DMC results indicates that the trial wave function

had an adequate nodal surface.
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3.5 Gradient correction

It was important to verify the density-density response as it is a key component to the

many-flavour formalism and could be applied to other many-flavour systems where

density is expected to be inhomogeneous, for example junctions and the response to

defects and impurities. Now that it has been verified, we may proceed to consider

a quantity derived from it: the gradient expansion, Eqn. (3.5), which is also useful

for analysing systems with inhomogeneous density. Once we have investigated the

validity of such an expansion we can apply the formalism to quantum dots, chosen

since they have a large controllable variation in electron density so should provide a

good test of the gradient expansion. Quantum dots are commonly made in many-

flavour semiconductor materials so can be modelled using a many-flavour formalism,

and are a system in which there is current research interest.

Quantum dots [145, 146] have not previously been studied in the many-flavour

limit though there have been several previous computational studies of a single-

flavour electron gas confined in a quantum dot. Previous QMC simulations of

quantum dots include Pollock and Koch [147], Harju et al. [148] performed VMC

calculations for parabolically confined electrons in circular dots. Bolton [149]

performed fixed-phase DMC simulations. Path-integral QMC calculations have also

been performed [150–152], these showed poor agreement with results from exact

diagonalisation [153]. Benedict et al. [154], Williamson et al. [155], Puzder et al. [156]

all compared the optical band-gap between DMC calculations and results from other

methods. For circular quantum dots Pederiva et al. [157] found the ground-state

using both DMC, a local spin density approximation method, and Hartree-Fock,

they then directly compared the ground-state energy, correlation energy, and spin

density profiles. Ghosal et al. [158] also used DMC to investigate circular quantum

dots. Quantum dots have successfully been investigated using DFT [157, 159–161],

Pederiva et al. [157] found the local spin density approximation method predicted

ground-state energies that were typically 2 % greater than DMC energies, Ferconi

and Vignale [159] obtained a 3 % agreement between current-density-functional

theory and exact diagonalisation results.
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3.5.1 Method

Before describing the study of quantum dots using a many-flavour functional in detail

we first outline the general strategy of the numerical calculations. Firstly, a DFT

calculation using the many-flavour functional (including the gradient approximation)

was performed using a plane-wave basis set. This produced an estimate of the

ground-state energy and density according to the many-flavour theory. It also

provided a trial wave function that was converted to a B-spline basis set and, with

Jastrow factor, was optimised in a VMC calculation, in preparation for a DMC

calculation. Finally, the DMC calculation gave a second estimate of the ground state

energy and density, exact only for the fixed node approximation. This estimate was

compared with the DFT calculation, and also gave an insight into the accuracy of

the many-flavour theory.

Here we carried out simulations on a quantum dot with a harmonic external

potential of the form V = kr2/2, where r is the distance to the centre of the

quantum dot containing a MFEG with 12 flavours. This potential was chosen

as it is simple, continuous, realistic [162, 163], and has been used in previous

computational studies [148, 157, 159–161, 164–166]. Filled shells in this potential

correspond to 1, 4, 10, 20, 35, . . . orbitals (whose degeneracy may be reduced by

electron-electron interactions). In DFT we used a supercell containing a single dot

to model the aperiodic system with periodic boundary conditions, in DMC non-

periodic calculations with just a single quantum dot were performed. The cubic cell

was large enough that the trial wave functions had reduced by at least a factor of

10−4 at its boundary.

Trial wave functions were generated using the DFT program 3Ddotdft, an

extended version of DOTDFT [167]; the background theory behind the algorithms

employed is described in App. A.5. The program used the many-flavour functional

with gradient approximation so had energy density

ε(n(r)) = −A3Dn
5/4 + ξ

|∇n|2
8n

. (3.12)

A new parameter ξ was introduced that multiplies the gradient term, which allowed
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us to adjust its size; ξ = 1 gives the correct analytical expression, and ξ = 0 the

functional without a gradient expansion.

The VMC simulations, run in CASINO, used a B-spline basis set [168, 169]

because a localised basis set offers significant performance advantages over plane-

waves. The wave function was optimised in VMC with a Jastrow factor containing

the two-body polynomial u term and two-body plane-wave term p with the same

form as used in Sec. 3.3 and Sec. 3.4, and a one-body electron-potential term

χ(ri) = F (ri)
∑6

m=2 βmr
m
i with F determining behaviour at the cutoff length, ri

the distance of the ith electron from the centre of the potential, and the βm being

optimisable parameters; we also note that the χ term has no central cusp.

The many-flavour functional incorrectly adds in the self-interaction energy of

each electron to its own Coulomb potential. One way to correct for this is to add

an additional term to the density functional [170, 171]. However, as the number

of flavours is increased the ratio of the correct interaction (∝ ν2) to incorrect

self-interaction (∝ ν) increases as ∼ 2ν − 1 so in the many-flavour limit the

self-interacting energy error may be neglected. To ensure the B-spline grid was

sufficiently fine, we compared the trial wave function kinetic and external potential

energy before and after conversion the B-spline basis set. We also checked the

choice of DMC time-step was sufficiently small, the number of configurations was

suitably large, and the simulation cell size was adequately large. On changing these

variables the variation in the ground state energy was ∆E ≈ 0.02E∗
h, sufficiently

small to allow us to compare the ground state energy as the potential strength and

gradient expansion coefficient were varied.

3.5.2 Results

We analysed a quantum dot containing a MFEG of 12 flavours and 4 bands (shells),

containing a total of 96 electrons. This was chosen since it had a full shell so is

expected to have a zero spin ground-state [146] that can be analysed with the many-

flavour functional, was computationally feasible, and contained enough electrons to

be in the LDA regime, where the many-flavour functional is expected to apply.

Two different investigations were carried out to probe effects of changing the
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Figure 3.4: In the upper plot the crosses
and solid line show the difference between
DFT (EDFT) and DMC (E) energies with
varying external potential strength k, if
agreement were exact, points would lie along
the horizontal dotted line. In the lower plot
the circles and solid line show the maximum
density gradient of the dots with varying k,
and the squares and dashed line the gradient
at which the theory breaks down.
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density gradient, firstly strength of the dot confining potential k was changed, and

secondly the gradient expansion coefficient ξ was varied.

Varying the external potential strength k

At the strong external potential k = 8, corresponding to steep gradients, Fig. 3.4

shows the DFT energy is overestimated compared with the DMC result, indicating

that the gradient approximation is not applicable and that the next order term

in a gradient expansion is negative. Fig. 3.5 shows that the DFT density profile

underestimates the true density towards the centre of the dot and overestimates

density in the outer regions, indicating that the DFT functional does not favour steep

enough gradients. This is consistent with the next term in the gradient expansion

being negative. The breakdown corresponds to a coefficient of α ≈ 1.8 in qmax =

α(~a
∗−1/4
0 )n1/4, close to the α ≈ 4 which corresponds to the maximum contribution

to the interacting energy.
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Figure 3.5: The lower panel shows the
density profile of quantum dots estimated
using both DFT and DMC at external
potential strengths of k = 1 and k = 8.
The difference between the DFT and DMC
results at k = 1 and k = 8 is shown in the
upper panel. The DMC statistical error is
less than the size of the points.

At the intermediate potential k = 1 the DFT and DMC estimates of energy and

the density profile agree, in this region the gradient approximation applies. The

DFT density profile shows a slight over-density at the centre, consistent with self-

interaction energy being included in the DFT calculation. At the weak potential

k = 0.1 electron densities are low meaning the homogeneous interacting energy is

outside of its region of applicability (see Fig. 3.2), therefore the DFT energy is an

overestimate.

Varying the gradient term coefficient ξ

Fig. 3.6 shows results of simulations on dots, chosen to have a potential strength k =

1, which is at the centre of agreement of the previous results. The best agreement

between the DFT and DMC ground state energy is at ξ ∼ 0.9. This is in good

agreement with the expected ξ = 1, the difference may be due to systematic errors

such as the self-interacting energy or higher order gradient terms. As expected,
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Figure 3.6: The upper panel shows, for
dots with external potential strength k = 1,
the density profile maximum gradient as a
function of ξ. The central panel shows the
variation of external potential DFT energy
based on the primary y-axis using square
points and the solid line, the secondary
y-axis shows electron-electron DFT energy
using crosses and the dashed line. The
lower panel solid line shows the variation
of DFT ground state energy with ξ, and
the horizontal dotted line the ground-state
energy predicted using DMC from the ξ = 1
trial wave function. The DMC statistical
error is less than the size of the points.
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the energy is overestimated for dots with too large a gradient expansion term, and

underestimated for dots with too small a gradient correction term.

The maximum gradient seen in the dot density profile decreases as ξ increases

(see Fig. 3.6). The dot becomes more spread out so the external energy Eext increases

whilst the total electron-electron Coulomb energy Ee-e decreases. Overall the total

DFT energy increases. Three quantum dot electron density profiles for gradient term

coefficients ξ = 1, 2, and 3 are shown in Fig. 3.7. Compared with the dot calculated

with ξ = 1, the dot generated with no energy penalty for gradients, ξ = 0, has a high

central and low outer density showing that it has a higher gradient in the density.

Conversely dot with increased energy cost for gradients, ξ = 2, has a more shallow

profile.

The density profiles seen in Fig. 3.5 and Fig. 3.7 can be further analysed in light

of other theoretical studies of quantum dots reviewed in Ref. [146]. The density

profile calculated using the many-flavour functional is not flat at the centre, but

instead has correlation-induced density inhomogeneity evidenced by a characteristic

minimum in the density at r ≈ 2a∗0. The intermediate density regime in which this

occurs is consistent with the strong correlations causing a minimum in the total
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Figure 3.7: The upper panel shows the
variation of the ξ = 0 (dotted line, squares)
and the ξ = 2 (dashed line, crosses) DFT
density profiles from the ξ = 1 DFT density
profile. The lower panel shows DFT density
profiles for ξ = 0, ξ = 1 (solid line,
triangles), and ξ = 2 in a k = 1 dot.

many-flavour energy density found in Chp. 2 [1]. It is also akin to the intermediate

density regime seen in other quantum dot systems [146, 152, 158, 172], in the high

density limit the quantum dot has properties like a Fermi liquid with de-localised

electrons [146, 152, 173], whereas in the low density limit the electrons become

crystalline [146, 150, 152, 174–176] inside the dot. As the many-flavour functional

was successful in predicting correlation-induced inhomogeneities, it could be used

to investigate other many-flavour quantum dot effects including the Kondo effect in

multi-valley semiconductors [177, 178], the reduction of valley degeneracy of coupled

quantum dots [179–181], and harmonically trapped cold atoms with an additional

quantum number denoting energy level [101–103, 182].

3.6 Conclusions

We have computationally verified the theory of the MFEG presented in Chp. 2 [1]

using QMC simulations. In a homogeneous system, DMC estimates for the ground
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state energy are consistent with theory and the theoretically estimated density range

over which the theory applies is consistent with numerical results. The applicable

density for Bi2Te3 (ν = 6) corresponds to a charge carrier density between 7 ×
1019cm−3 and 2× 1020cm−3.

The density response function for a MFEG with 24 flavours was found using three

methods: density modulation predicted by VMC, and the variation in ground state

energy predicted by VMC and also by DMC. The two VMC results underestimated

the response 1/ǫ, but the DMC results agreed with theory and could distinguish

between the exact and a useful approximate expression for polarisability.

We used a many-flavour functional including a local gradient approximation

in DFT calculations of large quantum dots. The DFT calculation estimated

the ground-state energy and wave function, which were verified by a DMC

calculation. We found the high gradient breakdown of the expansion was at

qmax ≈ 1.8(~a
∗−1/4
0 )n1/4, the low gradient breakdown was consistent with the

homogeneous MFEG lowest applicable density, and that the gradient expansion

was applicable in the intermediate regime. The many-flavour functional, used as

part of DFT calculations, could be a useful tool for analysing other multi-valley

semiconductor systems.



Part II

Strongly correlated phases in

atomic gases

In recent years a new way to study condensed matter physics has

come to the fore: an ultracold atomic gas. The atomic gas now

offers investigators an exquisite level of control over a many-body

system, which allows them to be used to not only unravel

long-standing mysteries in the solid state but also study

phenomena that could not be envisioned in the solid state. In

Chp. 4 we show how experimentalists could take advantage of this

unique opportunity to for the first time observe the

Fulde-Ferrel-Larkin-Ovchinnikov phase, we explore observable

collective modes in Chp. 5, and in Chp. 6 demonstrate how an

ultracold atomic gas could be used to shed new light on itinerant

ferromagnetism.
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Chapter Four

Superfluidity at the BEC-BCS

crossover in two-dimensional

Fermi gases with population

and mass imbalance

I
n this chapter we explore the zero temperature phase behaviour of a two-

dimensional two-component atomic Fermi gas with population and mass

imbalance in the regime of the BEC-BCS crossover. Working in the mean-field

approximation, we show that the normal and homogeneous balanced superfluid

phases are separated by an inhomogeneous superfluid phase of FFLO type. We

obtain an analytical expression for the line of continuous transitions separating the

normal and inhomogeneous FFLO phases. We further show that the transition

from the FFLO phase to the homogeneous balanced superfluid is discontinuous

leading to phase separation. If the species have different masses, the superfluid

phase is favoured when the lighter species is in excess. We explore the implications

of these findings for the properties of the two-component Fermi gas in the atomic

trap geometry. Finally, we compare and contrast our findings with the predicted

67



68 CHAPTER 4. FFLO INSTABILITY AT THE BEC-BCS CROSSOVER

phase behaviour of the electron-hole bilayer system.

The contents of this chapter draw upon the recent publication Conduit et al. [3].

4.1 Introduction

By controlling interaction through a magnetically-tuned Feshbach resonance,

ultracold atomic Fermi gases have provided a versatile arena in which to explore

pairing phenomena and superfluidity [37, 183, 184]. Already the crossover between

the BEC phase of strongly bound diatomic molecules to the BCS phase of weakly

bound Cooper pairs has been observed experimentally [183, 185–189]. In recent

years, much attention has been focused on the phase behaviour of two-component

Fermi gases with population imbalance [190–208], and generalised mass ratios

between different species [206, 209–216]. The symmetry breaking effect of population

and mass imbalance destabilises the condensate leading to an enriched phase

diagram characterised by tricritical point behaviour with first order transitions

separating normal and superfluid phases at low temperatures [217]. More detailed

studies have shown that, on the weak coupling side of the crossover, the transition

into a homogeneous superfluid phase at low temperatures is preempted by the

development of an inhomogeneous superfluid phase [190, 195, 199, 218–224]. This is

a manifestation of the FFLO phase predicted to occur in superconducting electron

systems subject to a Zeeman field [43, 44, 225]. In the three-dimensional system, the

FFLO phase is predicted to occupy only a small region of the phase diagram making

its experimental identification in the atomic trap geometry challenging. Indeed, even

in solid state systems, the FFLO phase has only recently been observed [226].

The potential for an FFLO instability at a single wave vector in a three-

dimensional ultracold atomic gas with only population imbalance was explored by

Hu and Liu [198] and Zhang and Duan [205]. They found a stable FFLO phase

only on the BCS side of the resonance. Additionally, Wu and Yip [227] showed the

three-dimensional system is unstable to FFLO superfluid currents, but these were

not found in the non-uniform three-dimensional trap experiments of Shin et al. [228].

Lately, efforts have been made to explore the effects of population imbalance

on pairing in two-component Fermi gases in two-dimensions. Although the phase



4.1. INTRODUCTION 69

diagram of the zero temperature system has been explored in the regime of BEC-

BCS crossover in the mean-field approximation [204], the potential for FFLO

phase formation has not yet been addressed. By contrast, motivated by potential

applications to strongly anisotropic layered systems, several theoretical studies

have explored the potential for superconducting FFLO phase formation in two-

dimensional electron systems [229–231]. A quasiclassical analysis by Combescot and

Mora [232], involving a GL expansion of the free energy in Fourier components of the

superconducting order parameter, found that the FFLO transition in two dimensions

was continuous at low temperatures. In a separate study of condensation in electron-

hole bilayers, Pieri et al. [230] argued that the FFLO phase can occupy a significant

part of the two-dimensional phase diagram. Motivated by these investigations, and

the potential impact on the atomic gas system, in the following we will investigate the

potential for FFLO phase formation in the two-dimensional two-component Fermi

gas addressing both population imbalance and generalised mass ratios.

In the context of ultracold atomic Fermi gases, a two-dimensional system can

be experimentally realized by confining the gas with a one-dimensional optical

lattice consisting of two counter-propagating laser beams [233–236]. These impose

a periodic potential, with antinodes spaced every half wavelength. The interwell

barrier energy, and therefore the tunnelling rate, depends on the laser intensity,

which should be chosen to be much higher than the species chemical potential and

the superfluid gap [237, 238]. This inhibits transfer of atoms between layers and

the Fermi gas separates into stacked quasi two-dimensional layers. The depth of

the optical potential can always be varied independently of the external harmonic

trapping potential and species chemical potentials so it should always be possible

to reduce the tunnelling rate sufficiently that the cold atom gas can be regarded

as being two-dimensional gas. Within a layer, the short-ranged interaction of the

atoms can be adjusted by exploiting a Feshbach resonance. It has been suggested

[239] that due to the possible formation of dressed molecules a single band theory

could incorrectly predict cloud size in the strong coupling limit. However, here

we are interested in the weak coupling limit and the behaviour at the BEC-BCS

crossover where we believe that a single band theory will encompass the essential
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behaviour allowing us to capture the qualitative phase structure.

Finally, further motivation for the investigation of superfluidity in the mass

imbalanced system comes from studies of exciton condensation in bilayer electron-

hole systems. In recent years, attempts to realize a condensed exciton phase

have focused on quantum well structures where electrons and holes are restricted

to neighbouring two-dimensional layers [229–231]. The range of the Coulomb

interaction between the particles can be shortened by introducing a screening

layer. As with the two-component Fermi gas, the electron-hole system affords the

possibility of tuning between a superfluid of tightly-bound pairs (excitons) to a

condensate phase of an electron-hole plasma. Moreover, while one can, in principle,

engineer a balanced electron-hole population, the effective masses of the electron

and hole quasi-particles in the semiconductor are typically quite different. In GaAs,

the ratio of the hole to electron mass is ca. mh/me = 4.3. Condensation phenomena

in mass imbalanced systems have also been explored in the context of quantum

chromodynamics, where the particles represent different species of quarks [240].

The remainder of the chapter is organised as follows: In Sec. 4.2 we begin

by deriving an expression for the thermodynamic potential in the mean-field

approximation for the two-component Fermi gas allowing for the development of

an inhomogeneous condensate phase. In Sec. 4.3 we use this result to elucidate the

zero-temperature phase diagram of the system for a uniform order parameter both

at fixed chemical potential and fixed number density. In Sec. 4.4 we explore the

tendency of the system to condense into an inhomogeneous superfluid phase. In

particular we combine the results of a GL expansion with the numerical analysis

of the thermodynamic potential to infer the region over which the inhomogeneous

phase persists. Finally, in Sec. 4.5, we examine the properties of the atomic Fermi

gas in the harmonic trap geometry, concluding our discussion in Sec. 4.6.

4.2 Mean-field theory

Our starting point is a two-component Fermi gas with each species indexed by a

pseudo-spin σ ∈ {↑ , ↓} ≡ {+1, − 1}. The single-particle dispersion ǫk,σ = k2/2mσ

depends on the different effective masses of the two species mσ, throughout we set
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~ = 1. Introducing the reduced mass, 1/mR = (1/m↑ + 1/m↓)/2 and the mass

ratio r = m↓/m↑ we have m↑ = mR(1 + 1/r)/2 and m↓ = mR(1 + r)/2. To enforce

a population imbalance, each species must be associated with its own chemical

potential, µσ = µ+σh. With these definitions, one may see that the phase diagram

of the system is symmetric under the transformation, (h,r) 7→ (−h,1/r).

In the following, we will focus on the zero temperature phase behaviour of the

system as predicted by mean-field theory. In doing so, we will miss non-perturbative

effects that appear at large mass ratios. In particular, when the ratio of masses is

greater than 13.6, it is known that, in three-dimensions, two heavy and one light

fermion can form a three-body weakly bound state [241–243]. Our analysis does not

include the possibility of such a state.

To explore the regime of BEC-BCS crossover, we will focus our attention

on a single-channel Hamiltonian describing a wide Feshbach resonance where the

closed channel population remains small throughout [205, 244, 245]. The quantum

partition function for the system can then be expressed as a functional field integral

over fermionic fields ψσ and ψ̄σ, Z =
∫

e−S[ψ̄,ψ]DψDψ̄ (for further details see

App. A.2), with the action

S
[
ψ,ψ̄

]
=

∫ β

0
dτ





′∑

k,σ

ψ̄k,σ (∂τ + ξk,σ)ψk,σ −
1

2

′∑

k,k′,q

ψ̄k,↑ψ̄q−k,↓Vk′−kψk′,↓ψq−k′,↑



 ,

(4.1)

where V denotes the two-body interaction potential, β = 1/kBT is the inverse

temperature, and the primed summation denotes a cutoff corresponding to the

length-scale of the contact potential, kc. Here, for brevity, we have set ξk,σ =

ǫk,σ − µσ. Anticipating the development of pair correlations, as expounded in

App. A.2.5 we introduce a Hubbard-Stratonovich decoupling of the interaction in

the Cooper channel, with Z =
∫

e−S[ψ,ψ̄,∆,∆̄]DψDψ̄D∆D∆̄, where the action now
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takes the form,

S
[
ψ,ψ̄,∆,∆̄

]
=

′∑

ω,k,k′

∆̄ω,k

(
V −1

)

k′−k
∆ω,k′

+
′∑

ω,k,q

(

ψ̄ω,q/2−k,↑ ψω,q/2+k,↓

)




−iω + ξk−q/2,↑ ∆0,q

∆̄0,q −iω − ξk+q/2,↓








ψω,q/2−k,↑

ψ̄ω,q/2+k,↓



 .

(4.2)

Anticipating that the transition to the Superfluid (SF) from the normal phase

is continuous (a property already established in the weak coupling limit of the

two-dimensional system by Combescot and Mora [232]), we will suppose that the

order parameter is characterised by a single plane-wave state corresponding to the

stationary saddle-point solution, ∆ω,q = ∆Qδq,Qδω,0 [198, 205, 246]. In this case,

Q = 0 describes the homogeneous SF state while, for Q 6= 0, the condensate is

of FFLO type. If the transition to the inhomogeneous phase is first order, the

single wave vector assumption necessitates some degree of approximation that will

underestimate the width of the FFLO region in the phase diagram.

Then, approximating the functional integral over fields ∆ by its mean-field

value, and taking the interaction to be contact, V (r) = gδ2(r), integration over

the fermionic fields gives the thermodynamic potential,

Ω =
|∆Q|2
g

+
′∑

k

(ξk,+ −
‡
︷︸︸︷

Ek )− 1

β
Tr ln

(

1 + e−β(Ek+σξk,−)
)

, (4.3)

where ξk,± = (ξk−Q/2,↑ ± ξk+Q/2,↓)/2, and Ek = (ξ2k,+ + |∆Q|2)1/2. From this

expression, one can obtain the polarisation or “magnetisation”,

m ≡ n↑ − n↓ = −dΩ/dh = nF (Ek − ξk,−)− nF (Ek + ξk,−) , (4.4)

and the total number density,

n ≡ n↑ + n↓ = −dΩ/dµ = 1 +
ξk,+
Ek

(nF (Ek − ξk,−) + nF (Ek + ξk,−)− 1) , (4.5)
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where nF(E) = 1/(1 + e−βE) denotes the Fermi function.

Finally, because of the issues outlined in App. A.7, to regularise the unphysical

Ultraviolet (UV) divergences associated with the δ-function form of contact

interaction (and contained within the term labelled by ‡ in Eqn. (4.3)), we will

set

1

g
=

∫ Ec

0

1

2E + Eb
dE . (4.6)

where Eb denotes the energy of the two-body bound state and Ec = k2
c/2m the

energy cutoff on the length-scale of the contact potential [204, 247]. Eb will then

be used as a control parameter to tune through the BEC-BCS crossover. As Eb is

increased, the system evolves continuously from the weak coupling BCS phase to

the strong coupling BEC phase of tightly-bound pairs.

Having obtained the thermodynamic potential in the mean-field approximation,

we now outline our strategy for calculating the zero temperature phase diagram.

As a platform to address the potential for inhomogeneous phase formation, in the

following section we begin by establishing the phase diagram associated with a

uniform order parameter, i.e. Q = 0. In this case, the integrations associated

with the thermodynamic potential Eqn. (4.3) can be evaluated analytically and

many key features of the generalised phase diagram understood. Then, in Sec. 4.4,

we return to the more general situation, exploring the capacity for inhomogeneous

phase formation. After confirming that, in the single wave vector approximation,

the transition to the SF phase is always continuous, we develop a GL expansion of

the action to determine the locus of the normal-FFLO phase boundary analytically.

Combining these results, we determine the phase diagram for a spatially uniform

system as a function of fixed chemical potential and, separately, as a function of

fixed particle number. Finally, in Sec. 4.5, we apply these results to the problem of

resonance superfluidity in the physically realizable harmonically trapped system.
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4.3 Uniform superfluid

In this section we focus on the phase diagram of a system in which the order

parameter is constrained to be uniform. At zero temperature, setting Q = 0,

the thermodynamic potential can be evaluated analytically for arbitrary population

imbalance and mass ratio,

2Ω

ν
= |∆0|2

[

ln

(√

µ2 + |∆0|2 − µ
Eb

)

− 1

2

]

− µ
(√

µ2 + |∆0|2 + µ
)

− θ
(
h′2 − |∆0|2

)
[

θ
(
µf −Rh′ − µc

)
(

2|h′|µc − |∆0|2 ln

∣
∣
∣
∣

µc + |h′|
µc − |h′|

∣
∣
∣
∣

)

+ θ
(
µc + µf −Rh′

)
θ
(
µc − µf +Rh′

)

×
(

|h′|(µc + 2µf)− µ
√

µ2 + |∆0|2 − |∆0|2 ln

∣
∣
∣
∣
∣

µc + |h′|
√

µ2 + |∆0|2 − µ

∣
∣
∣
∣
∣

+ sgn(h′)

(

R(µ2 − h′2) +
|∆0|2

2
ln(r)

))]

. (4.7)

Here θ denotes the Heaviside step function, ν = mR/2π the two-dimensional density

of states of the reduced mass system and, for clarity, we have defined the set of

parameters,

R ≡ r − 1

r + 1
, h′ ≡ h− µR√

1−R2
, µc ≡

√

h′2 − |∆0|2, µf ≡ µ
√

1−R2 . (4.8)

By minimising the thermodynamic potential with respect to ∆0, one obtains the

loci of phase boundaries shown in Table 4.1. When the mass ratio is unity (R = 0),

these results coincide with those obtained in Ref. [204]. In particular, one may note

that, in the SF phase, the order parameter takes the form

|∆0| =
√

Eb(2µ+ Eb) ,

implying a thermodynamic potential, Ω = −ν(µ + Eb/2)2, independent of the

chemical potential difference, h. As a result, one may infer that the magnetisation,

m = −dΩ/dh, is zero. For the uniform condensate, the SF phase always involves a

balanced population of fermions. Drawing on these results, let us now comment on

the implications for the phase diagram of the system for, respectively, fixed chemical



4.3. UNIFORM SUPERFLUID 75

Table 4.1: Summary detailing the loci of phase boundaries for µ/Eb as a function of h/Eb and
R = (r − 1)/(r + 1). Results labelled (⋆) are found in, and are relevant for, Sec. 4.4.

PP-FFLO⋆
1 + (h/Eb)R±

√

1 + 2(h/Eb)R−R2 − 2(h/Eb)R3

R2

FFLO-SF⋆ and PP-SF
1 + 2(h/Eb)R−R2 −

√

(1 −R2)(1 + 4(h/Eb)R)

2R2

FP-SF

√
2(h/Eb) +

√
1 −R√

2 − 2
√

1 −R
ZP-FP ±(h/Eb)

FP-FFLO⋆ and FP-PP ∓(h/Eb)
ZP-SF −1/2
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Figure 4.1: The phase diagram shown as a
function of (h/Eb, µ/Eb) for three different
values of the mass ratio, r. The diagrams
were constructed assuming a uniform order
parameter, neglecting the potential for in-
homogeneous phase formation. The solid
lines represent continuous phase boundaries,
while the dashed lines denote first order
transitions into the balanced SF phase.

potential and fixed particle number.

4.3.1 Fixed chemical potentials

When the chemical potentials, µ and h, are held constant, minimisation of the

thermodynamic potential leads to the phase diagram depicted in Fig. 4.1. The equal

mass case is consistent with the result of Tempere et al. [204]. For µ smaller than

either the molecular binding energy per particle, −Eb/2, or the chemical potential

shift associated with the majority species, −h, (corresponding to an empty Fermi

surface), the equilibrium phase hosts no particles (the Zero Particles (ZP) state).

On increasing the chemical potential, µ, a second order phase transition into either a

balanced SF, or a Fully Polarised (FP) normal phase occurs. The transfers from the

ZP phase to a FP normal phase, and from a FP phase to a Partially Polarised (PP)

normal phase are both continuous. The phases have boundaries where the Fermi
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Figure 4.2: The phase diagram as a
function of m/n and interaction strength,
Eb/EF, of the two-dimensional system with
fixed majority and minority particle den-
sities for three different mass ratios, r.
The SF phase (dotted line) is the line of
zero population imbalance. Between the
balanced SF and PP/FP phase (dashed line)
lies a region of phase separation (PS).
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surface shrinks to zero at µ = −h and µ = +h respectively (for h > 0). At fixed Eb,

an increase in chemical potential, µ, leads to an increase in the order parameter of

the balanced superfluid system, |∆0| ∝
√
µ, and an attendant increase in the critical

h required to destroy the condensate. The phase transition from the normal state,

both FP and PP, into the SF is first order.

As the ratio of masses is increased, as shown in Fig. 4.1 on the side r > 1, the

phase diagram becomes skewed. This can be understood by tracking the locus of the

line where the Fermi surfaces of the two species are perfectly matched, approximately

along the centre of the SF phase. The central superfluid locus is µ/h = 1/R, which

is consistent with the skew. Superfluidity is therefore more favourable if the “light”

species has a greater chemical potential than the “heavy” species.

4.3.2 Fixed number densities

In the canonical ensemble, where the number densities n and m are held constant,

the chemical potentials, µ and h, must be inferred self-consistently. In this case,

a first order transition in the (µ/Eb,h/Eb) phase diagram (Fig. 4.1) implies Phase

Separated (PS) [190] in the (n,m) phase diagram. At each point along the PP-SF

phase boundary in (µ/Eb,h/Eb) one can evaluate the corresponding polarisation

and total number density. From this result, one can infer the boundaries between
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the normal and phase separated regions as functions of Eb/EF and polarisation,

m/n. Here we have defined a “Fermi energy” scale EF = n/ν, where ν = mR/2π

denotes the constant two-dimensional density of states of the reduced mass system.

The resulting phase diagram is shown in Fig. 4.2.

As expected, in the BEC limit of large Eb/EF, one finds phase separation, with

the development of a condensate of tightly-bound molecular pairs coexisting with a

FP phase containing excess fermions. The phase diagram shows that this behaviour

persists into the weak coupling BCS limit, with the system phase separating into

a balanced SF phase (i.e. with m/n = 0), and the excess particles forming a non-

interacting PP Fermi gas. In the BCS limit of weak pairing, a small population

imbalance is sufficient to destroy pairing and enter the PP normal phase region.

When the species have unequal masses, the phase diagram is skewed, similar to

the fixed chemical potential case in Sec. 4.3.1. If there is a mass imbalance then the

Fermi energy of each spin species scales as EF,σ = nσ/νσ ≡ π(n+ σm)/mσ ∝ 1/mσ

implying that it is energetically more beneficial for the “heavy” rather than “light”

particles to be in the normal state. Therefore, at a given mass imbalance, the phase

diagram loses its symmetry in m/n and superfluidity is favoured if the “lighter”

species is in excess whereas the normal state is favoured if the “heavy” species is in

excess.

4.4 Inhomogeneous superfluid

With the properties of the uniform SF phase in place, we now turn to the question

of inhomogeneous phase formation. To characterise the nature of the PP-FFLO

transition, we adopt two methodologies: firstly, utilising the general phenomenology

of phase transitions described in App. A.3, in Sec. 4.4.1 we will develop a GL

expansion of the action to explore the locus of putative continuous transitions from

the normal PP phase into the inhomogeneous FFLO phase. Secondly, in Sec. 4.4.2,

we will assess the validity of the GL expansion by investigating the global minimum

of the thermodynamic potential for a mean-field order parameter field involving a

single wave vector. Using these results, we will infer the phase diagram of a system

with fixed chemical potentials in Sec. 4.4.3, and fixed particle densities in Sec. 4.4.4.
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4.4.1 Ginzburg-Landau theory

With the ansatz that the transition from the normal to condensed phase is

continuous, close to the transition we may expand the action in fluctuations, |∆q|.
In doing so, one obtains

Seff =
∑

q

αq|∆q|2 +O
(
|∆|4

)
, (4.9)

where

αq =
∑

k

(
1

2ǫk + Eb
−

1− n(ξk−q/2,↑)− n(ξk+q/2,↓)

ξk−q/2,↑ + ξk+q/2,↓

)

(4.10)

denotes the static pair susceptibility. The locus of continuous transitions may

be determined from the value of q at which αq is both minimised and passes

through zero. Within the condensed phase, higher order terms in ∆q determine

the crystalline structure of the FFLO state [248].

The corresponding phase boundary then translates to the largest allowable

chemical potential shift, h, which occurs when the Fermi surfaces just touch but

do not cross [232]. From this condition, one finds a phase boundary along the line,

h

Eb
=

(
µ

Eb
− 1

)

R±
√
(

2µ

Eb
− 1

)

(1−R2) . (4.11)

Minimising αq with respect to |q|, one obtains the further condition ǫq ≡
q2/(2mR) = 2Eb/(1 − R2). Measured in units of the Fermi momentum of the

reduced mass system, this translates to a wave vector,

|q|
kF

=

√

Eb

EF

(m↑ +m↓)

2mR
, (4.12)

where k2
F = 2mREF and, inverting Eqn. (4.11), Eb = µ−hR±

√

(µ2 − h2)(1−R2).

In the weak coupling limit, Eb ≪ EF, so that, at equal masses, Eb = h2/2µ giving

|q| = 2h/vF, where vF is the Fermi velocity, agreeing with the findings of Burkhardt

and Rainer [249], Shimahara [250], and Combescot and Mora [232]. In the same



4.4. INHOMOGENEOUS SUPERFLUID 79

-4.5 -4 -3.5 -3 -2.5 -2
4

6

8

0

0.05

0.1

0.15

0.2

|∆Q|/Eb

r = 1

-1.6 -1.4 -1.2 -1
4

6

8

0

0.05

0.1

0.15

0.2

|∆Q|/Eb

r = 2

h/Eb

µ/Eb

|∆Q|/Eb

h/Eb

µ/Eb

|∆Q|/Eb

Figure 4.3: Variation of the order pa-
rameter |∆Q|/Eb with chemical potential
difference, h/Eb, and chemical potential,
µ/Eb. The upper panel is at a mass ratio
r = 2, and the lower panel at equal masses,
r = 1. The thin black lines trace out
the |∆Q|/Eb variation, found by minimising
the thermodynamic potential Eqn. (4.3), for
several different chemical potentials. The
thick black line is the locus of the second
order transition predicted by GL theory.

limit, the pair susceptibility takes the form, ℜ(ln(1+
√

1− (|q|vF/2h)2)), collapsing

to that found in previous works.

4.4.2 FFLO instability phase boundaries

To assess whether the transition from the PP phase to the FFLO phase is really

continuous, one can instead minimise the thermodynamic potential Eqn. (4.3) with

respect to the wave vector Q and the mean-field value of the order parameter ∆Q.

For several values of chemical potential, µ, and two different mass ratios r = 1 and

r = 2, numerical minimisation of the thermodynamic potential confirms that the

order parameter changes continuously, falling to zero along a line of instability, see

Fig. 4.3. The locus of the transition also agrees with that obtained from the GL

expansion in Sec. 4.4.1. This result is in accord with that found in Ref. [232] in the

weak coupling limit of the equal mass system, and shows that the transition remains

continuous across the entire range of the FFLO phase.

We are now in a position to evaluate all phase boundaries associated with the

FFLO instability. The agreement described above between GL theory and direct

minimisation allows us to use the analytic GL boundary between the PP and

FFLO phases. The minimum in the thermodynamic potential that gives rise to

the FFLO phase is shallow relative to that of the SF phase. We are therefore able

to approximate the actual FFLO-SF phase boundary by the Q = 0 result for the
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Figure 4.4: The left-hand column shows the phase diagram in (µ/Eb,h/Eb) at three different
mass ratios r. The solid lines represent second order phase boundaries, the dashed line denotes
first order phase transitions into the balanced SF phase. The FFLO phase is highlighted in grey.
The trajectories followed in the sample traps in Sec. 4.5 are shown by thin dashed lines. The
central column of diagrams focus more closely on the topology of the phase diagram close to the
tricritical point region for h/Eb < 0. Thermodynamic potential surfaces are shown in the right-hand
column; the darker the more negative and so more favourable; label (a) is a PP normal state, (b) a
FFLO state, (c) a SF state, and (d) a FP state. Different plots have different shading calibrations,
(unequally spaced) contour lines are also shown.

PP-SF boundary described in Sec. 4.3. A summary of the phase boundaries is shown

in Table 4.1, the additional boundaries due to the presence of the FFLO phase are

labelled (⋆). As the extent of the SF region is only reduced by the presence of the

FFLO phase, the SF is balanced, as was shown for the Q = 0 study in Sec. 4.3.

4.4.3 Fixed chemical potentials

Let us now apply these results to the problem of a uniform system with constant

chemical potentials. The corresponding phase diagram is shown in Fig. 4.4. While

the general topology of the phase diagram mirrors that discussed in Sec. 4.3.1,

the transition to the balanced SF phase is preempted by the formation of an

inhomogeneous FFLO phase. The FFLO instability occurs mainly on the PP side

of the PP-SF phase boundary of the uniform condensate shown in Fig. 4.1 with just

a small intrusion on the balanced SF side. The FFLO instability does not occur

within the FP state as there are no minority state particles with which to pair. The

FFLO-PP boundary is second order, while the FFLO-SF boundary is first order.
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The FFLO-PP phase boundary terminates at the SF phase for small mass ratios

and at the FP phase for large mass ratios on the side of the majority “heavy”

species. The movement of the boundary terminus with increasing mass ratio r is in

the opposite direction on the majority “light” species side – it moves further up the

SF phase boundary. The special mass ratio where it terminates at the SF-FP phase

boundary on the majority “heavy” species side is at rc = (1 +
√

5)/2.

The thermodynamic potential variation is also shown in Fig. 4.4 at four different

points (a), (b), (c), (d) for r = 1. Since the wave vector dependence of the

thermodynamic potential enters through the order parameter, in both the PP (a)

and FP (d) normal phases the minimum is |Q|-independent. At the highlighted

FFLO phase point (b), the global minimum lies at |∆Q| ≈ 0.2Eb with |Q| ≈
2
√
mREb, while a local minimum also develops at |∆Q| ≈ 3.8Eb with |Q| = 0

corresponding to the putative uniform SF phase. At the highlighted SF point (c),

the global minimum lies at |∆Q| ≈ 3.8Eb and |Q| = 0.

4.4.4 Fixed number densities

Let us now address the implications of the phase diagram for a spatially uniform

system held at fixed number densities. Obtaining the corresponding density, n,

and magnetisation, m, gives the phase diagram shown in Fig. 4.5. Once again,

the topology of the phase diagram mirrors that discussed for the homogeneous

condensate in Sec. 4.3.2. However, between the phase separated SF phase and

normal phase, the system exhibits an inhomogeneous FFLO phase over a wide region

of the phase diagram.

In the weak coupling BCS limit, even a small population imbalance is sufficient

to enter the FFLO phase region. We note that in a population balanced system

the Fermi momenta of the populations are equal so no shift of the Fermi surfaces is

required to form Cooper pairs and a modulated phase is not seen.

The effects of the moving PP-FFLO phase boundary terminus, described in

Sec. 4.4.3, are also apparent. For equal masses, the FFLO phase never meets the

FP normal state. For mass ratios in excess of rc = (1 +
√

5)/2, the FFLO phase

meets the FP state on the majority “heavy” species side, but is further from the
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Figure 4.5: The phase diagram in
(m/n,Eb/EF) of the two-dimensional sys-
tem with fixed majority and minority par-
ticle densities for three different mass ratios
r. The SF phase (dotted line) is represented
by the line of zero population imbalance
m/n = 0. The PP phase is separated from
the FFLO phase (highlighted in grey) by a
second order phase boundary (solid line).
In the PS region bordered by the dashed
line, the system separates into a balanced SF
and either a normal phase or, depending on
the composition, an inhomogeneous FFLO
phase. The right-hand column of graphs
focus on the terminus of the PP-FFLO
phase boundary on the side of negative
polarisation for the three featured mass
ratios.

FP state on the “light” species side. For high mass ratios, this is evidenced by the

much broader FFLO region on the heavy species side.

To conclude this section, it is interesting to compare the phase diagram of

the ultracold atom system with contact interaction and the problem of electron-

hole bilayers with long-ranged Coulomb interaction. In particular, we focus our

discussion on the study in Ref. [230] of Gallium(III) Arsenide (GaAs) bilayers where

the mass ratio r = 4.3. In this case, it is more natural to characterise the strength

of interaction by rs = r0/a0, where r0 = 1/
√
πn denotes the interparticle spacing,

and a0 is the effective Bohr radius of the two-body bound state. The latter is

related to the dimensionless ratio Eb/EF through the relation, Eb/EF = 0.381r2s .

As a result, we find that the system enters the BCS phase with the appearance

of FFLO phase behaviour for rs values of ca. 1.5 (4) compared with that found

for the unscreened electron-hole bilayer of rs ∼ 1.5 (16) for the “light” (“heavy”)

species. More qualitatively, in both cases, the systems show a preference towards

the superfluid phase when the “light” species is in excess, and the normal phase

when the “heavy” species is in excess. Although the topology of the phase diagram

is quantitatively the same, two significant differences appear. The first is that, with

the electron-hole bilayer, the FFLO-SF phase boundary on the “heavy” species side

penetrates further into the BEC regime than in the ultracold atomic gas. The second

difference is that, with the electron-hole bilayer, the FFLO region existed from the
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Figure 4.6: Radial density profiles of four systems in identical harmonic traps with different values
of population imbalance, h, and mass ratio, r. The solid line shows the radial density based on
the primary y-axis. The dashed line shows the local population imbalance based on the secondary
y-axis. The band shows where different phases exist with colours labelled on the right-hand side of
the figure. With changing radial coordinate, the separate panels are associated with the trajectories
highlighted in the (h/Eb,µ/Eb) phase diagram shown in Fig. 4.4.

normal phase to m = 0, and no phase separation between FFLO and SF was seen,

except for the deep in the BEC regime. However in the ultracold atomic gas, phase

separation of the SF was seen into a balanced SF and a FFLO phase. Both of these

differences indicate that, with the electron-hole bilayer, the FFLO phase was more

stable relative to the SF than in the ultracold atomic gas. This could be due to the

long-range forces that act in the electron-hole bilayer whereas the ultracold atomic

gas experiences only contact forces that would favour formation of tightly-bound

BEC pairs.

4.5 Harmonically trapped system

Finally, focusing on applications to ultracold atomic gases, we now address the

influence of the trap geometry on the phase behaviour. Here we make use of the

local density approximation in which the chemical potential of both species, µσ(R) =

µσ−V (R), are renormalised by the same local trapping potential V (R), the chemical

potential difference, h, remains fixed across the trap. Moreover, we further assume

that the spatial coordinates are rescaled to ensure a spherically symmetric trapping

potential, V (R) = ωR2/2. Although there is some experimental evidence [251, 252]

that the local density approximation might not be valid [196, 253] in some setups, we

believe that its application here will correctly address the qualitative phase structure.

To identify the phases present, one may consider a trajectory of changing µ with

constant h and r in the phase diagram of fixed chemical potentials. To find the total
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magnetisation and number of particles in the trap, one may make use of the local

relations m = −dΩ/dh (Eqn. (4.4)) and n = −dΩ/dµ (Eqn. (4.5)) respectively, and

then integrate over the trap. All trajectories will end up, at large enough radius, in

the ZP regime, which is the edge of the particle distribution.

The profiles in four sample traps are shown in Fig. 4.6, which follow trajectories

highlighted in Fig. 4.4. The first three have species with equal masses, r = 1. At zero

population imbalance only the SF state is observed. With a population imbalance,

firstly there is a central balanced SF region surrounded by a ring of FP majority spin

particles. On increasing the population imbalance yet further, between the ring of

FP particles and the central SF, an FFLO instability adjacent to a PP region is seen.

The first order transition between the SF and FFLO region (and FP state) leads to

a discontinuity in density and polarisation. The second order transitions between

FFLO, PP and FP states have continuous variation of density and polarisability but

discontinuous changes in their gradients.

The final profile in Fig. 4.6 is at an unequal mass ratio, r = 4. The inclusion of

mass imbalance causes the SF region in Fig. 4.4 to be biased towards the “lighter”

species. This means that it is possible to have a ring of superfluidity remote from

the trap centre, or an isolated ring of FFLO instability not at the centre and no

accompanying SF region. When there are two rings of normal phase bounding the

SF they may either both be the “heavy” particle normal phase if we are crossing the

extrusion of the FFLO phase, or alternatively one might be “light” and the other

“heavy” if traversing right across the skewed SF phase. In the latter case, shown

in Fig. 4.6, the species favoured by the chemical potential shift dominates at the

outside of the trap. At the centre of the trap, the normal state is of the “heavy”

species as superfluidity favours the “lighter” species.

4.6 Conclusions

We have derived an analytic expression for the thermodynamic potential of a two-

dimensional two-component atomic Fermi gas in the mean-field approximation with

population imbalance and general mass ratio at zero temperature. A complementary

GL analysis was used to examine the PP-FFLO transition. Analytical expressions
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for the phase boundaries separating normal and inhomogeneous superfluid phases

have been obtained while the properties of the FFLO phase have been addressed

numerically. Within the mean-field approximation, the SF phase does not sustain

a population imbalance. The region of FFLO instability exhibits a second order

phase transition from the PP normal phase, and first order phase transition into

the balanced SF. In the BCS limit, a small population imbalance is sufficient to

destroy pairing. In the BEC limit, there is phase separation between tightly-bound

molecules and a FP normal phase. If there is a mass imbalance, the SF phase

is favoured if the majority particles are the “lighter” species, while the polarised

normal state is favoured if the “heavy” species are in excess.

A trapped geometry leads to a rich range of possible density profiles. If there is

no mass imbalance, a SF phase is seen at the trap centre surrounded by a PP followed

by a FP normal phase of the majority spin species. If there is mass imbalance, then

a ring of the SF and/or the FFLO state could be seen bordered both inside and

outside by either species of normal phase particles.





Chapter Five

Collective modes of a

two-dimensional superfluid

Fermi gases with population

and mass imbalance

I
n this chapter we study the superfluid collective mode spectrum across the BEC-

BCS crossover for a two-dimensional fermionic gas at zero temperature. We allow

for the possibility of both a population and a mass imbalance between the species.

The linear behaviour of the collective mode spectrum persisted from the BCS regime

down to unitarity. We carefully studied a pronounced anticrossing of the collective

mode spectrum with the continuum of single fermionic excitations that gave rise to

a significant plateau in the BCS regime. Using the collective mode dispersion we

determined that the Landau critical velocity has a sharp maximum near to unitarity,

and we also examined the healing length.

87
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5.1 Introduction

Ultracold atomic Fermi gases now provide investigators with an unprecedented level

of control over a many-body system. By tuning the atoms through a Feshbach

resonance the interaction strength between atoms can be controlled right across

the spectrum of strongly attractive to repulsive, providing a window to explore the

crossover from the BEC phase of strongly bound diatomic molecules to the BCS

phase of weakly bound Cooper pairs [37, 183–189]. One facet of the exquisite level

of control is the ability to investigate physics in reduced dimensions, for example,

counter-propagating laser beams [233–236] can be used to set up a periodic potential

with antinodes spaced every half wavelength. These provide barriers between the

stacked two-dimensional layers of ultracold atomic gases whose inter-layer tunnelling

rate is prohibited [237, 238] by the strong optical potential. In this chapter we focus

on the properties of such a trapped two-dimensional ultracold atomic gas.

One unique possibility offered by two-component ultracold atom gases is the

opportunity to study the consequences of either a mass ratio between the two

species [206, 209–214, 254, 255] or a population imbalance [190–208]. These two

parameters provide a powerful handle to enrich the phase diagram, leading to the

emergence of a tricritical point separating the normal and superfluid phase [217].

Just as a magnetic field in a solid can cause a mismatch between the electron Fermi

surfaces, a mass ratio or population imbalance can result in a disparity that can

drive the system into the textured FFLO phase that was described in Chp. 4 [3].

Collective modes offer a macroscopic window into the microscopic details of the

BEC-BCS crossover. The dispersion profile observed reflects fundamental properties

of the microscopic physics, but should be more readily accessible to experiment than

single particle excitations. In this chapter, we transcend the BEC-BCS crossover

and focus on how the Bogoliubov collective mode, the elementary excitation of

BEC state, transforms into the Anderson-Bogoliubov mode in the BCS state.

Although the phase diagram of the zero temperature system has been explored

in the regime of BEC-BCS crossover in the mean-field approximation [3, 204], the

potential for collective modes has only been considered in three-dimensions with

equal populations and equal species masses [256] or with a mass imbalance [257];
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here we present a detailed analysis of the collective modes in a two-dimensional

atomic gas with population and mass imbalance.

Our analysis of the collective mode spectrum invokes dynamical BCS theory.

This model well describes the physics either side of the crossover [256] and has been

extensively used in the literature in partial studies of collective modes [258–262], as

well as the three-dimensional study of collective modes by Combescot et al. [256].

Although at unitarity it is considered as an interpolation model, it provides a firm

base to build on and should be trusted qualitatively at the crossover. One further

obstacle is the potential formation of dressed molecules that could [239] lead to

quantitatively wrong results, however, we are interested primarily in the behaviour at

the BEC-BCS crossover where we believe the single band theory should capture the

qualitative collective mode dispersion relationship. The remainder of this chapter

is organised as follows: We introduce the formalism to analyse collective modes in

Sec. 5.2, and in Sec. 5.3 we present the collective modes spectra and consider the

critical velocity. Finally, we conclude our discussion in Sec. 5.4.

5.2 Formalism

A two-component atomic Fermi gas contains two atomic species that are indexed by

the pseudo-spin σ ∈ {↑ , ↓} ≡ {+1,−1}. In general the species with differing masses

mσ have a ratio of masses r = m↓/m↑, and we use 1/m = (1/m↑+1/m↓)/2 to denote

the reduced mass. Additionally, the atomic gas can sustain a population imbalance

with each species having a separate chemical potential µσ = µ + σh. A Feshbach

resonance can be used to tune the attractive contact interaction of strength g that

acts between a pair of opposite spin fermions. The interaction strength can be related

to the binding energy Eb of a pair by 1/g =
∫∞
0 (2E+Eb)

−1dE. The binding energy

Eb itself can be re-expressed in terms of the natural experimental parameter to

describe the interaction, the three-dimensional scattering length a (for further details

see App. A.1), using the relation [204, 263] Eb = 0.291~ωL exp(
√

2πl/a) where

ωL =
√

8π2V0/mλ2, l =
√

~/mωL, and λ is the periodicity of the laser potential

confining the atomic gas to two dimensions, which has depth V0. Throughout the

remainder of this chapter we adopt the atomic units ~ = kB = 1.
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5.2.1 Collective mode dispersion

Our starting point is the single-channel Hamiltonian that describes a wide Feshbach

resonance. Deploying the formalism outlined in App. A.2, we write the quantum

partition function as a functional field integral over the fermionic fields ψσ and ψ̄σ,

Z =
∫

e−S[ψ̄,ψ]DψDψ̄, with the action

S[ψ̄,ψ] =

∫ β

0
dτ




∑

k,σ

ψ̄k,σ (∂τ + ξk,σ)ψk,σ −
g

2

∑

k,q

ψ̄k,↑ψ̄q−k,↓ψk,↓ψq−k,↑



 , (5.1)

where β = 1/kBT is the inverse temperature and we have set ξσk = k2/mσ − µσ.
Anticipating the condensation of Cooper pairs, following the prescription laid out in

App. A.2.5 we decouple the quartic interaction term in the Hubbard-Stratonovich

channel with the bosonic field ∆. To study the collective modes of the system

we consider the response function for a perturbation to the mean-field BCS gap

parameter ∆ = ∆0 + δ, where ∆0 =
√

Eb(2µ+ Eb) is the mean-field solution in the

superfluid phase derived in Chp. 4 [3] and δ represents the collective mode under

consideration. The dispersion relation for the collective mode is the frequency Ω and

momentum q where the coefficient of δ2 in the action first changes sign. Following

functional integration over the fermionic variables we obtain the action

S =
β

g

(
|∆0|2 + Tr |δ|2

)
− 1

2
Tr ln

(

Ĝ
−1 + δ̂

)

, (5.2)

where the Bogoliubov Green function is defined as

G
−1(k± q/2) =




F ↑
± ∆0

∆0 F ↓
±



 , (5.3)

with the components F ↑
± = iω ± Ω/2 + ξ↑

k±q/2 and F ↓
± = iω ± Ω/2 − ξ↓

k±q/2. The

action is then expanded to second order in the collective mode δ to give the action

S =
β|∆0|2
g

+
β

2
Tr



δ̄





1
g +N+F

↓
+N−F

↑
− N+∆N−∆

N+∆N−∆ 1
g +N+F

↑
+N−F

↓
−



 δ



 , (5.4)
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where we introduce the normalisation stemming from the inversion of the Green

function denoted by N± = (F ↑
±F

↓
± − |∆0|2)−1. The action now needs to be

diagonalised in order to determine the eigenvalues, we focus here on the lowest

eigenvalue which corresponds to the collective mode Ω(q) that emerges when

the eigenvalue changes sign. To numerically determine the bands we follow the

prescription of first finding the matrix elements for a given Ω and q, diagonalise to

recover the eigenvalues, and then refine our choice of Ω until that eigenvalue is zero

which yields the collective mode frequency.

Having formally calculated the collective mode spectrum we now outline our

strategy to analyse it. Firstly, we consider the low energy limit and derive the linear

dispersion relation for the sound velocity in Sec. 5.2.2. Secondly, in Sec. 5.2.3 using

the formalism above we derive analytical expressions for an upper bound on the

spectrum corresponding to the destruction of pairs. We then verify that these are in

close agreement with the numerical calculation of the collective mode spectrum, and

analyse its mass ratio, population imbalance, and interaction strength dependence

in Sec. 5.3.1. Finally, in Sec. 5.3.2 we use our collective mode spectra to calculate

the superfluid critical velocity and healing length.

5.2.2 Sound velocity

At low energy the collective modes spectrum is linear, whose gradient corresponds

to the velocity of sound propagation in the superfluid. Previous studies of the sound

velocity [8, 16, 264] focused on the equal mass and population case, or just mass

imbalance [257] in three dimensions; here we aim to expand to generalised mass

ratio and population imbalance in two dimensions. At low energy the collective

modes manifest themselves through a spatially changing phase θ of the order

parameter ∆(r) = ∆0e
2iθ(r,t) and ∆(r) = ∆0e

−2iθ(r,t). To examine the properties

of these Goldstone mode degrees of freedom we follow the established method

outlined by Nagaosa [16] and impose a gauge transformation of the Grassmann fields

ψ′
σ(r) = ψσ(r)e

iθ(r,t) and ψ
′
σ(r) = ψσ(r)e

−iθ(r,t) that renders the gap parameter

uniform and time independent. To address the excitations we aim to develop an

expansion of the form S = S1(∇θ)2 + S2(∂tθ)
2. The spatial gradient term appears
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to quadratic order inside the logarithm in Eqn. (5.2) so only needs to be expanded

to first order; this term will therefore be preceeded by a Green function that gives

the total density of particles, and therefore yields S1 = 2µ + Eb. The temporal

term however appears to just first order inside the logarithm that therefore needs

to be expanded to second order, so the temporal term is preceeded by two Green

functions. Separate approximations in either the BEC or BCS limit yield the same

expression for S2 = m↑ + m↓. Therefore, the linear collective mode spectrum

is Ω = q
√

(2µ+ Eb)/(m↓ +m↑). In the BEC limit this physically reflects that

the particles are tightly bound so that their dynamics depends only on their total

mass, whereas in the BCS limit the particles are weakly bound and their velocity is

separable v =
√
v↑v↓ into the velocities of a homogeneous gas of just up-spin mass

particles v↑ and down spin v↓ [257]. The dispersion profile should follow the linear

dispersion calculated in this section until we approach the single particle excitation

threshold.

5.2.3 Fermion excitation threshold

Having considered the low momentum limit for the spectrum, we now focus on the

complementary high energy limit. Rather than propagating sound, the pairs now

break apart and two single fermions are excited that escape separately. This process

will place an upper bound on the collective mode spectrum, which approaches that

bound at high momentum and correspondingly high energy. In order to derive the

threshold for excitation of single fermions we follow the method of Combescot et al.

[256] and search for the first emergence if a singularity in the action Eqn. (5.4). We

find that, after the summation over Matsubara frequencies, the singularity is at

Ω =

√
√
√
√
√




ξ↑
k+q/2 + ξ↓

k+q/2

2





2

+ ∆2 +

√
√
√
√
√




ξ↑
k−q/2 + ξ↓

k−q/2

2





2

+ ∆2

+
ξ↑
k−q/2 + ξ↓

k+q/2 − ξ
↑
k+q/2 − ξ

↓
k−q/2

2
. (5.5)

In calculating this expression the chemical potential shifts h appear in tandem

so always cancel, therefore the excitation threshold is independent of population
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imbalance. The singularity first emerges where Ω is minimised with respect to k.

Though this cannot be found in general, three limits are tractable:

Balanced masses: The minimum is at k = 0 which gives the threshold in

agreement with Ref. [256], Ω = 2
√

(q2/8m− µ)2 + |∆0|2.

Large momentum limit: When q2/8m ≫ |∆0| the minimum is at k = q(r −
1)/[2(r + 1)]. Deep in the BEC limit the two particles have momenta q↑ =

q/(1 + r) and q↓ = q/(1 + 1/r) which, as they are free particles have the

dispersion Ω = q2/[m(1 + r)(1 + 1/r)]− µ.

Zero momentum: If q = 0 then the minimum occurs at k = 0 and Ω =

2
√

µ2 + ∆2 = 2(µ + Eb). This is independent of the mass ratio since it

corresponds to the energy to just overcome the binding energy and then leave

the two remnant atoms stationary.

5.3 Results

We now put the general numerical (Sec. 5.2.1), sound velocity (Sec. 5.2.2), and the

excitation threshold (Sec. 5.2.3) results together to firstly calculate the collective

modes spectrum, and secondly examine the critical velocity of the system.

5.3.1 Collective modes

The collective modes spectra shown in Fig. 5.1 are split into three classes, namely

the BCS limit where Eb ≪ µ, the BEC limit at which Eb ≫ µ, and the intermediate

unitarity regime at Eb ≈ 2µ [204, 247] which we describe separately below. In our

discussion firstly we make contact with the three-dimensional analysis [256, 257] by

considering equal masses and no population imbalance, and then turn to the general

two-dimensional case with a general mass ratio and/or population imbalance.

Weak coupling BCS regime: In the limit q ≪ √
m(µ + Eb)/

√

µ+ Eb/2 the

spectrum has an extended linear regime with the gradient being determined

by the sound velocity
√

(µ+ Eb/2)/m. Then at q =
√
m(µ+Eb)/

√

µ+ Eb/2

where the linear spectrum would cross the pair breaking continuum the
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Figure 5.1: The collective modes spectra are shown by the solid lines, the asymptotic limits
of the linear sound velocity and free particle kinetic energy are denoted by the dotted lines, and
the upperbound imposed by the pair-breaking continuum by the dashed line. The variation with
chemical potential imbalance h is not explicitly shown as the superfluid was always balanced.

dispersion curves over to a flat plateau with Ω = 2(µ + Eb). This situation

is analogous to an anti-crossing in a two level system, with the collective

mode being one level, and the pair breaking continuum the second level.

This dispersion is unique to cold atomic gases, in superfluid Helium-3 (
3
He)

hard core repulsion between
3
He atoms means that the sound velocity is

faster and the mode merges into the pair-breaking continuum, whereas,

in a superconductor the collective mode frequency merges into the plasma

frequency as electrons carry charge. The plateau in the dispersion is

maintained until it meets the free kinetic energy of two remnant fermions

at q = [2m(1 + r)(1 + 1/r)(µ+Eb/2)]1/2 when the dispersion curves upwards

corresponding to the free kinetic energy Ω = q2/[m(1 + r)(1 + 1/r)].

Collective mode at unitarity: At unitarity, similar to the BCS limit, the

spectrum is linear until it comes into the vicinity of the pair breaking
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continuum. The dispersion then displays behaviour analogous to two level

anti-crossing, though the horizontal plateau is less pronounced than in the BCS

regime. At very large momentum the dispersion curves upwards corresponding

to the kinetic energy of the two remnant particles.

BEC limit: In this limit the two crossover momenta derived in the BCS regime,

from linear to plateau, and plateau to free particle coincide (for equal mass

ratios) at q ∼ 2
√

2mEb. The horizontal plateau in the dispersion profile is

therefore lost and we recover the clean Bogoliubov behaviour [8, 16, 264] of

linear sound
√

(µ+ Eb/2)/m at low momenta and free particle Ω = q2/[m(1+

r)(1 + 1/r)] at high momentum.

Mass ratio: Though the plateau threshold energy Ω = 2(µ + Eb) is independent

of mass ratio, both the sound velocity and the free particle kinetic energy

Ω = q2/[m(1 + r)(1 + 1/r)] do depend on the ratio of masses. Therefore, the

flat plateau shifts to higher momentum q with increasing mass ratio since the

sound velocity decreases and the heavier particle can carry the majority of the

momentum with relatively small kinetic energy cost.

Population imbalance: As shown in Chp. 4 [3] the superfluid is always balanced

so the introduction of chemical potential shift does not alter the collective

modes dispersion.

5.3.2 Critical velocity

The critical velocity of a superfluid is given by Landau’s criterion, vc = min(Ω(q)/q).

There are two sorts of excitations in the system that could give the minimum in

Ω(q)/q: the bosonic collective modes (analysed in Sec. 5.2.2), and secondly fermionic

pair breaking (studied in Sec. 5.2.3). If the dispersion relation always has an upwards

curvature, reminiscent of the Bogoliubov dispersion relation, then the minimum of

ω(q)/q is given at q → 0 by the sound velocity
√

(2µ+ Eb)/(m↑ +m↓). However,

in the BCS limit the single fermionic particle excitations produce the horizontal

anticrossing feature of the spectrum which can result in a lower minimum of Ω(q)/q,

approximately at the high momentum end of that horizontal plateau. The critical
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Figure 5.2: The critical superfluid velocity
vc for r = 1 is shown by the solid line, and
for r = 4 by the dashed line as a function
of µ/Eb. The inset graph shows the healing
length given by the critical velocity (solid
line for r = 1 and dashed line for r = 4).
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velocity at two different mass ratios is highlighted in Fig. 5.2. In the BEC limit the

critical velocity depends only on total mass, but on passing through unitarity into

the BCS limit the critical velocity falls with an increasing ratio of masses. This is

because the heavier particle of the pair can carry the majority of the momentum

with relatively little kinetic energy cost so the pair-breaking continuum occurs at

higher momentum, extending the range of the horizontal plateau. Near unitarity the

critical velocity has a maximum, as it switches from bosonic to fermionic excitations.

We also examined the quantity ξ = 1/mvc [256, 265]. Physically it is the healing

length in the BEC limit, and in the BCS limit is the coherence length that sets the

size of Cooper pairs. Near unitarity the healing length sets the core size of quantised

vortices. As ξ = 1/mvc it displays the same physical behaviour as has already been

discussed for the critical velocity.

5.4 Summary and discussion

In this chapter we have investigated the collective modes across the BEC-BCS

crossover for a fermionic ultracold atomic gas held at zero temperature. In the BEC

limit we found good agreement with the Bogoliubov dispersion which depended on

the total mass of a pair, and in the BCS regime an extended linear region, which

increased with a ratio of masses. This was ascribed to the heavier particle carrying

the majority of the momentum with relatively little energy cost. The critical velocity
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fell with mass ratio both in the BEC and the BCS regime.

Our investigation has uncovered qualitative behaviour that merits both further

theoretical investigation and experimental verification. One particularly interesting

facet is the interaction between the collective mode and excitation continuum,

analogous to anti-crossing in two-level systems. This behaviour occurs mainly on

the BCS side though it continues slightly beyond unitarity on the BEC side which

might provide a useful probe into molecule formation at the crossover. Finally, we

assembled our results to recover the Landau critical velocity which was found to have

a pronounced maximum near to unitarity. This feature should be experimentally

verifiable.

As one goal of the study is to demonstrate the opportunity that collective modes

present to probe microscopic physics, we now discuss three possible experimental

approaches to study the dispersion of the collective modes. The first method is

to study the Goldstone mode via the resonance it causes in the spectrum of the

density-density correlation function [266], which can be monitored either directly as

a density fluctuation pulse or through two-photon Bragg scattering. A second probe

is to measure the speed of sound by monitoring the damping rate of a radial breathing

mode by studying Time of Flight (TOF) measurements [267, 268]. A third powerful

probe of the superfluid critical velocity would be to drag a single ionic impurity

through the atomic gas whose motion would become damped as vortices are created

when the superfluid critical velocity is exceeded.

One important avenue of future research is the ramifications of a trap on our

results. The confined geometry imposes discrete low-energy collective modes, which

should have interesting behaviour at the BEC-BCS crossover. In the BCS limit,

established theory [269, 270] predicts that if the quadrupole mode frequency is

greater than the Cooper pair breaking threshold then the mode is damped so has

small spectral weight. As one approaches the crossover the pairs become more

strongly bound shifting the spectral weight to the quadrupole mode frequency which

corresponds to the oscillation of a trapped BEC gas [271]. In the crossover regime the

persistence of the linear dispersion profile should be apparent in trapped geometry,

albeit with a modified spectral weight and damping. Another further consideration is
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how the spectrum would be affected by the fermion self energy arising from coupling

to non-Bose-condensed bosons [272] that we neglected since these two-particle modes

are strongly damped.



Chapter Six

Itinerant ferromagnetism in

atomic Fermi gases: Influence of

population imbalance

I
n this chapter we investigate ferromagnetic ordering in an itinerant ultracold

atomic Fermi gas with repulsive interactions and population imbalance. In

a spatially uniform system, we show that at zero temperature the transition to

the itinerant magnetic phase transforms from first to second order with increasing

population imbalance. Drawing on these results, we elucidate the phases present in

a trapped geometry, finding three characteristic types of behaviour with changing

population imbalance. Finally, we outline the potential experimental implications

of the findings.

The work in this chapter is the subject of the recent publication Ref. [4].

6.1 Introduction

Feshbach resonance phenomena provide unprecedented control of pair interactions

in degenerate atomic Fermi gases [273, 274]. This feature has allowed extensive

studies of pairing phenomena in two-component Fermi gases providing access to

99
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the entire range of BEC-BCS crossover [183, 186–188]. Although the emphasis

of experimental investigations has been primarily on the problem of resonance

superfluidity, interacting Fermi gases support other strongly-correlated phases

including itinerant ferromagnetism.

In solid state condensed matter systems, the problem of itinerant ferromagnetism

has a long history dating back to the pioneering studies by Stoner [275] and

Wohlfarth [109]. These early investigations proposed that, at low enough

temperatures, a Fermi gas subject to a repulsive interaction potential could undergo

a continuous phase transition into an itinerant spin polarised phase [276]. This

Stoner transition reflects the shifting balance between the potential energy gained

in spin polarisation through Pauli exclusion statistics, and the associated cost in

kinetic energy. Subsequent studies showed that fluctuations in the magnetisation

at low temperatures drive the second order transition first order at low enough

temperatures [53–58]. Such behaviour is born out around quantum criticality in a

variety of experimental solid state systems including ZrZn2 [47, 48], UGe2 [49],

Manganese Silicide (MnSi) [50, 51, 277–279], CoS2 [52], Ytterbium-Rhodium-

Silicon (YbRh2Si2) [280], and Strontium Ruthenium Oxide (SrRuO3) [281]. When

subject to a magnetic field, the attendant increase in Zeeman energy results in the

bifurcation of the tricritical point separating the region of first and second order

ferromagnetic transitions into two lines of metamagnetic critical points.

In the following, we will explore the potential implications of this itinerant

magnetic phase behaviour on the equilibrium properties of strongly interacting two-

component atomic Fermi gases; here we refer to the pseudo-spin associated with the

hyperfine states characterising the two atomic populations. However, in contrast to

the solid state system, the application of these ideas to the atomic Fermi gas must

address the features imposed by the trap geometry, and the constraints resulting

from the inability of particles to transfer between different spin states [201]. As

a result, in the general case, one must consider atomic Fermi mixtures in which

an effective spin polarisation is imposed by population imbalance [282, 283]. The

potential for itinerant ferromagnetism in atomic Fermi gases has been already

addressed in the literature, the work of Sogo and Yabu [284] studied a trapped
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system in the Thomas-Fermi approximation. Subsequently, Duine and MacDonald

[285] developed a diagrammatic perturbative expansion in interaction strength to

address the phase behaviour of the balanced two-component Fermi system. In the

following, we will develop a functional integral formulation to explore the phase

behaviour of the general population imbalanced system. As well as providing access

to the mean-field phase behaviour of the system, such an approach allows for future

considerations of the collective low energy spin dynamics of the spin polarised

phase. Moreover, the theory provides a platform to explore the potential for the

development of an equilibrium spin textured phase recently conjectured in relation

to the solid state system [54, 286–289] that is pursued in Chp. 7.

The chapter is organised as follows: In Sec. 6.2 we derive an expression for the

thermodynamic potential of the system as a function of the local density and in-plane

magnetisation fields. To address the important effects of spin-wave fluctuations on

the nature of the equilibrium phase diagram, we will explore the renormalisation of

the mean-field equations keeping those terms that are second order in the coupling

strength, g. Using this result, in Sec. 6.3.1 we analyse the phase diagram of the

spatially uniform system as a function of the interaction strength, g, and chemical

potential shift. Finally, in Sec. 6.3.2 we explore in detail the phase behaviour of the

magnetic system in the atomic trap geometry.

6.2 Field integral formulation

Expressed in the coherent state path integral formalism that is expounded in

App. A.2, the quantum partition function of a population imbalanced two-

component Fermi gas is

Z =

∫

Dψ exp



−
∫ β

0
dτ dr

∑

σ={↑,↓}

ψ̄σ(−i∂τ + ξ̂ − σ∆µ)ψσ − ψ̄↑ψ̄↓ψ↓ψ↑



 , (6.1)

where ψ̄σ(τ,r) and ψσ(τ,r) denote Grassmann fields, β = 1/kBT is the inverse

temperature, and ξ̂ = p̂2/2m − µ. Here we have used a pseudo-spin index,

σ ∈ {↑ , ↓}, to discriminate the two components. As independent particles (with
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no interconversion), the density of the two majority/minority degrees of freedom

must be specified by two chemical potentials. For convenience, it is helpful to

separate the chemical potentials into their sum and difference; µ + ∆µ for up-spin

and µ − ∆µ for down-spin. In this representation, population imbalance may be

adjusted through the chemical potential shift, ∆µ. Note that, although population

imbalance is synonymous with a global pseudo-spin magnetisation, a spontaneous

symmetry breaking into an itinerant ferromagnetic phase can still develop with the

appearance of a non-zero in-plane component of the magnetisation. Finally, we

suppose that the strength of the repulsive s-wave contact interaction, gδ3(r), can be

tuned using a Feshbach resonance.

6.2.1 Hubbard-Stratonovich decoupling

To develop an effective low-energy theory for the Fermi gas, it is convenient

to decouple the quartic contact interaction by introducing auxiliary bosonic

fields, ρ and φ, conjugate to the local density
∑

α={↑,↓} ψ̄αψα and magnetisation
∑

α,β={↑,↓} ψ̄ασαβψβ respectively, setting

Z =

∫

DφDρDψ exp

{

−
∫

dτdr

[

g(φ2 − ρ2)

+
∑

α,β={↑,↓}

ψ̄α

[

(Ĝ−1
0 + gρ)δαβ − (∆µez + gφ) · σαβ

]

ψβ

]}

. (6.2)

Here Ĝ0 = (−i∂t + ξ̂)−1 defines the Green’s function of the non-interacting

system, and σ denotes the vector of Pauli spin matrices. As outlined in

App. A.2.5, without decoupling in both the Hartree and Fock channels one would

subsequently encounter unphysical diagrammatic contributions to the perturbative

scheme developed below [290–292]. It is also the simplest approach that maintains

spin rotational invariance of the Hamiltonian, and leads to the correct set of Hartree-

Fock equations [293, 294]. Then, integrating over the Fermi fields, one obtains the
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expression

Z =

∫

DφDρDψ e−
∫
dτdr g(φ2−ρ2) exp

[

Tr ln
(

Ĝ−1
0 + gρ− σ · (∆µez + gφ)

)]

.

(6.3)

At this stage the analysis is exact, but to proceed further one must employ an

approximation. To orient our discussion and make contact with conventional Stoner

theory, let us first consider a direct saddle-point approximation scheme.

6.2.2 Stoner mean-field theory

As well as the “effective” magnetisation imposed by population imbalance, we

anticipate the development of a spontaneous magnetisation which will drive the

axis of quantisation away from the z-axis. We re-orient the axis of quantisation to

lie parallel to the net magnetisation, denoted in mean-field theory (with over-bars)

φ = φ⊥ + φzez, φ⊥ = (φx,φy), and with this definition, the total magnetisation of

the system is given by M = ∆µez/g+φ. Separately varying the action with respect

to φ⊥ and φz one obtains, respectively, the saddle-point equations,




φ⊥

φz



 = − (βV )−1 Tr(Ĝ+ − Ĝ−)
√

(gφ⊥)2 + (gφz + ∆µ)2




gφ⊥

gφz + ∆µ



 , (6.4)

where Ĝ−1
± = Ĝ−1

0 +gρ∓
∣
∣∆µez + gφ

∣
∣, and V denotes the total volume of the system.

Together, these equations admit two possible solutions:

φ⊥ = 0 and M = φz: The total magnetisation of the system can be ascribed to

population imbalance with no spontaneous magnetisation in-plane. Within

this solution, M is a function of |gφz + ∆µ|, so it can be used to infer the

chemical potential shift, ∆µ.

φ⊥ 6= 0: The total magnetisation takes the form M = (φ
2
⊥ + φ

2
z)

1/2. Along the

z-axis, the magnetisation is fixed due to population imbalance, with the

additional magnetisation developing within the x-y plane. In this case, the

saddle-point solution translates to the condition ∆µ = 0, i.e. no chemical
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potential shift is required to recover the fixed z-component of the magnetisation

due to the population imbalance; it is simply given by the resolved component

of the total magnetisation.

The total population N = N↑ + N↓ can in turn be obtained from the variation

δS/δρ = 0.

Expanding the action in interaction strength, g, S = gφ2
z Tr(1 + gĜ0Ĝ0) =

gφ2
z(1 − gν), and one can extract the familiar Stoner criterion [107, 108] for a

population balanced system, with ν being the density of states. For gν < 1 the

state is unmagnetised, M = 0, and chemical potentials of the two Fermi surfaces

remain equal. If gν > 1 then the state is magnetised with M =
√

(gν − 1)/g3ν ′′.

We also note that the Stoner criterion can be reformulated to account for population

imbalance giving S = gφ2(1−gν)−g2∆µ2, leading to a transition at the same value of

interaction strength as for the balanced system. Although, at this order, the saddle-

point approximation predicts a continuous transition to a ferromagnetic phase for

the balanced system, it is well-established that fluctuations of the magnetisation

field drive the transition first order at low temperature [295]. This effect can be

captured by retaining fluctuation contributions to second order in the interaction.

In the following, we will explore the impact of fluctuations on the equations of

motion associated with the uniform mean-field.

6.2.3 Integrating out auxiliary field fluctuations

To implement this program, it is convenient to parameterise the Hubbard-

Stratonovich fields into some, as yet undetermined, stationary (spatially uniform)

values φ0 and ρ0, and fluctuations around them, φfl and ρfl. Integrating out these

fluctuations, the goal is to obtain the renormalised mean-field equations for φ0 and

ρ0 retaining contributions to second order in g. Substituting φ = φ0 + φfl and

ρ = ρ0 + ρfl into Eqn. (6.3), and rotating the z-axis from the quantisation direction

to lie along the direction of uniform magnetisation using the constant matrix T, one
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obtains

Z = e−βV g(φ
2
0−ρ

2
0)

∫

DρflDφfl exp

[

−
∫

dτdr g(φ2
fl − ρ2

fl)

]

× exp
[
Tr lnG

−1 + Tr ln(I + gGT
−1(Iρfl + σ · φfl)T)

]
, (6.5)

where now Ĝ−1
± = Ĝ−1

0 + gρ0 ∓ |∆µez + gφ0| denotes the elements of the inverse

Green’s function of the system at the level of the renormalised mean-field, Ĝ =

diag(Ĝ+,Ĝ−). Then, expanding the action to second order in fluctuations, ρfl(r,τ)

and φfl(r,τ), and performing the functional integral, one obtains the thermodynamic

grand potential from the quantum partition function using ΦG = −β−1 lnZ,

ΦG =

†
︷ ︸︸ ︷

Tr ln Ĝ−1
+ + Tr ln Ĝ−1

− +g
(
φ2

0 − ρ2
0

)

+

‖
︷ ︸︸ ︷

1

2
Tr ln

(
1− g2Π++Π−−

)
+

⊥
︷ ︸︸ ︷

1

2
Tr ln

(
1 + gΠ+− + gΠ−+ + g2Π+−Π−+

)
, (6.6)

a result that is independent of the transformation T. Here we have defined the

spin-dependent polarisation operator,

Πss′(ω,q) =
2

βV

∑

ω′,k

Gs(ω
′,k)Gs′(ω

′ − ω,k− q) , (6.7)

where the sum on ω′ runs over fermionic Matsubara frequencies. The term labelled

(†) simply represents the thermodynamic potential of a non-interacting Fermi gas

with shifted chemical potentials. The term labelled (⊥) is due to transverse

fluctuations of the magnetisation field and coincides with that obtained in Ref. [296].

By contrast, the term labelled (‖), corresponding to longitudinal fluctuations, differs

from that obtained in Ref. [296] by the additional contributions from density

fluctuation effects.

To proceed, we now expand the potential ΦG to second order in g and perform the

summations over Matsubara frequencies. Rearranging the momenta summations,



106 CHAPTER 6. ITINERANT FERROMAGNETISM IN ATOMIC GASES

one obtains

ΦG = − 1

βV

∑

k
s={+,−}

ln
(

1 + e−β(ǫk−µs)
)

+ g
(
φ2

0 − ρ2
0

)
+ gN+N−

+
2g2

V

∑

k1,2,3

♦
︷ ︸︸ ︷

n+(ǫk1)n−(ǫk2)(1− n+(ǫk3))(1− n−(ǫk4))

ǫk1 + ǫk2 − ǫk3 − ǫk4

, (6.8)

where µs = µ − gρ0 + s|∆µez + gφ0|, ns(ǫ) = (1 + exp(−β(ǫ − µs)))−1, and Ns =
∑

k ns(ǫk). Conservation of momentum requires that k1 +k2 = k3 +k4. Physically,

the numerator of the second order term indicates that the matrix element associated

with the transition (k1,k2)→ (k3,k4) is proportional to the probability that states

k1 and k2 are occupied, whilst states k3 and k4 are unoccupied. Following Pathria

[297] (and the earlier discussion of Abrikosov and Khalatnikov [295]), to renormalise

the unphysical divergence of the term in n2(ǫ), labelled (♦) close to resonance,

we regularise the effective interaction at second order in scattering length a (see

App. A.1),

g(k1,k2) 7→
2kFa

πν
− 8k2

Fa
2

π2ν2V 2

∑

k3,4

1

ǫk1 + ǫk2 − ǫk3 − ǫk4

, (6.9)

where ν =
√
µ/
√

2π2 and kF =
√

2mµ. In a population imbalanced system the

definition for the chemical potential is that which gives the same total number of

particles in the population balanced system, that is kF = 3
√

3π2(n↑ + n↓), where n↑

and n↓ are the number of up and down-spin particles; this definition holds true in

both the canonical and grand canonical ensembles. This regularisation of the contact

interaction exactly cancels the divergent terms in n2(ǫ), labelled (♦). Furthermore,

the terms in n4(ǫ) are zero by symmetry. Finally, making use of the symmetry in
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k3 and k4, one obtains

ΦG = − 1

βV

∑

k
s={+,−}

ln
(

1 + e−β(ǫk−µs)
)

+
2kFa

πν

(
φ2

0 − ρ2
0

)
+

2kFa

πν
N+N−

− 8k2
Fa

2

π2ν2V 3

∑

k1,2,3

n+(ǫk1)n−(ǫk2) (n+(ǫk3) + n−(ǫk3))

ǫk1 + ǫk2 − ǫk3 − ǫk4

. (6.10)

From the thermodynamic potential we can compute the free energy per unit volume

F = ΦG +
∑

σ={↑,↓}(µ+ σ∆µ)Nσ. To consolidate terms entering the free energy we

switch from the population imbalance pseudo-spin basis to the magnetisation basis,

retain contributions to order O((kFa)
2), recall that if ∆µ = 0 then M 6= 0, whereas

if ∆µ 6= 0 then M = 0, and affect the rearrangement

2kFa

πν

(
φ2

0 − ρ2
0

)
+

∑

σ={↑,↓}

(µ+ σ∆µ)Nσ

=

µ+
︷ ︸︸ ︷(

µ− 2kFa

πν
ρ0 +

∣
∣
∣
∣
∆µez +

2kFa

πν
φ0

∣
∣
∣
∣

)

N++

µ−
︷ ︸︸ ︷(

µ− 2kFa

πν
ρ0 −

∣
∣
∣
∣
∆µez +

2kFa

πν
φ0

∣
∣
∣
∣

)

N−

+2kFa
πν

(
φ2

0 − ρ2
0

)
+
(

2kFa
πν ρ0 + ∆µ−

∣
∣
∣∆µez + 2kFa

πν φ0

∣
∣
∣

)

N+

+
(

2kFa
πν ρ0 −∆µ+

∣
∣
∣∆µez + 2kFa

πν φ0

∣
∣
∣

)

N−






∅ . (6.11)

Then, if we set φ0 = φ+ ∆φ and ρ0 = ρ+ ∆ρ, an expansion in ∆φ and ∆ρ shows

that the terms labelled (∅) sum to zero to the accuracy of the free energy, O((kFa)
2).

Retaining the remaining contribution, the free energy reduces to the form,

F =

‡
︷ ︸︸ ︷

− 1

βV

∑

k
s={+,−}

ln
(

1 + e−β(ǫk−µs)
)

+
∑

s={+,−}

µsNs +
2kFa

πν
N+N−

− 8k2
Fa

2

π2ν2V 3

∑

k1,2,3

n+(ǫk1)n−(ǫk2) (n+(ǫk3) + n−(ǫk3))

ǫk1 + ǫk2 − ǫk3 − ǫk4

. (6.12)

This expression coincides 1 with that obtained in Ref. [285]. The method employed

1The result of Ref. [285] was a perturbation expansion to second order in the scattering length a
considering all Green’s function contributions. The term labelled (‡) corresponds to the “e(0)−Ts”
term of Ref. [285] — i.e. the difference between the kinetic energy and entropy. The ∆µ = 0 limit
has also been derived elsewhere [295, 297].
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in the numerical calculation of the summation over three momenta is described in

App. A.8.

6.2.4 Magnetisation

To minimise the free energy and obtain the net magnetisation it is convenient to

take the expression for the thermodynamic potential (6.10) and affect the shift of

the field Φz 7→ Φz − ∆µπν/2kFa. As a result, the thermodynamic potential takes

the form

ΦG = − 1

βV

∑

k
s={+,−}

ln
(

1 + e−β(ǫk−µs)
)

+
2kFa

πν

∣
∣
∣
∣
φ0 −

∆µezπν

2kFa

∣
∣
∣
∣

2

− 2kFa

πν
ρ2
0

+
2kFa

πν
N+N− −

8k2
Fa

2

π2ν2V 3

∑

k1,2,3

n+(ǫk1)n−(ǫk2) (n+(ǫk3) + n−(ǫk3))

ǫk1 + ǫk2 − ǫk3 − ǫk4

, (6.13)

where, in response to the shift of Φz, the factors of µs = µ − 2kFaρ0/πν +

2kFas|φ0|/πν entering the definitions of N± and n± are now independent of ∆µ.

The thermodynamic potential can be rewritten in terms of a function of just the

auxiliary fields and the chemical potential shift as ΦG = F (|φ0|) + 2kFa|φ0 −
∆µezπν/2kFa|2/πν − 2kFaρ

2
0/πν.

In the grand canonical ensemble, the thermodynamic potential must be

minimised with respect to the components of the auxiliary field giving

F ′(|φ0|)
|φ0|




φ⊥

φz



+
4kFa

πν




φ⊥

φz −∆µπν/2kFa



 = 0 , (6.14)

where φ⊥ = (φx,φy) so φ0 = φ⊥ + φzez. Following Sec. 6.2.2 one may now

identify the magnetisation with the field φ0 − πν∆µez/2kFa. If ∆µ = 0, then the

system of equations is solved by either F ′(|φ0|)/|φ0| + 4kFa/πν = 0 (the direction

of spontaneous ferromagnetism in-plane remains undetermined), or φ0 = 0. If

∆µ 6= 0 then φ⊥ = 0, and the magnetisation is set by the equation F ′(φz) =

2(∆µ− 2kFaφz/πν) and is oriented along the z-axis. This behaviour is analogous to

what we saw in the mean-field analysis in Sec. 6.2.2. Finally, as a consistency check,

one may note that the expected degree of population imbalance can be recovered
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Figure 6.1: (a) shows the magnetisation
M as a function of population imbal-
ance, P and interaction strength kFa =
3
√

3π2(n↑ + n↓) in the canonical ensemble
at T = 0 at fixed species populations.
The thick line traces system variation at
P = 0 which corresponds to trap profile
(P/N = 0) in Fig. 6.3. (b) shows the phase
boundary between “unmagnetised” (UnM)
and partially magnetised (PM) region and
the line of saturation before the fully-
magnetised (FM) region. Note that, by
unmagnetised, we refer to the not in-plane
magnetisation. The solid line denotes first
order transitions, the dashed second order
and saturation.

from the grand potential M = − ∂ΦG/∂∆µ|T,V,N .

6.3 Population imbalance

With the formal part of the analysis complete, we will now apply these results to

explore the implications of ferromagnetism in the atomic Fermi gas. To begin, let

us consider the phase behaviour of the system in the canonical ensemble working at

fixed particle number. The variation of the total magnetisation, |M |, as a function

of interaction strength and particle imbalance can be found by minimising the free

energy at fixed particle number. The results are shown in Fig. 6.1. To ensure that the

free energy is locally minimised rather than just being at a stationary value [298],

the curvature was examined numerically. In the balanced Fermi gas, P = 0, the

results shown in Fig. 6.1(a) recapitulate those discussed by Duine and MacDonald

[285]. In particular at zero temperature, when the interaction strength is small,

kFa . 1.05, there is no net magnetisation. As the interaction strength is increased,

at kFa ≈ 1.05 there is a first order phase transition into a magnetised phase with

M/N ≈ 0.6. As kFa is increased further the magnetisation rises until it is saturated
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at kFa ≈ 1.11.

With increasing population imbalance, P , at kFa . 1.05, where it is

not energetically favourable for a spontaneous magnetisation to develop, the

magnetisation is forced to stay pinned to the minimum value set by the imbalance.

With increasing interaction strength, at kFa ≈ 1.05 there is a first order transition

and the magnetisation jumps to M/N ≈ 0.6. This feature is consistent with the

findings of the Stoner mean-field theory that the transition interaction strength

found is independent of population imbalance. If the population imbalance is

greater than P/N & 0.6 then the magnetisation takes the value of the spontaneous

magnetisation projected onto the sheet of minimum magnetisation caused by the

population imbalance.

From these results, one can infer the corresponding zero temperature phase

diagram Fig. 6.1(b). Characterising the phase behaviour by the strength of the in-

plane magnetisation and the degree of polarisation, the phase diagram divides into

three distinct regions. At low interaction strength the system is not spontaneously

unmagnetised, though there can be a magnetisation fixed by the population

imbalance. Then, at increased interaction strength the system become partially

magnetised either through a first order (at low population imbalance) or a second

order phase transition. At interaction strength above kFa & 1.11 the magnetisation

saturates.

To address the properties of the population imbalanced system in the grand

canonical regime, we will divide our discussion between the uniform and trap

geometries. In Sec. 6.3.1 we will address the properties of a uniform system where the

chemical potential µ and shift ∆µ are held constant (allowing the species populations

to effectively interchange). Drawing on these results, we will then discuss the phase

behaviour in a harmonic trap in Sec. 6.3.2.

6.3.1 Uniform system

In the spatially uniform system, when the chemical potentials of the two species are

fixed, for each value of the interaction strength kFa and relative shift in chemical

potential ∆µ/µ, from the free energy one can obtain the phase corresponding to
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Figure 6.2: (a) shows the variation of
magnetisation M as a function of chemical
potential shift ∆µ and interaction strength
kFa in the grand canonical ensemble at
T = 0. The thick lines correspond to
trap profiles at P/N = 0, P/N = 0.4,
and P/N = 0.8 in Fig. 6.3. In the
region where magnetisation is undefined
there is phase separation. The lower set of
diagrams show the phase boundaries (and
saturation line) between “unmagnetised”
(UnM), partially magnetised (PM) and
fully-magnetised (FM) regions, as well as the
region of phase separation.

minimal thermodynamic potential. Applying this procedure, the resulting phase

behaviour is shown in Fig. 6.2. For ∆µ/µ = 0 and small interaction strength kFa .

1.05 there is no magnetisation. As the interaction strength is increased, at kFa ≈
1.05 in the canonical regime Fig. 6.1 there is a first order phase transition into a

fully-magnetised state. Working at fixed chemical potential [Fig. 6.2(a)], the phase

transition straight into a saturated state increases the number of particles, which

in turn increases the effective interaction strength to kFa ≈ 1.25 (calculated using

the chemical potential for a non-interacting system with the same total number of

particles). This leads to an intermediate region of phase separation in the grand

canonical regime. At kFa . 1.05 as the chemical potential shift is increased up

to ∆µ/µ = 1, the magnetisation increases up to its maximum saturated value as

the Fermi surfaces become more unbalanced. At ∆µ/µ > 1 the chemical potential

of the minority spin species is negative so only the majority spin species remain

and the system is fully magnetised. With a chemical potential shift the region of

phase separation corresponds to the first order phase transition in Fig. 6.1. The

corresponding phase diagram showing the regime of two-phase coexistence is shown

in Fig. 6.2(b).

Finally, if the system has an imposed density and population imbalance, and

the chemical potentials are free to vary, then there are two possibilities: Firstly, the

spontaneous ferromagnetism is sufficient to provide the population imbalance and

any excess magnetisation lies in the plane. This corresponds to a point on the line
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∆µ = 0 in Fig. 6.2. The second possibility is that spontaneous ferromagnetism is

not sufficient, and so there is an additional chemical potential shift ∆µ 6= 0. In

this case the magnetisation then points along the direction of population imbalance.

This is consistent with the findings in Sec. 6.2.4. For a given interaction strength,

the magnetisation increases with chemical potential shift to saturation, so there is

always a chemical potential shift that will give a suitable population imbalance.

6.3.2 Trapped system

Using the insight gained from the study of the uniform system, we can now explore

an atomic Fermi gas in the physical system — a potential trap. Without loss of

generality we take ↑ (↓) to represent the majority (minority) species of atoms. We

focus on a harmonic trap, with rescaled spatial coordinates to ensure a spherically

symmetric trapping potential, V (r) ∼ r2. Furthermore, we make use of the local

density approximation in which the chemical potential of both species µeff,σ(r) =

µ0,σ−V (r) are renormalised by the same trapping potential. Although there is some

experimental evidence [251, 252] that the local density approximation might not be

valid [196, 253] in some setups, we believe that its application here will correctly

address the qualitative phase structure. The chemical potentials are regarded to be

locally fixed, therefore the local phase is that of the uniform system in the grand

canonical regime examined in Sec. 6.3.1. With a constant chemical potential shift

∆µ and interaction strength g, but varying effective chemical potential µ, the system

follows the trajectory kFa ∝
√
µ and ∆µ/µ ∝ 1/µ in the grand canonical regime

shown in Fig. 6.2. If the chemical potential is large, the system spontaneously

becomes ferromagnetic, and the magnetisation is saturated; if the chemical potential

is small, the relative chemical potential shift is large ensuring the magnetisation is

again near saturation. The locus in Fig. 6.2 shows that, in the intermediate region,

the magnetisation can develop a minimum depending on the degree of population

imbalance.

To understand the behaviour in the trap geometry, one should note the following:

If the degree of equilibrium pseudo-spin magnetisation is in excess of that imposed

by total population imbalance alone, the analysis of Sec. 6.2.4 tells us that some
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Figure 6.3: The density of particles at
radius r in a trap potential profile at
three different values of total population
imbalance. The variation in the local
particle density N is shown by the solid line,
and the variation in the local magnetisation
M is shown by the dashed line. The plot
densities are renormalised by their central
density, N0, radii by the outer radius, r0,
of non-interacting particles with the same
average inner chemical potential, µ0. The
upper panel shows the effective kFa in the
P/N = 0 case.

component of the spontaneous magnetisation lies along the z-axis with the remainder

oriented in the x-y plane. If, however, net population imbalance is large, then ∆µ 6= 0

and no in-plane magnetisation develops. Here one may identify three characteristic

behaviours with radial density profiles shown in Fig. 6.3. The first (P/N = 0) has

in-plane magnetisation, and the others do not. The second (P/N = 0.4) has a first

order transition and non-zero phase separation whereas the third (P/N = 0.8) is

always fully magnetised due to strong interactions. The three plots all have the

same central chemical potential.

The first possibility shown in Fig. 6.3(P/N = 0) is at small population imbalance,

involving the development of a spontaneous magnetisation which is in excess of

what can be absorbed by population imbalance alone, in this case ∆µ = 0 and
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some magnetisation lies in the plane. At small radii, where the interaction strength

kFa > 1.25 is greater than the limit for ferromagnetism, the results of the uniform

system (Sec. 6.3.1) show that there is saturated ferromagnetism in the plane and

a normal component that provides the fixed population imbalance. Following this

there is a region of phase separation and then at kFa ≈ 1.05 there are equal particle

densities and no magnetisation. The outer edge of the particle distribution of both

species is where µ0 = V (r0).

In the second scenario shown in Fig. 6.3(P/N = 0.4) the spontaneous

magnetisation is not sufficient to provide population imbalance alone, in this case

we require ∆µ 6= 0, and all magnetisation is oriented along the axis of population

imbalance. From the trap centre the population imbalance is first fully saturated,

followed by a region of phase separation, into a region of partial magnetisation.

This causes the minority spin particles to have a sharp maximum number density at

r/r0 ≈ 0.6, and the magnetisation to have a corresponding minimum; this counters

the intuitive expectation that number density should rise towards the trap centre

due to the increasing effective chemical potential. As the effective chemical potential

continues to fall with increasing radius, the minority spin species population falls

more rapidly than the majority and magnetisation increases. At a large radius, the

chemical potential of the minority spin particles reaches zero before the majority

spin so there is a thin shell containing only majority spin particles at the outside

and so is fully magnetised.

The third possibility shown in Fig. 6.3(P/N = 0.8) is that the locus in Fig. 6.2

does not cross the first order transition and region of phase separation. At ∆µ/µ < 1

the system is fully magnetised due to the strong interactions between particles. At

∆µ/µ > 1 the system is fully magnetised due to there being no minority spin

particles. In the intermediate regime there is a narrow band where the system is

partially polarised. The majority spin species exists out to greater radius than in

cases (P/N = 0) and (P/N = 0.4) because ∆µ is larger so a greater potential at

a larger radius is required to give the majority spin species zero effective chemical

potential.
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6.4 Discussion

To conclude, let us now consider four methods of how spin magnetisation could

be detected experimentally. Firstly, the interaction energy can be estimated by

studying the expansion of the gas [31]. Time of flight measurements of the expanding

cloud with no external magnetic field B = 0 are ballistic and so can provide the

initial kinetic energy. If the magnetic field is present, B 6= 0, then interactions are

significant during the expansion. Collisions ensure that all of the interaction energy

is converted into kinetic energy so the measurements reflect the total released energy.

Taking the difference between the B 6= 0 and B = 0 measurements therefore probes

the interaction energy. An unmagnetised gas has interaction energy whereas the

fully magnetised gas has zero interaction energy so time of flight measurements

should allow the ferromagnetic state to be detected.

Radio frequency spectroscopy [37] allows one to probe the spatial variations of

scattering lengths by exciting the atoms from one spin state |1〉 into some other state

|3〉 whilst leaving the atoms in the second spin state |2〉 unaffected. The presence

of atoms in state |2〉 shifts the resonance ν13 by ∆ν13 = 2n2(a23 − a21), where aij

is the scattering length between states |i〉 and |j〉. Measurement of the resonance

shift could allow the spatial distribution of the individual species to be probed. The

presence of the ferromagnetic state could be inferred by looking for the characteristic

density profiles outlined in Sec. 6.3.1.

A third simple method of detecting a ferromagnetic transition could be to

monitor the size of the atomic cloud. In a harmonic trap the cloud size is

proportional to the square root of the Fermi energy. Therefore, the size of the

fully-magnetised state is 21/3 larger than the unmagnetised.

On the repulsive side of the Feshbach resonance three-body collisions can result in

the formation of a molecular bound state of two atoms that might destroy the atomic

gas before it has time to undergo ferromagnetic ordering. To overcome this obstacle

an atomic gas spin could be polarised along the magnetic field direction and an RF

π/2 pulse applied to rotate all the spins into the plane [37]. The rate of precession of

the spins is set by the magnetic field strength, which varies across the atomic gas due

to field inhomogeneities. The precession rate of the atoms would however be kept
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locked together by the ferromagnetic interaction. Furthermore the ferromagnetic

phase has an antisymmetric wave function which inhibits collisions and so prevents

the formation of molecular bound states. A signature of ferromagnetism is therefore

the absence of molecular bound state formation.

We now outline two possible ways to further our analysis. The first order

phase transition leads to discontinuities in the density and magnetisation leading

to phase separation. Such behaviour could lead to a breakdown of the local density

approximation, a potential source of inaccuracy in our analysis. This could be fixed

through inclusion of a surface energy.

The second is to investigate the possibility that magnetic texture could develop.

Textured modes may have been seen via the possible formation of a CDW/SDW

in experimental results on the analogous solid state systems of itinerant electron

ferromagnets UGe2 [286, 287], Calcium Ruthenate (Ca3Ru2O7) [299], and MnSi [50].

In Chp. 7 our general formalism is extended to include the possibility of a textured

phase which lies beyond the first order line in the putative paramagnetic regime.

In conclusion we have developed a general formalism to describe itinerant

ferromagnetic transitions in two-component fermionic cold atom systems with

repulsive interactions, and potential population imbalance. At low population

imbalance, we predict that the first order transition that characterises the balanced

system persists. However, when the imbalance is large the transition becomes

continuous. In the trap geometry we found the first order phase transition led

to discontinuities in density and magnetisation. Up to a critical total population

imbalance, set by the possible total magnetisation following a first order transition,

the phases in the trap had the same density and magnetisation profiles with

increasing population imbalance, but in-plane magnetisation fell. With population

imbalance above this level, the system requires a chemical potential shift to generate

a population imbalance; however there is still a small range over which a first order

phase transition is seen. In the two latter cases the local population imbalance

displayed a characteristic minimum with radius.



Part III

Critical phenomena in

correlated quantum systems

As experimentalists gain access to ever lower temperatures, the

thermal fluctuations in a system die away as quantum fluctuations

take over. Coupling between these quantum fluctuations can lead

to a new paradigm of quantum phase transitions. In Chp. 7 we

apply the formalism developed in Chp. 6 to predict a textured

ferromagnetic phase that preempts the first order ferromagnetic

transition, and in Chp. 8 we study the consequences of quantum

critical fluctuations on ferroelectric phenomena.
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Chapter Seven

Textured itinerant

ferromagnetism

M
any analytical techniques suggest that quantum fluctuations lead to a

fundamental instability of the Fermi liquid that drives ferromagnetic

transitions first order at low temperatures. We present both analytical and numerical

evidence that this first order transition is preempted by the formation of an

inhomogeneous spin phase in a manner that is closely analogous to the formation

of the inhomogeneous superconducting FFLO state. To conclude we discuss the

experimental systems in which these effects may be seen.

7.1 Introduction

Many magnetic materials, for example iron, display second order ferromagnetic

phase transitions. The temperature at which this transition occurs can be tuned

using external parameters such as doping and pressure. Hertz realized that tuning

such a transition to zero temperature could give rise to a new type of critical

universality – for which he coined the term quantum criticality [300]. This proposal

has led to a tremendous experimental and theoretical effort that has had notable

successes. The universal scaling for the quantum critical regime are seen in a variety

119
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of materials [301].

However, in all systems that have been investigated so far, new behaviour

intervenes before the transition can be tuned to absolute zero. In heavy fermion

materials, the second order transition will often become first order before the

quantum critical point is reached [58, 302, 303]. Example materials include

ZrZn2 [47, 48], UGe2 [49], MnSi [50, 51], and CoS2 [52]. Recent experimental

evidence points to novel phenomena that go beyond the first order transition,

with materials such as ZrZn2 [47], UGe2 [286, 287], Ca3Ru2O7 [299], Iron-Niobium

(NbFe2) [304] and Sr3Ru2O7 all displaying unusual behaviour in the vicinity of

the putative quantum critical point. This universal failure to find a naked quantum

critical point has lead to speculation that it represents a fundamental principle [305].

Diagrammatic calculations that extend beyond the standard Moriya-Hertz-Millis

theory of itinerant quantum criticality suggest a fundamental breakdown of the GL

expansion around the quantum critical point. Indeed, older results [306, 307] using

straightforward second order perturbation theory, can be used to show that quantum

fluctuations of particle-hole pairs lead to a first order transition [285]. An alternative

field theoretical approach detailed in Chp. 6 [4] unifies these two pictures.

We show that in situations where a linearisation of the electron dispersion

about the Fermi surface is permissible, the first order magnetic transition is always

preempted by the formation of a spatially modulated or inhomogeneous magnetic

phase, This is closely analogous to the inhomogeneous superconducting FFLO

state [43, 44] that was explored in the context of ultracold atomic gases in Chp. 4.

This modulated phase was presaged by non-analyticities in the gradient expansion

that appear in extensions to the Moriya-Hertz-Millis theory [58, 302, 303, 308, 309].

Here, we use the alternative field theoretical approach developed in Chp. 6 [4] to

provide analytical evidence for our picture. This has two advantages: i) it avoids

non-analyticities; ii) it allows us to develop a simple and appealing picture of

how quantum fluctuations drive the reconstruction of the phase diagram. These

analytical considerations are supported by numerical QMC simulations that we also

report here.

The remainder of this chapter is organised as follows: we begin in Sec. 7.2 by
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stating our model Hamiltonian and give a brief exposition of our analytical approach,

followed by the details of our QMC simulations in Sec. 7.3. Finally in Sec. 7.4, we

suggest how our mechanism might be probed in future theoretical and experimental

studies.

7.2 Ginzburg-Landau expansion

Our analysis is based on a model of electrons with a contact interaction of strength

g

Ĥ =
∑

p,σ

p2

2m
a†pσapσ +

g

2

∑

{pi},{σi}

a†p1σ1
a†p2σ2

ap3σ3ap4σ4 , (7.1)

where the second summation is carried out under the conservation of momentum

(p1 + p2 = p3 + p4) and spin (σ1 + σ2 = σ3 + σ4). One simple approximation

is to replace the particle creation and annihilation operators with their mean field

estimates which leads to the Stoner model. This model describes a playoff between

kinetic and potential energy which predicts a second order ferromagnetic phase

transition such as that seen in iron. However, the mean-field approximation neglects

the important consequences of quantum fluctuations; when these were summed

over in Ref. [4, 58, 302, 303], the coupling between transverse fluctuations and

the magnetisation leads to the presence of a non-analytic term m4 lnm2 in the free

energy that is responsible for driving the ferromagnetic transition first order.

Our strategy is to build upon the analysis of the first order homogeneous

transition developed in Chp. 6 [4]. We extend the analysis by postulating that

a textured ferromagnetic phase will develop by a continuous transition, which will

initially develop at a single wave vector, allowing the ansatz that it is a spin spiral.

This is the same ansatz used in the original analysis of the FFLO state and we shall

revisit it in the discussion. To analyse the inhomogeneous spin phase, we take the

Hamiltonian Eqn. (7.1) and using the tools expounded in App. A.2.5 we perform

a Hubbard-Stratonovich transformation in both density ρ and magnetisation φ
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channels to give the action

S[φ] = βg(φ2 − ρ2)− Tr ln(IG−1
0 + g(Iρ+ σ · φ)) , (7.2)

where G−1
0 = iω + ǫp − µ and ǫp = p2/2m. We then consider a general spin spiral,

built up from a constant magnetisation mc and a spiral modulated component m

with wave vector q that rotates around axis n̂ (which without loss of generality

is assumed to be along ẑ). Following a gauge transformation that renders the

magnetisation spatially homogeneous we obtain

S[φ] = βg(m2 +m2
c + φ2

fl − ρ2)− Tr ln
(
G−1
σz

+ g(Iρ+ σ · φfl + σ ·mc + σxm)
)
,

(7.3)

with G−1
± = iω+ǫp±q/2−µ. Under this formalism the different classes of planar spin

spiral (with mc = 0) have the same energy. Though the expression is not tractable

with mc 6= 0 we note that in an expansion F = t(q)m2 + t(0)m2
c + um2m2

c that, if

a modulated phase does preempt the uniform phase (which will be verified later),

then t(q) will become negative at smaller interaction strength than t(0). Therefore,

irrespective of the sign of u, the planar spin spiral will be favoured over any spin

spiral with mc 6= 0. We therefore proceed with mc = 0 and expand to second order

in both the auxiliary field m and also to second order in the quantum fluctuations

of the magnetisation φfl and density ρfl

S[φ] = βgm2 + g2 Tr (G+mG−m)

+ βgTr
(
ρ2
fl + φ2

fl,x + φ2
fl,y + φ2

fl,z

)
− 2g3 Tr [G+m (G−ρflG−φfl,x +G−φfl,xG−ρfl)]

+ g2
[

Tr
(
−G0ρflG0ρfl − 2g2G+ρflG+ρflG+mG−m− g2G+ρflG+mG−ρflG−m

)

+ Tr
(
G0φfl,xG0φfl,x + 2g2G+φfl,xG+φfl,xG+mG−m+ g2G+φfl,xG+mG−φfl,xG−m

)

+ Tr
(
G0φfl,yG0φfl,y + 2g2G+φfl,yG+φfl,yG+mG−m− g2G+φfl,yG+mG−φfl,yG−m

)

+ Tr
(
G0φfl,zG0φfl,z + 2g2G+φfl,zG+φfl,zG+mG−m− g2G+φfl,zG+mG−φfl,zG−m

)]

.

(7.4)

After integrating out the Gaussian quantum fluctuations, and re-expanding the
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resulting energy to quadratic order in the auxiliary fieldm we find that the quadratic

coefficient in a Landau expansion S(q) = α0,0 + t(q)m2 + u(q)m4 + · · · is

t(q) =

†
︷ ︸︸ ︷

1

g
− gΠ(q) +g2Π(q)

(
Π(q)− 2N2

)
+ 4g3

∑

p,p′

Π(p′)G2(p)G(p + p′)G(p + q)

− 4g3
∑

p

(
∑

p′

G(p′)G(p′ + p)G(p′ − q)

)2

, (7.5)

where G(p) = (iω − ε(p) + µ)−1, N is the particle density, and Π(q) =
∑

pG(p +

q)G(p). The term labelled “†” corresponds to the Stoner model of the transition. In

order to remove unphysical ultraviolet divergences we re-regularise the interaction

parameter which allows us to make the link g 7→ 2kFa/πρF, where ρF is the density

of states at the Fermi surface and a in the physically observable scattering length

that is introduced in App. A.1. We note that, at q = 0, the free energy agrees,

within the scope of the expansion, with the uniform phase derived in Chp. 6 [4].

The momentum integrals at zero temperature for the uniform phase are possible

only for the balanced case as described in Chp. 6 [4], so the finite temperature and

inhomogeneous phase integrals demanded here were calculated numerically.

As shown in Fig. 7.1 the Landau expansion predicts that a second order transition

into an inhomogeneous spin phase preempts the first order phase transition. The

expansion cannot however describe how far the textured phase penetrates into the

uniform ferromagnetic phase. Using the Landau expansion formalism we also verify

that at q = 0 if the transition were restricted to be second order then the system

becomes ferromagnetic only after the first order transition and joins smoothly

to the second order phase boundary at temperatures above the tricritical point.

Furthermore, this putative second order phase boundary has negative slope at T = 0,

consistent with Refs. [310, 311].

In analogy to FFLO [66, 67], the presence of the tricritical point immediately

hints at the possibility of a textured phase. The most straightforward way to

uncover this link is to consider the free energy as a functional of the up and

down-spin Green functions G↑ and G↓; F [G↑,G↓]. Using the GL phenomenology

described in App. A.3, we aim to derive the parameters in the GL expansion
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Figure 7.1: The lower graph shows the
development of modulated ferromagnetism,
the solid line shows the first order and
the dashed line the second order transition
into the homogeneous ferromagnetic state.
The dotted line shows the assumed second
order phase transition into a modulated
ferromagnetic state, that is the spinodal
line. The textured and uniform phases
are shaded, and the putative penetration
of the textured into the uniform phase
is highlighted by the intermediate shaded
tone, labelled “?”. The upper graph shows
the wave vector q of the modulated phase
boundary, plotted along the second order
phase boundary between the normal and
textured phase.
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F =
∑∞

i,j=0 αi,jm
2iq2j we first need to evaluate the operators ∂G↑↓/∂q = ±p cos θ

and ∂G↑↓/∂m = ±1. We note that the second order differential with respect to

q yields a factor of p2 cos2 θ relative to the second order differential with respect

to m, that, in the pole dominated regime near to the tricritical point, will average

to 2p2
F/3. Therefore 3∂2F/∂q2 = 2p2

F∂
2F/∂m2, and so in the GL expansion this

implies the relationship between terms 3αi+1,0 = 2αi,1p
2
F. In particular this means

that the coefficients of the terms m4 and q2m2 are directly related and therefore

we expect that the tricritical point where u(0) changes sign has an accompanying

inhomogeneous spin phase driven by a switching sign of t(q).

Using the theory developed above we can estimate the temperature at which

the tricritical point and appearance of spatial modulation occur. The mean-field

contribution to the M4 coefficient in the expansion of energy is ∼ (g3/T 2)e−ǫF /T

and the quantum fluctuation correction to this coefficient is ∼ −ρ3
F g

6/ǫ2F . To

logarithmic accuracy, therefore, one may estimate the tricritical temperature to

be T ∼ −ǫF /3 ln(ρF g). This temperature is a significant fraction of the Fermi

temperature, which is typically two orders of magnitude greater than the tricritical

point temperature seen in typical materials. The cause of this discrepancy is not

known, though could be due to the approximation that electron-electron screening

renders their interactions to be contact-like.
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7.3 Quantum Monte Carlo

We now turn now to the numerical Quantum Monte Carlo analysis of the Stoner

Hamiltonian (7.1) making use of the CASINO program [312] that is introduced in

App. A.4. These methods are based upon optimising a trial wave function and are

restricted to zero temperature. Our approach mirrors that used in previous studies

of itinerant ferromagnetism [118, 313, 314]. The variational wave function used in

our simulation, ψ = De−J , is a product of a Slater determinant, D, that takes

account of the Fermion statistics and occupation of single particle orbitals, and a

Jastrow factor, J , that accounts for electron correlations.

The Slater determinant consists of plane-wave spinor orbitals containing both

spin-up and spin-down electrons, D = det({ψk∈k↑ , ψ̄k∈k↓}). As detailed in

App. A.4.8, this is not an exact eigenstate of the total spin, but the Slater

determinant contains many more states with low than high spin so the low spin

state provides the dominant contribution to the variational state energy. In the

case of uniform magnetisation, for computational efficiency, we factorise the Slater

determinant into an up and a down-spin determinant [312]. With more up than

down-spin orbitals present the wave function adopts an overall magnetisation set

by that ratio. At first calculations were performed within the simple setting of the

unmagnetised system to determine how the ground state energy varies with system

size, and twist averaging was employed as a second tool to reduce finite size errors.

Once the energy scaling with system size was determined for the unmagnetised

system the same correction factor could be applied to the magnetised system. The

wave function can contain only a discrete number of orbitals, here 19, 27, 33, 57, 81,

93, or 123 of a given spin type. As the magnetisation can only take on set values

calculations could not be repeated at the same magnetisation for different system

sizes, so finite size effects had to be removed using the calibration derived in the

unmagnetised regime.

The spin textured phase is described by non-collinear spins, which have only

recently been studied within Variational Monte Carlo (VMC) [315]. These studies

lead us to describe a planar spin spiral with a trial wave function that contains

the spinors ψk = eiq·r/2(eik·r,e−ik·r) and ψ̄k = e−iq·r/2(−eik·r,e−ik·r) which explicitly
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Figure 7.2: The lower panel shows the
ground state magnetisation M with interac-
tion strength kFa, the solid line corresponds
to the uniform phase, the dashed line is
the textured phase. The upper panel shows
the wave vector of the inhomogeneous spin
phase, and the discrete values of q sampled
in the investigation are highlighted by the
horizontal dotted lines.
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fix the spin spiral orientation. The energy was interpolated from QMC runs at

q/kF = 0, 0.2, and 0.4; at q = 0 this would recover the factorised form for the Slater

determinant employed in the uniform case. Our simulations are carried out in a unit

cell with periodic boundary conditions commensurate with the pitch of the spiral.

The Jastrow factor, J , accounts for electron-electron correlations. It consists of

the polynomial and plane-wave expansions in electron-electron separation proposed

in Ref. [133] and detailed in App. A.4.4. To further optimise the wave function the

orbitals in the Slater determinant were evaluated at quasiparticle positions related

to the electrons through a polynomial backflow function [316]. In the spiral case,

the Jastrow factor is restricted to be spin independent to maintain the spin spiral

orientation and the wave function antisymmetry. The impact of this constraint was

tested by comparing the result of calculations on the uniform system with a restricted

Jastrow factor to a calculation with the unrestricted Jastrow factor. Typically the

unrestricted Jastrow factor required a polynomial expansion of six terms, whereas

the restricted Jastrow factor required that eight terms be present. The trial wave

functions were optimised using QMC methods. In the uniform case, the optimisation

was performed in two steps using VMC and Diffusion Monte Carlo, whereas only

VMC calculations were performed for the textured state.

To model the repulsive contact potential between the electrons we employ the

modified Pöschl-Teller interaction [39, 317–319]

U(r) =
2µU0

cosh2(µr)
, (7.6)
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where U0 is the well depth and 1/µ the well width. This form was chosen because

it has smooth edges that the QMC configurations can sample faithfully. To ensure

that the well was a suitable model for the contact interaction we checked that the

results did not depend on different well parameters that have the same scattering

length, and that a square well potential gives the same result.

To analyse the system we first constrained the magnetisation to be spatially

uniform. At each interaction strength the energy at nine different values of the

magnetisation was found and then interpolated to find the minimum ground state

energy. The statistical error in the energy estimates produced by QMC led to

the uncertainty in the ground state magnetisation at each interaction strength

sampled in Fig. 7.2. The plot reveals a first order phase transition into the

itinerant ferromagnetic phase at kFa = 0.86. The discrepancy from the analytic

prediction of kFa = 1.054 arises because the analytics were based on perturbing in

an interaction strength that in reality is not small. However, the confirmation of

the first order transition indicates that the analytics capture the essence of the

transition and provide confidence in using them to explore the possibility of a

textured ferromagnetic phase.

The verification of the first order transition into a uniform phase provides a

platform upon which to construct the full textured phase diagram. Calculations

were performed at three different values for the magnetisationM/N = 0, 0.1, 0.2 and

three different texture wave vectors q/kF = 0, 0.2, 0.4 at each interaction strength.

Interpolating between the results showed that an inhomogeneous magnetic phase

pre-empts the transition into the uniform phase with q ≈ 0.2kF and M/N = 0.15.

The resulting textured phase has similar extent and wave vector to the analytical

prediction lending support to the conclusions of the perturbative field theoretic

analysis. Furthermore the results indicate that the textured phase penetrates into

the uniform phase between kFa = 0.85 and kFa = 0.86, which we were not able to

estimate analytically.
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7.4 Discussion

We have shown that quantum fluctuations can lead to a reconstruction of the

itinerant electron ferromagnetic phase transition to produce an intermediate

spatially modulated or inhomogeneous phase. We have restricted our analysis

to the consideration of the simplest modulated phase that can be formed from

a ferromagnet – the spin spiral. In the same way as the FFLO state might

consist of a patterned phase formed by the superposition of several such spirals,

so the inhomogeneous phase might harbour spin crystalline order. Neither the

computational nor the analytical study are able to shed light upon whether there is a

more patterned textured phase that beats the spin spiral, or whether the transition

into it from the normal state is continuous. However, should a more patterned phase

be favourable, or the transition into the textured phase not be continuous, then this

will in both cases result in the textured phase occupying a larger region of the phase

diagram than predicted here. This will not invalidate the main conclusion of this

work that a textured phase preempts the first order ferromagnetic phase transition.

In other contexts, it has been shown that features in the density of states

due to an electronic band dispersion can lead to a first order ferromagnetic

transition [109, 320, 321] and to the formation of an inhomogeneous magnetic

phase [322]. It is natural to ask what is the relationship between the lattice-

driven and fluctuation-driven reconstructions of the magnetic phase diagram. This

is largely an open question. We have made preliminary investigations using an

extension of the Wohlfarth-Rhodes criterion [109]. This criterion determines when

rigid features in the electron density of states may drive a ferromagnetic transition

first order. It consists of a requirement that the fourth order term in the expansion

of free energy in magnetisation becomes negative. Allowing the electron dispersion

to change self-consistently due to interactions, the density of states acquires a

magnetisation dependence and the requirement that the quartic term be negative

leads to an extended Wohlfarth-Rhodes criterion that takes the form

∫

|k|≤kF

(
1

ρ(ǫk)
∂ǫk + ∂M

)4

ǫ(k,M)
dk

(2π)3
≤ 0 (7.7)
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Neglecting the magnetisation dependence recovers the conventional Wohlfarth-

Rhodes criterion. Applying this extended Wohlfarth Rhodes criterion to the energy

spectrum of the interacting electron gas developed in Chp. 6 [4] shows that the

transition is driven first order by an increase in density of states near to the Fermi

surface with increasing magnetisation. We have also used this extended Wohlfarth-

Rhodes criterion to check the robustness of our results to a perturbative change

in the electron dispersion of the form ε(p) = p2/2 + α|p| + βp2 + γ|p|3. We find

that the topology of the phase diagram is unaffected by this perturbation although

the positions of the various phase boundaries do move in response to it1. The

question of how fluctuation corrections and singular features in the density of states

interplay with one another remains open. There remains the possibility of some

interesting effects, not least because the two mechanisms lead to spatial modulation

in potentially different regions of the phase diagram: at the zero-field tricritical point

in the case of fluctuation correction and at a new, finite-field tri-critical point in the

case of the latter.

We comment briefly upon the possibility of alternative types of order for the

intervening phase. In the context of lattice-driven magnetic phase reconstruction,

there has been speculation whether the intervening phase consists of spatially

modulated magnetism [322] or a d-wave distortion of the Fermi-surface – the so-

called electron nematic [323, 324]. In the lattice-driven case these phases have a

similar energetic drive. In the case of fluctuations, one might anticipate that a

d-wave distortion of the Fermi surface will lead to a similar enhancement of the

phase space for particle-hole virtual intermediate states to that due to a spatial

modulation of magnetisation. This may result in a similar phase diagram to that

shown in Fig. 7.1 where the intervening phase has a d-wave distorted Fermi surface.

This question warrants further consideration.

Finally, one might ask in what experimental context are the effects discussed in

this chapter likely to be seen. There has been speculation that these effects have

already been seen in some solid-state systems. It is difficult to resolve whether this

1For the first order transition we find a shift in the transition interaction strength of ∆(kFa) =
0.9α+1.1β+1.3γ. For the inhomogeneous spin phase the lowest order correction in the interaction
strength to the GL expansion is ∆(kFa) = 0.4α+ 0.8β + 1.1γ.
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is indeed the case at present, since we do not have a clear understanding of the

interplay of lattice and fluctuation effects. For this reason, perhaps the clearest

context in which to investigate these effects would be in atomic condensates which

was explored in Chp. 6 [4].



Chapter Eight

Theory of quantum paraelectrics

and the metaelectric transition

I
n this chapter we present a microscopic model of the quantum paraelectric-

ferroelectric phase transition with a special focus on the influence of transverse-

optical phonon modes. These drive the continuous phase transition first order

through a metaelectric transition. We discuss two further consequences of

fluctuations, firstly for the heat capacity, and secondly we show that the inverse

paraelectric susceptibility displays χ−1 ∼ T 2 quantum critical behaviour, and that

fluctuations can cause the inverse susceptibility to have a characteristic minimum

with temperature. Finally, we discuss the observable consequences of our results.

8.1 Introduction

Ferroelectric materials feature in many modern day electronic devices including

computer memory and sensors, and are a simple setting for studying quantum

criticality [68, 69, 325]. Here we focus on the family of displacive ferroelectrics

where the transition is driven by zone-centre soft modes that conspire to enable the

optical lattice modes to condense, forming a structural distortion. An important

point is that near to quantum criticality excitations can become highly degenerate

131
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and new phases of matter can emerge. Motivated by the emergence of a first order

phase transition near criticality in itinerant ferromagnetism that was explored in

Chp. 6 [4], and recent experimental evidence for a first order phase transition in

ferroelectrics [68], we explore the possibility that polar transverse-optic phonons

couple to drive a first order displacive metaelectric transition and investigate the

implications for the inverse susceptibility.

The soft-mode optical phonons in ferroelectrics can be well-described by a

bosonic field theory. If the dynamics were undamped and the interactions short-

ranged then the general quantum critical behaviour would be well understood [326].

However, in ferroelectrics the motion of the atoms in optical modes leads to the

emergence of electric dipoles. A good description of these long-range dipole forces

is important to properly describe the ferroelectric transition; building on the self-

consistent one-loop approximation of Moriya [308], the effect of long-range dipolar

forces was studied first by Khmel’nitskii and Shneerson [327], and Rechester [328].

The classical ferroelectric transition was studied by Aharony and Fisher [329], who

found that anisotropies associated with the dipolar interaction led to a universality

class. The quantum ferroelectric phase transition in the mean-field approximation,

and its universality class, was studied by Roussev and Millis [330]. However, recent

experimental evidence points towards new physics that occurs close to quantum

criticality, for example the coexistence of a quantum paraelectric and a quantum

ferroelectric in SrTiO3 provides strong evidence for a first order phase transition [68],

and the inverse dielectric constant behaviour of SrTiO3 that is reproduced in Fig. 8.4

which turns from ǫ−1 ∼ −T to ǫ−1 ∼ T 2 and then to ǫ−1 ∼ T with rising

temperature. One suggestion is that new phenomena are driven by the coupling

of acoustic to optical phonons [69, 331]. However, inspired by the ramifications of

quantum fluctuations in ferromagnets that were described in Chp. 6 [4], another

possibility is that the coupling to transverse-optic phonons could drive a first order

metaelectric transition. Furthermore, we present a holistic expression for the inverse

susceptibility that is consistent with recent experimental results [69, 332, 333] and

demonstrate that the coupling of transverse-optic phonons could cause it to have a

characteristic minimum at low temperature.
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Figure 8.1: The phase diagram in the
u−v plane at zero temperature in the mean-
field approximation. The cross-hatched
forbidden region denotes where the polaris-
ability would diverge without higher order
corrections. The solid thick line highlights
a first order phase boundary between the
light grey region that denotes a Heisenberg
polarisation, and the dark grey which labels
the Ising phase. In each regime the
inset axes illustrate the polarisation solution
highlighted by the red vector.

8.2 Order parameter and action

We adopt a bosonic field theory to describe the soft optical phonon modes that

should recover the main physical behaviour of the system. The order parameter of

the theory is the local polarisation φ(x,t) =
∑n

i=1 eiri(x,t), which is formally defined

for one unit cell at x containing n atoms of charge ei each individually displaced

through ri by the optic mode. This order parameter describes both thermal and

quantum fluctuations. Following Roussev and Millis [330] the action arises from a

“soft mode” instability in which the optical phonon softens to zero. We describe the

action in three-dimensional space and imaginary time via the GL phenomenology

described in App. A.3

S =

∫ β

0

{
∑

q,α,β

[(
a2

c2
∂2
τ + a2q2 + r + fq2α

)

δα,β +
(
g − hq2

) qαqβ
q2

]

φα(q)φβ(−q)

+
∑

α,β,{qi}

(u+ vδα,β)φα(q1)φα(q2)φβ(q3)φβ(q4)

}

dτ , (8.1)

where a is the lattice constant, c is the speed of the phonons, q2 =
∑

α q
2
α, the

dimensionless momenta −π < qα ≤ π, and the second summation is carried out

under the conservation of momentum (q1 + q2 + q3 + q4 = 0). Since the field

φ describes an electric dipole, the action includes a long-range dipole interaction

and also coupling to the underlying lattice through the parameters r, f , g, and

h. The terms u and v that describe the local anharmonic interactions ensure that

the solution remains bounded. In general these parameters are tensorial, but for

simplicity we have assumed that they adopt cubic symmetry. Estimates for the
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Table 8.1: Model parameters for the ferroelectrics SrTiO3 and KTaO3 [69].

E0/meV a/Å ~c/meV r f g h

SrTiO3 4.47 3.9 5.55 5.31 55.7 0.39 5.1
KTaO3 10.6 3.9 13.1 9.77 472 39.2 165

parameters were obtained from ab initio calculations [330, 334, 335] in the two

key ferroelectrics SrTiO3 and KTaO3 [69], which are shown in Table 8.1. The

typical energy scale of ferroelectric fluctuations along (100) is E0 = ~πc/a. Using

this definition we can then employ a dimensionless bosonic Matsubara frequency

ω̃ = ω/E0, and a dimensionless temperature T̃ = T/E0. Throughout the chapter

we adopt the units a = ~ = kB = 1.

To cement the connection to previous work we first consider the mean-field phase

diagram that is sketched in Fig. 8.1. Making the ansatz that the low energy solution

is uniform, constant, and is aligned along one direction we obtain the action S =

rφ2 + (u + v)φ4. When v < 0 the polarisation φx = φy = 0, φ2
z = −r/2(u + v) has

Ising symmetry, whereas when v > 0 the polarisation φ2
x = φ2

y = φ2
z = −r/2(3u+ v)

possesses Heisenberg symmetry. The term proportional to v controls the polarisation

direction in the ferroelectric phase, whereas the u term is rotationally invariant. We

note that whilst sweeping v through v = 0 with u > 0 the first order rotation of

polarisation direction is accompanied with a continuous change in the magnitude

of the polarisation. This is driven by a similar mechanism to the coupling of two

bosonic fields described by Blume et al. [336]. Within the mean-field approximation

the condition for stability is that the net quartic term is positive which translates

to u + v > 0 when v < 0 and u + v/3 > 0 if v > 0. If these conditions are not

fulfilled then higher order terms must be included and rather than undergo a second

order transition at r = 0, the system might have a first order transition at mean-

field level. Here we wish to investigate whether near criticality the transverse-optic

modes can conspire to drive an otherwise second order transition to become first

order. In order to access this behaviour we now go beyond mean-field and consider

the consequences of quantum fluctuations on the system.
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8.3 Propagator and fluctuations

To account for fluctuation corrections to the system Roussev and Millis [330]

employed the renormalisation group phenomenology, which is tailored to study the

well-established second order ferroelectric transition. However, motivated by recent

experiments [68] we wish to explore the possibility of a first order metaelectric

transition. Therefore, rather than considering just the corrections due to slow

fluctuations encompassed by renormalisation group, we wish to consider fluctuations

ψ over all length scales in the polarisation φ+ψ around the saddle-point solution φ.

When u ≪ r2 we can neglect fluctuations in ψ beyond second order which reduces

the action to

S = β̃

[
(

r +
g

3

)

φ2 + uφ4 + v
∑

α

φ4
α

]

+ β̃
∑

ω̃,q

ψT(ω̃,q)G−1ψ(−ω̃,− q) , (8.2)

where G−1
α,β = G

(d)−1
α δα,β + G

(o)−1
α,β , and the diagonal inverse Green function takes

the form G
(d)−1
α = ω̃2 + q2 + r + fq2α + (g − hq2)q2α/q2 + (4u + 6v)φ2

α + 2uφ2, and

the off-diagonal terms are G
(o)−1
α,β = (g−hq2)qαqβ/q2 +4uφαφβ . To proceed we note

that g and h are irrelevant to the critical behaviour [330], and that the lowest order

term in them would average to zero on integrating over momenta, so here we assume

that g = 0 = h. We now employ the functional integral phenomenology described

in App. A.2 and integrate over quantum fluctuations to yield

F =
(

r +
g

3

)

φ2 + uφ4 + v
∑

α

φ4
α +

1

2β̃
Tr lnG

−1 . (8.3)

Finally, we expand the inverse Green function in its off-diagonal terms which if

φ = 0 requires r ≫ g − hπ2, and if φ 6= 0 requires that r ≪ π2 to find

F =
(

r +
g

3

)

φ2 + uφ4 + v
∑

α

φ4
α

+
1

β̃

∑

α

[

Tr ln sinh
(

β̃ξαq/2
)

− ln(ξα0 )
]

− 1

4β̃
Tr
(

G
(o)−1
α,α+1G

(d)
α G

(o)−1
α+1,αG

(d)
α+1

)

,

(8.4)



136 CHAPTER 8. PARAELECTRIC-METAELECTRIC TRANSITION

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

Forbidden region

Paraelectric

2nd order

1st order

F
or

bi
dd

en
 r

eg
io

n

Ising

Heisenberg

Heisenberg

1st order

2nd order

Tricritical point
2nd order

1st order

Tricritical point

v

v = −u

(a) u− v plane, r < 0 (b) u− r plane, v > 0

u = −v/3
r

u

v = −3u

u
r ≈ − 3

8
(−75u(3u+ v))1/3

uT ≈ 6πT̃ 1/2v/r

v ≈ −210/33−8/3π2/3r − 7
3
u

v ≈ −3u+ 512
2025

r3

u

uT ≈ 6πT̃ 1/2v/r

r ≈ − 3
210/3 (3/π)2/3(3v + 7u)

Figure 8.2: The phase diagram at T̃ = 0 in the (a) u − v plane with r < 0, and (b) u − r
plane with v > 0, both at zero temperature. The cross-hatched forbidden region denotes where the
polarisability would diverge without higher order corrections, the light grey denotes a Heisenberg
polarisation, and the dark grey the (a) Ising phase and (b) paraelectric phase. Solid thick lines
denote first order phase boundaries, dashed lines second order transitions, and the circle the
tricritical point.

where ξαq = [q2 + r+fq2α+(4u+6v)φ2
α+2uφ2]1/2, and β̃ = 1/T̃ is the dimensionless

inverse temperature. This expression, except for the final fluctuation correction

term, agrees with that of Ref. [330]. The condition for stability is the same as for

the mean-field case.

The momentum integrals are in general evaluated numerically. However, to

further investigate the Heisenberg phase we make the approximation that the cuboid

Brillouin zone boundary (−π < qα < π) that bounds the momentum space integral

can be replaced with a spherical boundary that encloses the same total phase space,

so has radius qD =
3
√

6π2. In the low temperature limit the resulting integrals can

then be evaluated analytically, and were found to be in good agreement with the

corresponding numerical result.

8.3.1 Phase behaviour and heat capacity

The system phase behaviour is shown in Fig. 8.2. The forbidden region indicates

where the action polarisability and free energy would diverge without considering

higher order corrections to the original action. When considered within the

framework of mean-field phenomenology, here the system could undergo a first

order paraelectric-ferroelectric transition. However, the corrections due to quantum

fluctuations renormalise the action, causing a metaelectric boundary to peel

away from the first order transition associated with the forbidden region. This
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Figure 8.3: The specific heat capacity per
unit cell at v = 3, u = −0.98 at two
different r values either side of the first order
metaelectric transition.

metaelectric transition is consistent with recent experimental evidence for a first

order phase transition [68] in SrTiO3. In both of the planes considered, the line of

first order metaelectric transitions covers an extensive region of the phase diagram,

terminating in a tricritical point at u = 0. The polarisation formed upon crossing

this boundary is vanishingly small at u . [224(6/π)2/3r2−225v]/1350, being caused

by a logarithmic singularity in the free energy. The first order transition at small u

is destroyed at non-zero temperature, with the tricritical point moving up the line

of transitions to u ≈ 6πT̃ 1/2v/r.

A further ramification of the quantum fluctuation corrections is that the rotation

of the polarisation from Ising to Heisenberg-like no longer occurs where v turns

negative. Though, as for the mean-field case, the magnitude of the polarisation is

conserved, fluctuations have renormalised the quartic terms and shifted the phase

boundary in Fig. 8.2(b). This behaviour can also be recovered by a renormalisation

group analysis [330]. One experimental probe of the metaelectric transition is the

changing behaviour of the heat capacity C = −T∂2F/∂T 2. As shown in Fig. 8.3

before the metaelectric transition (at r = −0.2) the relevant optic mode is “soft” and

so the heat capacity follows the customary quantal form C ∼ T 3, whereas after the

metaelectric transition (at r = −1.0), the relevant optic modes are “stiff” and so the

heat capacity has an exponential dependence on temperature. At high temperature,

in both cases the heat capacity has the expected classical behaviour C = 3kB.
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Table 8.2: Upper: inverse susceptibility of the longitudinal-optic term in the quantum critical
and paraelectric regime. Lower: inverse susceptibility of the transverse-optic term comprised of the
different components of G

(o)−1
α,β , in the limit of small g and h, where R = r + g/3 and γ = qD/R.

Longitudinal-optic term

Quantum
critical

(5u+3v)R

4π2 (γ
√

1 + γ2−sinh−1 γ)+R+ 5u+3v
18

T̃ 2 T̃ ≪ qD/2

R+ (5u+3v)
√

R

3π2 (γ − tan−1 γ)T̃ T̃ ≫ qD/2

Paraelectric R+ coth(∆/2T̃ )

Transverse-optic term

g2 0 T̃ ≪ √
g/2

5u+3v
120

√
gT̃ T̃ ≫ √

q/2

ghq2
0 T̃ ≪ √

g/2

− 5u+3v
20

√
ghT̃ T̃ ≫ √

g/2

(hq2)2
h2(5u+3v)

15π

(
3q2

D

16
+ π2

2
T̃ 2
)

T̃ ≪ qD/2
2qD
15π

h2T̃ T̃ ≫ qD/2

u2φ4

guφ2 0 All T̃
hq2uφ2

8.3.2 Inverse susceptibility

The inverse susceptibility provides an experimental window [69, 332, 333] onto

the quantum critical properties of ferroelectrics. The inverse susceptibility χ−1 =

∂2F/∂φ2|φeqm calculated from our formalism is presented in Table 8.2, where the

contribution from the longitudinal-optic part of the free energy and the transverse-

optic term are presented separately; for the latter term the contributions from the

separate components of G
(o)−1
α,β , namely gqαqβ/q

2, −hqαqβ , and 4uφαφβ are also

shown individually.

In the paraelectric regime we recover the expected Barrett’s formula [337] for a

gapped system. In the quantum critical regime we see three characteristic types of

behaviour. At low temperature the transverse-optic contribution dominates, with

the linear temperature dependence due to the g2 term giving a positive slope to

the inverse susceptibility whereas the ghq2 term would provide a negative slope. At

higher temperatures the T 2 contribution from the mean-field term dominates, which

is also characteristic of quantum critical behaviour and is in good agreement with

recent experimental results [69]. We note that the T 2 behaviour is recovered by other

models, including a diagrammatic resummation [327, 328], the quantum spherical

model [338], renormalisation group studies [339, 340], and an analogy to the temporal

Casimir effect [331]. The behaviour has also been observed experimentally [69,
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Figure 8.4: The inverse dielectric constant of SrTiO3 taken from Rowley et al. [69]. The left-hand
plot demonstrates the cross-over from ǫ−1 ∼ T 2 to ǫ−1 ∼ T at ∼ 60K, and the central plot shows
the results of a power law fit ǫ−1 ∼ T γ ; the features marked with arrows are experimental artifacts
not covered by the model. The right-hand plot highlights the low-temperature minimum in the
inverse dielectric constant.

332, 333]. In both SrTiO3 and KTaO3 the linear negative slope χ−1 ∼ −T and

the quadratic χ−1 ∼ T 2 term conspire to cause a characteristic minimum in the

inverse susceptibility. Estimated using the parameters in Table 8.1, for SrTiO3 the

minimum occurs at T = 1.1K, whereas for KTaO3 the minimum is at T = 0.8K,

which gives a good description of the recent low temperature measurements [69] that

are reproduced in Fig. 8.4 and Fig. 1.11. Finally, at high temperatures a classical

term χ−1 ∼ T from the longitudinal-optic term dominates. This is predicted to be

from 76K in SrTiO3 and 180K in KTaO3, which is again in good agreement with

the experimental observations [69], that for SrTiO3 are reproduced in Fig. 8.4.

8.4 Discussion

In this chapter we have found that the polar transverse-optic phonons can drive a

displacive ferroelectric through a first order metaelectric transition, and also lead to a

characteristic minimum in the inverse susceptibility. However, another mechanism,

coupling of the soft optic modes to acoustic phonons could be significant. It has

already been shown by Pálová et al. [331] that a coupling with the acoustic phonons

ϕ of the form −η(∇ϕ)φ2 leads to a correction in χ−1 of −T 4 that could explain

the characteristic minimum in the inverse susceptibility, and also has the capability

of driving a first order transition [69, 331]. This work and the results presented

here motivate further experimental investigations into the inverse susceptibility and



140 CHAPTER 8. PARAELECTRIC-METAELECTRIC TRANSITION

putative metaelectric transition to shed light on the quantum critical dynamics in

ferroelectrics.

The low temperature behaviour of the inverse susceptibility provides a useful

probe into the low-temperature symmetry of ferroelectric materials. The predicted

behaviour of the inverse susceptibility χ−1 ∼ T 2 is indicative of cubic symmetry,

whereas a system with tetragonal symmetry would have χ−1 ∼ T 3 [338]. Though in

typical multidomain materials the effective symmetry is cubic, the current unknown

symmetry of SrTiO3 at low temperature poses an interesting point for further

investigation. The crossover from the Barrett formula to the χ−1 ∼ T 2 behaviour

seen in the quantum paraelectric phase [332, 341] should also provide a measure of

the vicinity to a quantum critical point.

Long-range dipole interactions play an important role in ferroelectrics [327, 330].

The inclusion of the term (g − hq2)φ2 in the action was pivotal in creating

the correction to the inverse susceptibility χ−1 ∼ −T that could explain the

characteristic inverse susceptibility minimum [69], as well as provide important

corrections to the self-consistent phonon treatment presented by Rowley et al.

[69]. Though the coupling to acoustic phonons complicated the solid state system,

ultracold atoms in an optical lattice with long-range dipole interactions [342] present

a clean system that could provide a powerful tools to help unravel the properties of

the generic Hamiltonian.

One important simplification was to model the ferroelectric with undamped

dynamics. Damping would primarily arise due to free electrons, which can

be introduced controllably through doping. Analogous to “avoided criticality”

at a magnetic critical point which leads to non-Fermi liquid behaviour and

superconductivity, ferroelectrics might also be expected to adopt novel behaviour;

for example doped SrTiO3 [343], and conducting in the undoped state Tin Telluride

(SnTe) [344] and Germanium Telluride (GeTe) [345] both become superconducting

at low temperatures. This area presents a promising avenue of research. Further

open questions are to determine whether with just a change of parameters [330, 346]

the same formalism be applied to order-disorder ferroelectrics, and to consider the

consequences of the coupling of fluctuating polarisation and magnetisation that
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could arise in Europium Titanate (EuTiO3) [347].
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A.1 Scattering length

Due to the importance of the exquisite level of control of interaction strength in

atomic gases, in this appendix we review the natural parameter used to express

the interaction strength – the scattering length [37]. At large separation ultracold

atoms experience each others fluctuating electric dipole so attract via a van der

Waals potential ∝ r−6; whereas at short separation (a few Bohr radii) their electron

clouds strongly repel leading to a “hard-core” repulsion. The atomic gases studied in

experiments are typically both ultracold and ultradilute so the de Broglie wavelength

and interparticle distance are much larger than the range of the interatomic potential

and the details of the interatomic scattering potential are unimportant.

We start by considering elastic collisions between atoms with a central scattering

potential in their centre-of-mass frame, using r to denote their separation. The wave

function ψ(r) is the sum of an incident plane wave eik·r and an outgoing scattered

wave

ψ(r) = eik·r +
f(k′,k)eikr

r
. (A.5)

Here f(k′,k) is the scattering amplitude from the incident plane wave to a direction

along k′, and energy conservation demands that |k′| = |k|. As the potential is

central, and is approximately a contact interaction, we only need to consider the

zero angular momentum s-wave scattering component so [348]

f ≈ 1

|k| cot δ − i|k| . (A.6)

Here δ is the scattering phase shift that the atomic wave function receives in a

collision and governs the behaviour of the gas. Therefore, for low momentum

|k| cot δ ≈ −1

a
+
Reff|k|2

2
, (A.7)

where Reff is the effective range of the potential. In this limit the scattering length
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is

a = − lim
|k|≪1/R

tan δ

|k| . (A.8)

For 1/kFa < 0 the interaction is weakly attractive and we are in the BCS regime of

weakly bound Cooper pairs. At 1/kFa > 0 the interaction is sufficiently attractive

that there is a two-body bound state with energy −~
2/ma2 available and we are

in the BEC regime of tightly bound molecules. The BEC-BCS crossover occurs at

1/kFa = 0. The interaction strength itself is tuned using a Feshbach resonance,

which was described in Sec. 1.3.1.

The scattering potential is often weak motivating the Born approximation. Using

the Green’s function for the Schrödinger equation G(r) = −eikr/4πr the general

solution to the scattering problem in potential V (r) takes the form

ψ(r) = ψ0(r)−
m

2π~2

∫
eik|r−r′|

|r− r′| V (r′)ψ(r′)dr′ . (A.9)

Next we invoke the Born approximation, which tells us that the incoming plane-wave

is not substantially altered by the potential so ψ(r) ≈ ψ0(r) and therefore

f(k,k′) = − m

2π~2

∫

e−i(k−k′)·r′V (r′)dr′ . (A.10)

Finally for the low-energy s-wave scattering occurring in ultracold atomic systems

the Born approximation becomes

f = − m

2π~2

∫

V (r′)dr′ , (A.11)

and so any short-range potential acting between atoms can be approximated by a

contact potential.

To close the discussion of the scattering length we note that the physical meaning

of the scattering length is the intercept of rψ on the radial axis, as shown in Fig. A.5.

This is positive for a wave function that curves over and is bound, whereas it is

negative for a divergent unbound wave function. This visualisation means that the

scattering length is sometimes called the extrapolated Fermi intercept.
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Figure A.5: The scattering length a of a
wave function shown by the bold line in an
attractive scattering potential radiusR. The
extrapolation performed to find the Fermi
intercept is shown by the dashed line.

.

A.2 Path integral formulation

In this appendix we introduce the path integral formalism, also known as functional

integral, integral over trajectories, or continuous integral, this is an analytical

approach to solving the many-body problem. Our formalism is focused on quantum

mechanics, where it was first used in 1953, however the method may be applied to

many other areas [17, 349]; for example it was first used in 1921 to analyse diffusion

and Brownian motion [17], and it has also been applied to model option pricing on

the stock market [8, 17].

The basic premise of the functional integral is to calculate the quantum partition

function – a summation over all possible states of the system. In general this is not

tractable, but one approach is to focus attention on those terms which make the

most significant contribution to the summation over states. First one identifies the

dominant term, and then accounts for a small subset of related terms, but discards

the less relevant high energy contributions. Firstly, in App. A.2.1 we construct the

path integral for a single particle. Next we formulate the tools to handle many-body

states in App. A.2.3 and finally the many-body formalism is developed in App. A.2.4.

A.2.1 Single-particle quantum path integral construction

Our route to develop the path integral is to start by focusing on the propagator

that describes how the wavefunction changes in both space and time. In order to

evolve the wave function with a time development operator [111], it is convenient to

propagate the wave function forward for many successive small time intervals. To

affect this the time development operator is considered as the accumulated action
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of N operators [8], each with small time-step ∆t = t/N ,

e−iĤt =
(

e−iĤ∆t
)N

. (A.12)

Using Ĥ = T̂ + V̂ the time development operator can be factorised as the product

of kinetic T̂ and potential V̂ energy exponentials in the limit of small ∆t (N ≫ 1)1

e−iĤ∆t = e−iT̂∆te−iV̂∆t +O(∆t2) . (A.13)

A complete basis set of momentum |p〉 and position |r〉 state vectors diagonalises

the exponentials containing the time evolution of the kinetic and potential parts

respectively. We also note that the resolution of the identity can be expressed as an

integral over the state vectors

Î =

∫∫

|r〉 〈r|p〉 〈p|drdp . (A.14)

A resolution of the identity is inserted between each pair of evolution operators in the

factorised time development operator Eqn. (A.12) and Eqn. (A.13). We use index

n to denote separate time-steps. The time development operator acting between

states |rI〉 and |rF〉 is then

〈

rF

∣
∣
∣e−iĤt

∣
∣
∣ rI

〉

= lim
∆t→0

〈

rF

∣
∣
∣
∣
∣

N∏

n=1

(

Îne
−iT̂∆te−iV̂∆t

)
∣
∣
∣
∣
∣
rI

〉

= lim
∆t→0

∫∫

e−i∆t
∑N

n=0(V (rn)+T (pn+1)−pn+1·(rn+1−rn)/∆t)

×
N−1∏

n=1

(drn)
N−1∏

n=1

(
dpn
2π

)

. (A.15)

In the limit of zero time-step, ∆t → 0, both position and momentum variables

become continuous, (rn+1 − rn)/∆t 7→ ṙ|t, ∆t
∑N

n=0 7→
∫ t
0 dt′, and we define the

1More formally ∆t is much smaller than the reciprocal of the dominant eigenvalues of the
Hamiltonian.
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functional integral

∫∫ N−1∏

n=1

(drn)
N−1∏

n=1

(
dpn
2π

)

7→
∫∫

r(t)=rF

r(0)=rI

DrDp , (A.16)

that combined with Eqn. (A.15) yields the final expression for the matrix element

〈

rF

∣
∣
∣e−iĤt

∣
∣
∣ rI

〉

=

∫∫

r(t)=rF

r(0)=rI

e
i

S
︷ ︸︸ ︷

∫ t

0

L
︷ ︸︸ ︷(

p · ṙ−
〈

p,r
∣
∣
∣Ĥ
∣
∣
∣p,r

〉)

dt′

DrDp . (A.17)

By analogy with the Lagrangian formulation of classical dynamics [350], the term L

represents the Lagrangian of the trajectory2, and S is the action. From the above

result for the propagator we can find the Green’s function that describes a particle

propagating from rI to rF in time t

G(rF,rI,t) = Θ(t)
〈

rF

∣
∣
∣e−iĤt

∣
∣
∣ rI

〉

= Θ(t)

∫∫

r(t)=rF

r(0)=rI

ei
∫ t
0(p·r−〈p,r|Ĥ|p,r〉)dt′DrDp , (A.18)

where the Heaviside function Θ(t) ensures causality since the particle cannot

propagate backwards in time. By making a Wick rotation t = −iβ to imaginary

time β, which represents temperature, we can derive the quantum partition function

Z =

∫ 〈

r

∣
∣
∣e−βĤ

∣
∣
∣ r
〉

dr , (A.19)

that sums over all possible particle path start and end points.

A.2.2 Path integral visualisation

A visualisation of the Feynman path integral is shown in Fig. A.6. We build

up from a double slit experiment to the continuum limit. Starting with just

two possible paths (a), and then in (b) several possible path combinations, by

2The mapping, for a single particle, p 7→ ~k and E 7→ ~ω gives the Lagrangian L = ~(k ·x−ω).
Hence, the action represents the total phase evolution of the particle along its path.
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(a) (b) (c) (d)

rI

rF

n

Figure A.6: The two paths from a source to screen in a double slit diffraction experiment are
shown in (a). A many slit experiment is shown in (b), there are now many possible paths. In the
large number of slits limit, we get the continuum empty space limit shown in (c) of the path from
rI to rF. The Gaussian probability distributions around the minimum action path are shown at
successive time-steps indexed by n. The classical path chosen by the path integral is shown in (d),
with possible fluctuations integrated over shown by the dotted paths.

increasing the number of screening layers and slits until one reaches an infinite

number, the screens disappear and the space becomes continuous recovering an

integral over paths. Distance up a particular screen corresponds to position r, and

passing through successive screen is analogous to time evolution. The Feynman

path integral allows all such possible paths in phase space to be sampled. To

evaluate the integral practically simplifications must be made, one approximation is

to focus on the contributions around the stationary path that minimises the action

is found. Paths around it, which correspond to quantum fluctuations, are then

evaluated by expanding to quadratic order, and contributions from more distant

paths will deconstructively interfere so are neglected. The path weights are then the

Gaussian distributions shown. The Gaussian weight ∼ e−r
2
i /2σ

2
i at each time-step,

corresponding to which slit has just been passed through is then integrated over at

subsequent time-step (corresponding to the nth slit) resulting from the Dr =
∏

n drn

to recover the total action associated with the path. This action can renormalise

the saddle point path, which must then be re-evaluated.

A.2.3 Coherent states

We would now like to extend the path integral to deal with a many-particle

system. To do this we take advantage of the already well-established creation

and annihilation operator formalism within the framework of second quantisation

and formulate a field theoretic representation. To follow this prescription we first
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need to analyse the properties of the creation and annihilation operators, chiefly

the annihilation operator eigenstates, known as coherent states [8]. As a coherent

state is unaffected by a measurement (written in terms of an operator containing

a and a†) they are the quantum states that are most like classical states. The

creation operators cannot posses eigenstates3, however annihilation operators do.

The bosonic coherent states are

|φ〉 ≡ e
∑

i φia
†
i |Ω〉 . (A.20)

The elements φi are complex numbers that are the eigenvalues of the annihilation

operator, that is ai|φ〉 = φi|φ〉. Therefore, the probability of detecting a second

particle is the same as the probability of detecting the first, a prerequisite for Poisson

statistics. In a similar fashion, the fermionic coherent states are

|η〉 ≡ e−
∑

i ηic
†
i |Ω〉 . (A.21)

The elements ηi are the annihilation operator eigenvalues ci|η〉 = ηi|η〉. Since the

fermionic field operators obey anticommutation relations, elements ηi are Grassmann

numbers. They obey Grassman algebra, for example they anticommute, ηiηj =

−ηjηi, obey the Pauli exclusion principle as ηiηi = 0, and have the rules of calculus4

∂ηjηi = δi,j ,
∫

dη = 0, and
∫
ηdη = 1.

Whilst the annihilation operator has eigenstates, when the creation operator

3If the minimum number particles to describe state |φ〉 is n then the minimum number required
to describe a†|φ〉 is n+1. These requirements are inconsistent so a contradiction arises, the creation
operator cannot have eigenstates. This issue does not arise with the annihilation operator.

4The Berezin integration [351] rules of calculus are consistent with the requirement that
Grassmann calculus be linear

∫

aA(η) + bB(η)dη =

∫

aA(η)dη +

∫

bB(η)dη , (A.22)

and obey the partial integration formula

∫

f(η)

(
∂g(η)

∂η

)

dη =

∫ (
∂f(η)

∂η

)

g(η)dη , (A.23)

from which it follows that
∫
∂f(η)

∂η
dη = 0 . (A.24)

The fact that differentiation is identical to integration is consistent with the identity η2 = 0, so
the rules uniquely define a map as variables are either constant or linear.
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acts on a coherent state, it behaves as a differential operator, a†i |φ〉 = ∂φi |φ〉, and

c†i |η〉 = −∂ηi |η〉. It can be shown that the overlap between coherent states is

〈φ′|φ〉 = exp(
∑

i φ̄
′
iφi), and 〈η′| η〉 = exp(

∑

i η̄
′
iηi). From these relations appropriate

normalisation for a resolution of the identity operator immediately follows, where

both bosonic and fermionic coherent states form overcomplete sets of states in Fock

space. Finally, to lay the foundations on which to build the functional integral

formulation we note that for complex number variables, Gaussian integrals can be

extended to

∫

e−φ
†
AφD

(

φ†,φ
)

= π
NdetA−1 , (A.25)

whereas in the Grassmann variable case, Gaussian integration gives

∫

e−η̄
T

AηD (η̄,η) = detA . (A.26)

A.2.4 Many-body quantum path integral construction

Now that we have developed an efficient many-body representation we can proceed

with the quest to find the many-body quantum partition function. It is possible

to re-write the Hamiltonian in terms of creation and annihilation operators. Using

the ideas from the single particle case, it is therefore possible to formulate [8] a

functional integral for a many-body system using coherent states. We start with the

quantum partition function that is defined as

Z =
∑

n

〈

n
∣
∣
∣e−β(Ĥ−µN̂)

∣
∣
∣n
〉

. (A.27)

The summation over n extends over states {|n〉} containing n particles, giving a

complete Fock space. The quantum partition function is therefore in the grand

canonical ensemble [352].
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We insert a resolution of the identity Î =
∫

e−
∑

i ψ̄iψi |ψ〉〈ψ|d[ψ̄,ψ] 5 so

Z =

∫

e−
∑

i ψ̄iψi
∑

n

〈n|ψ〉
〈

ψ
∣
∣
∣e−β(Ĥ−µN̂)

∣
∣
∣n
〉

d[ψ̄,ψ] . (A.28)

A sign difference arises when the element 〈n|ψ〉 is now commuted through the

expression, we take the positive for bosons 〈n|ψ〉〈ψ|n〉 = 〈ψ|n〉〈n|ψ〉, and negative

for fermions 〈n|ψ〉〈ψ|n〉 = −〈ψ|n〉〈n|ψ〉 giving the ± factor in

Z = ±
∫

e−
∑

i ψ̄iψi
∑

n

〈

ψ
∣
∣
∣e−β(Ĥ−µN̂)

∣
∣
∣n
〉

〈n|ψ〉d[ψ̄,ψ] . (A.29)

We use the resolution of the identity
∑

n |n〉〈n| = Î to remove the dependence on

number states

Z = ±
∫

e−
∑

i ψ̄iψi

〈

ψ
∣
∣
∣e−β(Ĥ−µN̂)

∣
∣
∣ψ
〉

d[ψ̄,ψ] . (A.30)

We then follow the method prescribed in the single particle case Sec. A.2.1; consider

small time steps, insert resolution of the identity operators written in terms of the

new coherent state basis, and let the time-steps tend to zero6. We finally get

Z =

∫

e−
∫ β
0 ψ̄∂τψ+H(ψ̄,ψ)−µN(ψ̄,ψ)dτD

(
ψ̄,ψ

)
. (A.31)

Here the Hamiltonian and number operators may be written in terms of creation

and annihilation operators. For example the number of electrons in a state with

wave vector k is 〈ψ|n̂k|ψ〉/〈ψ|ψ〉 = 〈ψ|c†kck|ψ〉/〈ψ|ψ〉 = ψ̄kψk. The fields ψ and

ψ̄ represent the interacting particle states, which could be visualised in terms of

5The field ψ is a complex number whose real and imaginary parts are separate variables which
must be integrated over independently, therefore we use d[ψ̄,ψ] = dℜ(ψ)dℑ(ψ).

6By construction, as a result of discretisation analogous to Eqn. (A.15), the field ψ̄ is
evaluated infinitesimally later than field ψ. Therefore a multiplicative factor exp(−iωδ) should
be associated with every ψ̄, with δ an infinitesimal interval of time. This term may ensure
convergence in Matsubara frequency summations, notably the otherwise divergent

∑

ω G0(ω,C) =
limδ→0+

∑

ω 1/(−iω exp(−iωδ) + C) = nF(C).
Though Heisenberg’s uncertainty principle [353, 354] indicates that δ ∼ 1/max(ω), this does

not prevent the exponent from tending to zero. This is ensured by a careful choice of oblong
integration contour, with its major axis along the complex axis defining the maximum frequency
and so minimum δ, and minor axis along the real axis giving that frequency which multiplies the
time-step [355].
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Feynman diagrams.

The functional integral Eqn. (A.31) is currently in the time representation.

However, one could make the fields periodic, ψ(τ) = ψ(τ + β) for bosons and

η(τ) = −η(τ + β) for fermions so that they could be expressed in terms of a Fourier

series [356]. This representation is often more convenient if the Hamiltonian is time

independent. We would then have to sum over the Matsubara frequencies,

ωn =







2nπ/β bosons,

(2n+ 1)π/β fermions,

n ∈ Z , (A.32)

whose values reflect boson (fermion) particle exchange symmetry (antisymmetry).

In evaluating the coherent state part integral, the terms in the field can be

divided into two different types, as shown in Table A.3. First is the classical term

in which the field is constant in time. They are classical since they are akin to what

is seen in the Feynman path integral where time evolution is not necessary since the

momentum and space operators commute (the classical limit corresponds to ~→ 0).

Second are those terms that do evolve with time which lie in the quantum sector.

These two sectors can be further divided into those terms that do and do not vary

in space where the former can change the total number of particles, and the latter

shift them around. Finally, we note that the constant homogeneous field, which

often corresponds to the saddle point solution for the field, is still integrated over

despite the saddle point approximation. This is because the coherent state path

integral operates within the grand canonical regime where the chemical potential

is fixed, but the total number of particles is not. However, the inclusion of a path

integral over variations in this field can lead to problems, chiefly because the action

will contain a term of the form φ0φfl, where φ0 is the saddle point field and φfl

variation around it. The dogmatic solution is to neglect the variations φfl, with

the consequence that the coherent state path integral accounts for the majority of

the terms in the summation of the grand partition function, and assume that the

variations in φfl are just one of an infinite multitude of terms and therefore can be

neglected. The alternative pragmatic solution is to sidestep the problem and ignore

the term φ0φfl, but include variations of the type φ2
fl.
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Table A.3: The consequences of time (frequency ω) and spatial (wave vector q) fields in a a
coherent state path integral.

q = 0 q 6= 0

ω = 0
Classical sector

Changes total number of particles,
often the saddle point solution

Spatial fluctuations at constant to-
tal number of particles

ω 6= 0
Quantum sector

Fluctuations change total number
of particles

Full quantum fluctuations in space
and time

A.2.5 Hubbard-Stratonovich transformation

The Hubbard-Stratonovich transformation can be used to decouple an interaction

term ψ̄ψ̄ψψ that is quartic in the field ψ and make it quadratic at expense

of introducing an auxiliary field φ. Once the action is quadratic in ψ we can

integrate over that variable. The transformation is based on the identity 1 =
∫

exp(−1
4φiV

−1
ij φj)Dφ where we have then mapped φi 7→ φi + 2iVij ρ̂j to get

exp (−ρ̂iVij ρ̂j) =

∫

exp

(

−1

4
φiV

−1
ij φj − iφiρ̂j

)

Dφ , (A.33)

where i and j are indices of some generalised basis set, and the density operator is

ρ ∼ ψ̄ψ. The Hubbard-Stratonovich transformation should be deployed whenever

the particles form characteristic pairs, for example Cooper pairs in superconductors

or spin pairs in ferromagnetism. It should not be used to, for example, decouple the

quartic interaction term in describing BEC, where the ground state particles are not

paired and so should not be forced to do so by the mathematical formulation.

A difficulty arises as there is a choice in how to decouple the original field ψ, in

momentum space there are three main choices or channels for the decoupling:

Direct channel: We use ρ̂q =
∑

p ψ̄σpψσp+q. The parameter q represents how far

from the Fermi surface the particles are excited from/to. This is tailored for

analysing problems involving the Coulomb interaction of charge in the normal

phase.

Exchange channel: Here ρ̂q =
∑

p ψ̄σpψσ′p+q. The parameter q represents how

far from the Fermi surface the particles are excited from/to. This channel

is similar to the direct except that it also carries spin structure, making it
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Scheme n↑(r)n↓(r) =
Rotational Hartree-

References
invariance Fock

i 1
2ρ(r)− 2S2

z (r) ✗ ✓ [291, 357]
ii 1

4ρ
2(r)− 1

3S
2(r) ✓ ✗ [358–361]

iii 1
4ρ

2(r)− (ez · S(r))2 ✗ ✓ [362, 363]
iv 1

4ρ
2(r)− (φ(r) · S(r))2 ✓ ✓ [293, 294]

Table A.4: Approximation schemes used in the Hubbard-Stratonovich decomposition of the
interacting term gn↓(r)n↑(r), where ρ(r) = n↑(r) + n↓(r), Sz(r) = n↑(r) − n↓(r), and S(r) is
the total particle spin. Whether the scheme obeys rotational invariance and gives the correct
Hartree-Fock result is indicated. Previous uses of each scheme are referenced.

suitable for problems with magnetism. It can itself be split into three channels

representing the three magnetisation directions.

Cooper channel: In this case ρ̂q =
∑

p ψ̄σpψ̄σ′q−p. The parameter q represents

the deviation from a true Cooper pair with no centre of mass motion. This is

suited to problems involving superconductivity.

Whichever decoupling channel we choose, the Hubbard-Stratonovich transformation

is exact, but the choice is influenced by what further approximations will be

necessary to do the functional integral over the auxiliary field. In each case a

suitable decoupling channel will generate an auxiliary field that depends on a

small momentum q, meaning the interaction has overall low energy, facilitating

an expansion in the auxiliary field. The other two momenta involved in the problem

are on the same scale as the Fermi momentum since the particles involved in

the interaction and excitations are typically near the Fermi surface. If following

the Hubbard-Stratonovich transformation just a mean-field analysis is performed

on the auxiliary field, the scheme generates the Hartree-Fock approximation (HF)

terms. The Gaussian fluctuations in the auxiliary field can be included by a further

functional integral. This generates a ring of RPA-like contributions and a more

accurate estimate of the ground-state properties. Essentially the choice of decoupling

channel determines which terms are included in the summation for the quantum

partition function.
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A.2.6 Choice of Hubbard-Stratonovich transformation

As a case study of choosing an appropriate Hubbard-Stratonovich transformation

we look at the contact interaction studied in Chp. 6 and Chp. 7, where the goal was

to study itinerant ferromagnetism. The interaction term in the Hamiltonian takes

the form

H = g

∫

n↑(r)n↓(r)dr, (A.34)

for spin-up density n↑ and spin-down density n↓. We decouple the interaction,

quartic in fields, using a Hubbard-Stratonovich transformation in the exchange

channel as we are searching for ferromagnetism. There are several possibilities even

for the decomposition in this channel, making the method ambiguous. Though any

decomposition is exact, approximations made following a decomposition to continue

the analysis can lead to different results as contrasting contributions are included

in the approximation for the partition function. There are myriads of possibilities,

four characteristic types that have been used in previous studies are outlined in

Table A.2.6.

The first approach (i) has a field with just a single component along the z-axis.

The initial rotational symmetry is lost which implies a physical deficiency with this

scheme. The second method (ii) contains a scalar product of a vector form for the

spin and so is rotationally invariant. However, if the analysis is continued through

in the mean-field limit it does not give the correct Hartree-Fock equations for the

Hamiltonian, but instead maps the interaction parameter g 7→ g/3. Therefore, the

scheme does not properly comply with the Pauli exclusion principle. The third (iii)

and fourth (iv) approaches feature a choice of vector φ. If a single component

is chosen, for example along the z-axis, in approach (iii), then much like in the

first scheme (i) the rotational symmetry is lost. However, in approach (iv) the

choice of axis is functionally integrated over so rotational invariance is preserved.

The fourth method also gives the correct Hartree-Fock equations; it is the simplest

scheme to both preserve rotational invariance and obey Pauli exclusion, motivating

its deployment in Chp. 6 and Chp. 7.
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A.3 Phase transitions

Phase transitions [56] play an important rôle in the universe. Large scale structure

in the cosmos formed in phase transitions soon after the Big Bang; later phase

transitions shaped galaxies and stars. In our lives the transition of water between

ice, liquid, and vapour play an important part in shaping our world. The ice-

liquid and liquid-vapour phase transitions of water are both first-order, meaning

that latent heat is released as the substance temperature changes infinitesimally

across the transition (at 0◦C and 100◦C respectively). Those transitions which do

not involve latent heat, known as continuous or second-order (or higher) transitions

are interesting as the typical length and time scales diverge on approaching the

phase boundary. The phase transitions that we observe in everyday life are driven

by thermal fluctuations in the classical limit. However, at low temperatures quantum

phase transitions are driven by quantum fluctuations which can lead to novel and

unexpected phases that are the subject of cutting edge research. We now present a

general approach to analyse phase transitions that can be applied to a vast range of

systems.

A.3.1 Landau mean-field theory

The degrees of freedom that usually describe phase transitions are long-range

collective excitations [8]. We can therefore increase the resolved length-scales by

coarse-graining the system and represent the average of a system property around a

point in space by an order parameter. A suitable coarse-grained Hamiltonian obeys:

Locality: The Hamiltonian depends only on the local order parameter and the

short range interactions described by its gradients.

Rotational symmetry: Without an external field the Hamiltonian must be

invariant under a rotation of the order parameter.

Translational and rotational symmetry in the position variable: This al-

lows us to write the Hamiltonian in terms of a power expansion in the order

parameter and its gradients.
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Any Hamiltonian falling in this class is a Ginzburg-Landau Hamiltonian. Using m to

represent the order parameter (magnetisation) and h the external (magnetic) field

the Ginzburg-Landau free energy density is

f(m,h) =
βF

V
=
t

2
m2 + um4 + vm6 +

K

2
(∇m)2 +

L

2
(∇2m)2 +

N

2
m2(∇m)2 − hm .

(A.35)

We keep only the lowest order terms in the expansion since at the critical point m̄

is often small, and to ensure stability we require the coefficient of the highest order

term be positive, meaning that here v > 0.

The more general Ginzburg-Landau phenomenology accounts for a spatially

varying order parameter. If it is assumed that spatial variation always costs energy

then the order parameter can be assumed to be uniform, and the gradient terms

can be dropped, which gives the Landau mean-field theory. The quantum partition

function for the system is

Z[β,H] =

∫

e−βH[m,H]Dm . (A.36)

By minimising the free energy density with respect to its order parameter we can

find the saddle point solution for the quantum partition function. This provides a

mean-field approximation for the quantum partition function

Z[β,H] = e
−β

F [H]
︷ ︸︸ ︷

min
m

(H[m,H])
. (A.37)

The behaviour, with h = 0 is shown in Fig. A.7. We see second order transitions

are associated with the quadratic term turning negative; first order transitions

occur where the quartic term becomes negative. Finally, we note that at a first

order transition the free energy has two degenerate minima, which necessarily move

differently with temperature resulting in latent heat T∆S = T∂f/∂T being emitted.

At the first-second order transition crossover at t = 0 = u there is a tricritical point

where the free energy curve has three degenerate minima.
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Figure A.7: For the system with free
energy density Eqn. (A.35), the bold line
shows the phase boundary in the t,u plane,
and the circle highlights the tricritical point.

Disordered phase

Ordered phaseTricritical point

Second order

First order

t

u

A.4 Quantum Monte Carlo background

In this appendix we introduce the ab initio QMC computational technique employed

in this thesis to examine strongly correlated states. This powerful stochastic method

enables investigators to not only study otherwise intractable many-body problems,

but it is also formally exact (except for the fixed-node approximation), and so is

used to study many-body theory with an accuracy that is usually not achievable

with analytical methods. The QMC method calculates the energy via a Monte

Carlo integral, and then employs the variational principle to minimise the energy

and determine the ground state, using an algorithm that is outlined below.

A.4.1 Variational principle

The Ritz variational principle [354] states that the expectation value of the

Hamiltonian operator Ĥ in the state |ψ〉 is greater than or equal to the Hamiltonian

ground eigenstate energy E0. Equality occurs if and only if |ψ〉 is the ground

eigenstate |ψ0〉,

E =
〈ψ| Ĥ |ψ〉
〈ψ|ψ〉 ≥

〈ψ0| Ĥ |ψ0〉
〈ψ0|ψ0〉

= E0 . (A.38)

This principle places an upper bound on the ground-state energy E0. To implement

this principle in VMC, we re-write the energy as

E =

∫
|ψ(R)|2EL(R)dR
∫
|ψ(R)|2dR . (A.39)
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Here EL(R) = ψ−1(R)Ĥψ(R) denotes the local energy, where R = {ri} denotes

the positions r of all of the N particles in the system. The energy E can now be

minimised with respect to free parameters in the trial wave function ψ to find the

ground-state ψ0.

A.4.2 Monte Carlo integration

To evaluate a d-dimensional integral I =
∫
fdV , a conventional quadrature method

might distribute points in a d-dimensional cubic mesh of N points, evaluate the

function at each point and apply a Newton-Cotes formula, for example Simpson’s

rule [356]. The error in the Simpson’s rule estimate scales as N−4/d. As the number

of dimensions increases, the error decays more slowly withN so the problem becomes

intractable. A typical system studied using QMC might be three-dimensional and

contain 100 electrons; therefore to use Eqn. (A.39) to calculate the energy, a 3×100 =

300 dimensional integral
∫

dR =
∫ ∏100

i=1 dri needs to be evaluated. Due to its high

dimensionality, rather than use a conventional quadrature method, this problem is

perfectly suited to Monte Carlo integration.

A Monte Carlo algorithm [356] samples the integrand f at N pseudo-random

points {Rn} within the integral boundaries (which define an integration volume V ).

In QMC, a particular point {Rn} is known as a configuration, walker, or psip [15].

The estimate of the integral is then

I =
V

N

N∑

n=1

f(Rn) ≡ V 〈f〉 , (A.40)

where 〈f〉 is the sample mean of the integrand. The variance of this estimate is

σ2 =
V

N(N − 1)

N∑

n=1

(f(Rn)− 〈f〉)2 . (A.41)

The error in the estimate for the integral decreases as ∼ N−1/2, a substantial

improvement over Simpson’s rule. An importance sampling transformation [15] can

improve the estimate still further by focusing the sampling to where the integral

changes most rapidly. We re-write f(Rn) = w(Rn)g(Rn) where the unnormalised
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probability distribution w(Rn) is chosen to make g(Rn) as smooth as possible. The

integral is then

I =

∫
wgdV
∫
wdV

, (A.42)

which may be evaluated as

I =
V

N

N∑

n=1

g(Rn) . (A.43)

The configurations are now sampled according to w/
∫
wdV . The variance of the

estimate reduces with a good choice of unnormalised probability distribution. To

estimate the energy Eqn. (A.39) we take w = |ψ|2/
∫
|ψ|2dR [15], and use the local

energy density g(Rn) = EL(Rn).

To implement the importance sampling transformation the distribution w must

be normalised, which requires its integral to be known, the very quantity we are

trying to evaluate. The Metropolis rejection algorithm [129] overcomes this difficulty,

allowing the distribution to be sampled directly without its normalisation. A single

configuration starts at a random position, at a later step i the configuration is

Ri. A move sampled from a Gaussian centred on the current configuration to R′
i is

proposed, and then if |ψ(R′
i)/ψ(Ri)|2 is less than some random number between zero

and one the move is accepted. After many steps, the distribution of configurations

will asymptotically approach ψ(R).

A.4.3 Wave function optimisation

Minimising the variance of the local energy with respect to the free parameters {α}
is sometimes more robust than minimisation of the total energy [364–366]. Using

EVMC to denote the average QMC energy, the variance in the local energy EL is

σ2
EL

=

∫ (

E
{α}
L − E{α}

VMC

)2 ∣∣
∣ψ{α}(R)

∣
∣
∣

2
dR

∫ ∣
∣
∣ψ{α}(R)

∣
∣
∣

2
dR

, (A.44)



A.4. QUANTUM MONTE CARLO BACKGROUND 163

which is zero if the trial wave function is exact and positive otherwise. Therefore,

the trial wave function may be optimised by changing the free parameters {α} to

minimise the variance of the local energy.

The variance should be computed for each parameter set. However, this is

computationally expensive and unstable due to statistical noise. To circumvent

this the correlated sampling approach fixes the configurations according to some

initial set of parameters {α0} and then calculates the variance as the parameters are

varied. To compensate for the fixed configurations, a re-weighted variance formula

is used

σ2
EL

=

∫ (

E
{α}
L − E{α}

VMC

)2
W

{α}
{α0}

(R)
∣
∣
∣ψ{α0}(R)

∣
∣
∣

2
dR

∫

W
{α}
{α0}

(R)
∣
∣
∣ψ{α0}(R)

∣
∣
∣

2
dR

, (A.45)

where the VMC energy is

E
{α}
VMC =

∫

E
{α}
L W

{α}
{α0}

(R)
∣
∣
∣ψ{α0}(R)

∣
∣
∣

2
dR

∫

W
{α}
{α0}

(R)
∣
∣
∣ψ{α0}(R)

∣
∣
∣

2
dR

, (A.46)

and in general the weights are

W
{α}
{α0}

=

(

ψ{α}

ψ{α0}

)2

. (A.47)

The re-weighted variance is minimised at the true ground state for any arbitrary

positive weights. If fixed at unity (W
{α}
{α0}

= 1) we get the unreweighted variance,

which we used for the VMC calculations presented in this thesis.

A.4.4 Slater-Jastrow wave functions

Every QMC calculation requires a trial wave function that not only obeys the

appropriate particle exchange statistics, but ideally will also contain optimisable

parameters. The two-component of a Slater determinant and a Jastrow factor

implemented here is well-established as the perfect vehicle to use within QMC. For

a system of N fermions at positions R = (r1,...,rN ), the trial wave function ψ(R)
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must be antisymmetric under particle exchange. A straightforward way to achieve

antisymmetry for a system of spin-up and spin-down electrons is to use a Slater

determinant of single particle orbitals φ↑↓j (ri) [354],

ψ(R) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

φ↑1(r
↑
1) . . . φ↑1(r

↑
N↑

)
...

. . .
...

φ↑N↑
(r↑1) . . . φ↑N↑

(r↑N↑
)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

φ↓1(r
↓
1) . . . φ↓1(r

↓
N↓

)
...

. . .
...

φ↓N↓
(r↓1) . . . φ↓N↓

(r↓N↓
)

∣
∣
∣
∣
∣
∣
∣
∣
∣

≡ D↑D↓ . (A.48)

The single particle orbitals may be derived using Hartree-Fock theory [111] or DFT

[11], and for a uniform periodic system would be plane waves. The Hamiltonian

is spin independent so the wave function can be written as a product of separate

spin up (D↑) and down (D↓) determinants. The expense to evaluate a N × N

determinant scales as O(N3) [367] so this factorisation reduces computational effort.

If the electron gas has ν flavours this idea can be extended, the many-body wave

function may be written as the product of 2ν determinants, each representing a

different spin and flavour combination.

Because of the variational principle, Sec. A.4.1, the ground state energy can

be reduced by varying free parameters in the trial wave function using VMC

(Sec. A.4.3). The standard method is to consider a Slater-Jastrow wave function

that has a single Slater determinant multiplied by a Jastrow factor [15, 132] J(R),

which contains the free parameters

ψT(R) = eJ(R)
ν∏

i=1

D↑
iD

↓
i . (A.49)

As J(R) is real, the factor is non-negative so the wave function generated is explicitly

antisymmetric under particle exchange. Also, the Slater-Jastrow wave function

and Slater wave function have identical nodal surfaces. Because of the variational

principle (Sec. A.4.1), a suitable Jastrow factor will always reduce the ground state

energy, that difference is (part of) the correlation energy [111].

The HF wave function is explicitly antisymmetric, so it generates an exchange

hole which ensures that electrons with the same spin cannot occupy the same point

in space. The HF wave function does not however account for correlations due to
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Coulomb repulsion between electrons with different spins. A two-body term u(rij) in

the Jastrow factor could reduce the wave function where two electrons i and j come

close to each other. The trial wave function should have near constant local energy

density, EL = ψ−1Ĥψ but the Coulomb interaction between electrons separated

by r diverges as ∼ 1/|r|. Therefore as the electrons approach the wave function

needs a cusp [134], which we attribute to the u term. To generate this cusp places

constraints on u, differing if the two electrons obey the Pauli exclusion principle,

du

dr

∣
∣
∣
∣
r=0

=







−1
2 for opposite spins,

−1
4 for parallel spins.

(A.50)

A suitable form for the u term is a series expansion of the powers of its arguments

[133]. The u term cannot act outside of the simulation cell so therefore has a cutoff

length that can be optimised. The maximum allowed value is the Wigner-Seitz

radius7 in supercell calculations, which avoids the need for an Ewald sum.

The u terms act over a spherical region so cannot act at the corner of the

simulation cell. Therefore, a plane-wave expansion p(rij) can be included in the

Jastrow factor to provide additional freedom. If a periodic potential is applied then

a periodic q(ri) term with the form of an expansion of cosine of the scalar product

of position and a suitable wave vector can be included.

A.4.5 Variational Monte Carlo

In order to go beyond the HF wave function, optimisable parameters were introduced

via a Jastrow factor into the trial wave function. In order to determine suitable

values for these parameters, the well-established method is to calculate the total

energy with QMC and then minimise is within the framework of VMC. The standard

VMC algorithm is outlined in Fig. A.8. Following initial setup, the configurations

are randomly distributed. During the equilibration phase, for each electron in

a configuration a move is proposed that is accepted or rejected according to the

Metropolis algorithm (Sec. A.4.3), but the local energy is not accumulated at this

7The Wigner-Seitz radius is defined as the radius of the largest sphere that fits inside the
simulation supercell [9].
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Figure A.8: Jackson structure chart of the VMC algorithm.

stage. Once the local energy no longer drifts the configurations correctly sample the

distribution |ψT|2. In the second stage the configurations continue to move according

to the Metropolis algorithm but the local energy is accumulated. This process is

repeated many times during variance minimisation (Sec. A.4.3) as the wave function

parameters are adjusted. The reblocking analysis that is used to get the final result

is described in Sec. A.4.6.

The VMC time-step controls how far configurations move each time-step. It is

chosen to minimise the correlation period of the local energy. If the time-step is too

long the move rejection probability is high, and configurations do not move leading

to serial correlation. If the time-step is short then the configuration step length is

small and so only one part of the wave function is sampled, again resulting in serial

correlation. At the optimal time-step the rejection probability should be ∼ 50%.

The VMC algorithm may be parallelised. The general scheme is for each node

to be assigned a set of configurations which it equilibrates and calculates their local

energy density. At the end of the calculation the master node collates the results

and determines the mean total energy.
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A.4.6 Diffusion Monte Carlo

The wave function optimisation in the VMC framework is limited by the freedom

permitted by the terms within the Jastrow factor. To imbue complete freedom in the

wave function we employ the DMC method [15, 131] that is formally exact except

for the fixed node approximation. DMC is a stochastic method that projects the

wave function φ(R,t) onto configurations and solves the imaginary-time many-body

Schrödinger equation,

∂tφ(R,t) = (Ĥ − ET)φ(R,t) . (A.51)

Here R is a 3N dimensional vector of the positions of all N electrons, t is a real

variable describing imaginary time, and ET is the trial energy. The Green’s function

is the propagator

G(R← R′,τ) =
〈

R′
∣
∣
∣e−τ(Ĥ−ET)

∣
∣
∣R
〉

. (A.52)

This satisfies the initial condition G(R ← R′,τ) = δ(R −R′) and obeys the same

Schrödinger equation as the wave function φ

∂τG(R← R′,τ) = (Ĥ(R′)− ET)G(R← R′,τ) . (A.53)

A spectral expansion allows us to express the Green’s function as

G(R← R′,τ) =
∑

i

ψi(R
′)e−τ(Ei−ET )ψ∗

i (R) , (A.54)

where ψi and Ei are the eigenfunctions and eigenvalues of Ĥ. This formalism then

allows us to write the wave function at a later time t+τ in terms of the propagator,

φ(R′,t+ τ) =

∫

G(R← R′,τ)φ(R,t)dR

=
∑

i

ψi(R
′)e−τ(Ei−ET ) 〈ψi|φ(t = 0)〉 . (A.55)
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As the interval becomes large (τ →∞), if ET = E0 the higher energy states decay

exponentially in magnitude projecting out the ground state,

lim
τ→∞

φ(R,t+ τ) = lim
τ→∞

ψ0(R)e−τ(E0−ET) 〈ψ0|φ(t = 0)〉 . (A.56)

To maintain a mean number of configurations the trial energy is actively varied8,

which allows configurations to be created or destroyed; an example of the

propagation of walkers is shown in Fig. A.9. Electrons in configurations are

allowed to diffuse with step-length according to a Gaussian distribution with a

width controlled by a characteristic DMC time-step. We note that the Schrödinger

equation Eqn. (A.53) has the same form as a diffusion equation

∂τφ(R,τ) = −
(

1

2
∇2 + V̂ (R)− ET

)

φ(R,τ) , (A.57)

where ET− V̂ (R) is a rate term describing branching. Therefore, this equation may

be simulated by a diffusion process. The Green’s function solution [130] of it

G(R← R′,τ) =
1

(2πτ)3N/2
e−(R−R′)2/2τe−τ(V (R)+V (R′)−2ET)/2 (A.58)

can be interpreted as a transition probability density for the configurations.

The above analysis assumes that the wave function ψ is everywhere positive

as it is interpreted as a probability. Electrons however have Fermi antisymmetry

so a many-body wave function must have positive and negative spatial regions. If

these regions are allowed to encroach then the wave function becomes unstable, and

one region would grow exponentially [127]. To overcome this a trial nodal surface is

derived using HF or DFT. The fixed-node DMC [130] method rejects moves between

positive and negative regions, as if there were an infinite potential that ensures the

regions remain fixed. Though not exact, this approximation gives energies which

satisfy the variational principle and is stable in large systems. Around the nodal

surface the wave function is small so makes only a small contribution to the energy,

8A VMC simulation may be regarded as a DMC calculation without branching of electrons.
Without branching each configuration evolves independently without any drift-diffusion, so the
form of the wave function does not change.
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τ = 0

∆τ

τ = 4∆τ

ψτ=4∆τ (x)

V (x)ψτ=0(x)

Figure A.9: The wave function is confined
by a one-dimensional finite square well V (x)
shown by the bold line. The trial wave
function ψτ=0(x) at τ = 0 is uniform and
shown by the solid line. It is represented by
walkers shown by grey shaded circles. The
horizontal dashed lines show DMC walker
propagation during imaginary time-steps
∆τ . After propagation the distribution
converges to the true ground state at τ =
4∆τ . Black circles represent configuration
birth, empty configuration death.

hence any error in the nodal surface makes only a small difference to the ground state

energy prediction. If the wave function is complex then the fixed-node approximation

may be generalised to the fixed-phase approximation, which requires the trial and

DMC wave function has everywhere the same phase.

In the DMC algorithm shown in Fig. A.10, firstly configurations are initialised

according to the probability density given by configurations from a VMC simulation.

Each electron within a configuration diffuses one step, if it crosses a node the move

is rejected. To avoid divergences due to the Coulomb interaction we use importance

sampling. We actually propagate the distribution f(R,t) = ψ(R)φ(R,t), where ψ is

the trial wave function generated from VMC and φ is the DMC wave function. The

weight for the move is

W (R′,R) =
|ψ(R′)|2G(R′,R,τ)

|ψ(R)|2G(R,R′,τ)
. (A.59)

The move is accepted with probability P = min(1,W (R′,R)). The branching

probability for the configuration is

P = e−τ((EL(R′)+EL(R))/2−ET) . (A.60)

Then int(P + ζ) copies of the configuration are made, where ζ is a random number

between zero and one, and hence this algorithm allows configuration death. The

configuration energy is then accumulated, the best estimate of the ground-state
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energy Ebest is updated during equilibration after each block of moves as

Ebest(µ) =
3

4
〈EL〉 (µ) +

1

4
Ebest(µ− 1) , (A.61)

where 〈EL〉(µ) is the average of the local energy over block µ. During statistics

accumulation Ebest is instead recalculated after each move using the expectation

value of the local energy at that time-step. The adjustable energy ET that controls

the number of configurations is

ET(µ+ 1) = Ebest(µ)− A

τeff(m)
ln

(
N(µ)

N0

)

, (A.62)

where A = min(1,τcET
) with constant cET

usually set equal to unity; A−1 is the

number of time-steps over which the weight has attempted to return the number of

configurations N(µ) to the target population N0. When calculating the branching

factor we wish to use as a time-step the actual distance diffused [130], this varies

between particles as some moves are rejected. The effective time-step is

τeff(m) = τ

∑

i pi∆r
2
d,i

∑

i ∆r
2
d,i

, (A.63)

where pi is the move acceptance probability, and ∆ri,d is the diffusive displacement.

The DMC process is then repeated until equilibrium is reached and statistical

uncertainty reduced to a satisfactory level.

The DMC algorithm is intrinsically parallel. The configurations can be spread

across all the nodes of the parallel machine. Each node performs the diffusion, drift

and creation/annihilation of its configurations. Following a block of time-steps, the

mean energy of all the configurations can be found. Configurations can then be

redistributed across all the nodes to ensure load balance. A typical DMC calculation

requires approximately an order of magnitude greater more Central Processing Unit

(CPU) time than the equivalent VMC calculation. Most of the VMC calculations

in this thesis were therefore done on single machines, whilst the DMC was done

on parallel machines, either the High Perfomance Computing Service (HPCS) or a

32-node cluster.
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Figure A.10: Jackson structure chart of the DMC algorithm.

Though formally exact (except for the fixed node approximation), the practical

implementation of DMC is reliant on further approximations that when relaxed

make the calculation infeasible. The key approximations and extrapolation schemes

that surmount the errors introduced are addressed briefly below.

Population-control bias

We derived the DMC Green’s function Eqn. (A.54) assuming that ET is constant,

however, continual adjustment of ET during DMC biases the system. This effect

can be mitigated by using a large population of configurations, or alternatively to

avoid extrapolating to infinite N , we follow the method of Umrigar et al. [131] for

evaluating mixed estimators that eliminates the population-control bias.

Finite size corrections

The QMC simulations were performed inside finite sized simulation cells. This limits

the range of the electron-electron correlation function and so the accuracy of the

calculation. To overcome this error we could extrapolate using successively larger
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Figure A.11: The allowed wave vectors
in successive energy shells. The lowest
energy shell containing one allowed electron
is shown by the light grey point, successive
shells containing 6, 12 and 8 points are
shown by progressively darker shades.

kx

ky

kz

systems as shown in Fig. A.11, or alternatively one could average the calculation over

the Brillouin zone. One method of doing this is to shift the origin of the free orbitals

used over the Brillouin zone, that is use Twisted Boundary Conditions (TBC) and

then average over the results [368]. A cheaper solution is to use the mean-value

point in the Brillouin zone, also known as the Baldereschi point [369–371].

Finite time-step

During DMC the small but finite time-step is assumed to be zero. This

approximation introduces a time-step bias that is corrected by performing

simulations at two or more different time-steps and then extrapolating to zero time-

step.

Serial correlation

Successive VMC and DMC configurations are produced from a previous configura-

tion with small changes in electron position. The consecutive local energies therefore

suffer from serial correlation, which is eliminated with a reblocking algorithm [372].

As shown in Fig. A.12, a reblocking transformation is repeated until just the average

energy remains. The estimated standard deviation of a set of energies σ̃n
Ē

tends to

a limit that will equal the true standard deviation σĒ .

A.4.7 Blip basis set

The single particle orbitals that enter the Slater determinant are often plane waves.

These pose the distinct disadvantage that they are delocalised so every basis function
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Ē
∧

E
(1)
1 E

(1)
2

︸ ︷︷ ︸
E

(1)
3 E

(1)
4

︸ ︷︷ ︸
→ σ̃

(1)

Ē
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Figure A.12: A reblocking transformation, with blocks of γ = 2 energy elements E. The energy
subscript is the sequential element number, and the superscript is the number of accrued reblocking
transformations. The standard deviation in the estimate of the mean energy is {σn

Ē}, less than the
true standard deviation σĒ .

in every orbital must be summed over for each electron and hence the time to carry

out a configuration move scales as O(N3). One important alternative is to employ

localised blip functions [169], which is particularly useful in a non-periodic system.

The orbitals now need to be evaluated only about the electron, so the time taken

for a configuration move scales as O(N2). Blip wave functions are localised to a

regular grid of spacing unity, and are zero beyond two grid increments. They are

cubic splines of the form [168]

φ(r) =







1− 3
2r

2 + 3
4r

3 0 ≤ r < 1 ,

1
4(2− r)3 1 ≤ r < 2 ,

0 r ≥ 2 ,

(A.64)

where r is the distance from the blip function’s grid point. The function and its

first two derivatives are continuous. A blip basis set is superior to other localised

basis sets such as Gaussians [373] because they are unbiased9 and their accuracy is

systematically improvable by increasing the number of grid points.

A.4.8 Spin states of the Slater determinant

The Slater determinant is a practical trial wave function to use in QMC calculations.

In the calculation of magnetic properties it is important to understand the spin state

9If an orbital is truncated introducing a small discontinuity this results in a Dirac delta function
in the kinetic energy integrand. This cannot be sampled so the contribution to the energy is lost
and the system is biased.
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of a trial wave function with different numbers of up and down spin particles – is it

singlet or triplet in character? If it were singlet then the total in-plane magnetisation

is zero, if triplet then there could be a significant magnetic moment perpendicular

to the axis, fundamentally changing the magnetisation of the state. To answer this

important question we consider the Slater determinant in second quantised notation

|n↑,n↓〉 =

n↑∏

i=1

c†↑,i

n↓∏

i=1

c†↓,i|Ω〉 , (A.65)

where n↑ is the number of up-spin particles, n↓ is the number of down-spin particles,

and without loss of generality we assume that n↑ ≥ n↓. Furthermore, during the

construction of the wave function we assume that for each spin species the lowest

single particle energy states are occupied, so for example for free particles these

would be the allowed momentum states within a spherical Fermi surface.

In order to determine the spin expectation values of the Slater determinant wave

function we use the total spin operator given by

Ŝ =
1

2

(

c†↑ c†↓

)

σ




c↑

c↓



 , (A.66)

where σ = (σx,σy,σz) represents a vector of the Pauli spin matrices. This has an

expectation value for the total spin of

〈

Ŝ
〉

=








0

0

(n↑ − n↓)/2







, (A.67)

and the estimate for the root mean square in-plane spin is

〈

Ŝ⊥,RMS

〉

≡
√
〈

Ŝ2
x + Ŝ2

y

〉

=

√
n↑ + n↓

2
. (A.68)

In the limit of many particles this shows that with a population imbalance the

majority of the spin magnetic moment is aligned along the z-axis, 〈Ŝ⊥,RMS〉 ≪ 〈Ŝ〉,
and so the Slater determinant wave function mostly has singlet rather than triplet
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initialisation
repeat loop over time steps

foreach configuration in the simulation do

foreach electron in the configuration do
propose move of electron; changes a single column of D
calculate ratio Ψ(Rnew,S)/Ψ(Rold,S)
perform Metropolis accept/reject step
if move is accepted then update cofactor matrix and determinant
propose spin flip of electron; changes a single column of D
calculate ratio Ψ(R,Snew)/Ψ(R,Sold)
perform Metropolis accept/reject step
if flip is accepted then update cofactor matrix and determinant

end

end

accumulate local energy
until end of simulation
reblock
output

Algorithm 1: Pseudocode of the noncollinear VMC algorithm

character. Its magnetic moment is therefore approximately given by that along

the z-axis, (n↑ − n↓)/2. If one considers the spin states summed over during the

construction of the Slater determinant then, akin to the central limit theorem, there

are many more contributing low than high spin states and so the overall in-plane

spin would be expected to be small relative to the total spin.

A.4.9 Noncollinear spin states

To address the possibility of a spin spiral using QMC we must extend beyond

standard algorithms that are restricted to collinear systems. The capability to

study noncollinear spins is well-established in DFT, and here we outline how, for

the first time, to make noncollinear states accessible within the framework of VMC

[315].

The wave function Ψ(R,S) = exp(J(R))D(R,S) is represented by a single Slater

determinant D(R,S), containing both up and down-spin electrons, and also contains

a Jastrow factor J(R) that depends only on position to ensure that the spin spiral

orientation is not changed from that fixed by the determinant. The number of up and

down spin orbitals in the determinant is set by the magnetisation. The noncollinear
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VMC algorithm is represented through pseudocode in Alg. 1, where the novel point

is that whilst in standard VMC only position varies, here both position and spins

are allowed to vary and flip to maintain ergodicity and explore all of the orbitals

in the determinant. Within this algorithm the position moves and spin flips are

separated for efficiency; positions are proposed and accepted as before, whilst spin

flips are accepted with a probability of 50%.

A.5 Density functional theory

In this appendix we outline the theorems of DFT that can be used to find the

ground-state properties of a system without considering the many-particle wave

function. This makes the method inherently faster than QMC, but it requires an

energy functional meaning that the method is not ab initio. We start by proving

the Hohenberg-Kohn theorems that show how the ground-state electron density is

uniquely defined by the external potential and vice-versa, before demonstrating how

these enable the Kohn-Sham equations to be used to derive the ground-state electron

density.

A.5.1 Hohenberg-Kohn theorems

The Hamiltonian of N electrons in a solid with ions Zα at positions rα is

Ĥ = −1

2

∑

i

∇2
i +

1

2

∑

i,j 6=i

1

|ri − rj |
︸ ︷︷ ︸

F̂

+
∑

i,α

Zα
|ri − rα|

︸ ︷︷ ︸

V̂ext

. (A.69)

The operator F̂ is the same for all systems, whereas the static external potential V̂ext

varies between systems. The Hamiltonian is therefore characterised by the number

of electrons present and the external potential. The ground state for this system

|ψ0〉 has a ground-state electron density of

n0(r) = 〈ψ0 |n̂|ψ0〉 =

∫

|ψ0(r,r2,r3, . . . ,rN )|2
N∏

i=2

dri . (A.70)
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We may regard the ground-state wave function and the corresponding density as

functionals of the number of electrons and the external potential. Hohenberg and

Kohn [120] formulated two theorems about this system.

First theorem

The first Hohenberg-Kohn theorem shows that the external potential Vext(r) is

uniquely determined by the ground-state electronic density n(r) (the corresponding

wave function is |ψ〉), to within an additive constant. This is proven by reductio ad

absurdum. We introduce a second external potential V ′
ext(r) with ground-state |ψ′〉

that has the same density n(r). The ground-state energies are E0 = 〈ψ|Ĥ|ψ〉 and

E′
0 = 〈ψ′|Ĥ ′|ψ′〉. We then use the ground-state wave function for each potential

as a trial wave function for the Hamiltonian containing the other potential. The

variational principle then implies

E0 <
〈

ψ′
∣
∣
∣Ĥ
∣
∣
∣ψ′
〉

=
〈

ψ′
∣
∣
∣Ĥ ′
∣
∣
∣ψ′
〉

+
〈

ψ′
∣
∣
∣Ĥ − Ĥ ′

∣
∣
∣ψ′
〉

= E′
0 +

∫
(
Vext − V ′

ext

)
n(r)dr , (A.71)

and

E′
0 <

〈

ψ
∣
∣
∣Ĥ ′
∣
∣
∣ψ
〉

=
〈

ψ
∣
∣
∣Ĥ
∣
∣
∣ψ
〉

+
〈

ψ
∣
∣
∣Ĥ ′ − Ĥ

∣
∣
∣ψ
〉

= E0 +

∫
(
V ′

ext − Vext

)
n(r)dr . (A.72)

Adding these two results leads to the contradiction

E0 + E′
0 < E0 + E′

0 , (A.73)

and therefore an external potential is uniquely determined by a ground-state

electronic density.

Second theorem

The second Hohenberg-Kohn theorem shows that the electron density that minimises

the total energy is the exact ground state density. A given density n(r) has its own
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external potential Vext(r) and ground state |ψ〉. This wave function is then used as

the trial state for a Hamiltonian with external potential V ′(r) (with corresponding

but different ground state |ψ′〉 and energy E′). Then by the variational principle

〈

ψ
∣
∣
∣Ĥ
∣
∣
∣ψ
〉

≥
〈

ψ
∣
∣
∣Ĥ ′
∣
∣
∣ψ
〉

= E′ , (A.74)

and therefore a given density has its own external potential.

A.5.2 The Kohn-Sham equations

Having shown that for a given external potential the ground-state electron density

is uniquely defined, we can be confident that if we develop a formalism in terms of

density then we will recover the correct ground-state density. Our starting point is

the variational problem for the Hohenberg-Kohn density-functional

δ

[

Ts[n] +
1

2

∫
n(r)n(r′)

|r− r′| dr + Exc[n] +

∫

Vext(r)n(r)dr

−µ
(∫

n(r)dr−N
)]

= 0 , (A.75)

where the terms are respectively: the kinetic energy, the electron-electron Coulomb

energy, the exchange-correlation energy, the external potential, and the Lagrange

multiplier µ that constrains the total number of electrons to be N ; physically µ

represents the chemical potential. This gives an equation of motion for a non-

interacting system of electrons moving in an external potential. We then have to

solve the Schrödinger equation for N/2ν single-particle states |ψi〉 with energy Ei

(

−1

2
∇2 +

∫
n(r′)

|r− r′|dr
′ + Vxc(r) + Vext(r)

)

ψi(r) = Eiψi(r) , (A.76)

here Vxc(r) = δExc[n]/δn(r). The potential felt by each electron depends on the

density n(r) = 2ν
∑N/2ν

i=1 |ψi(r)|2, the factor of 2ν accounts for spin and flavour

degeneracy. A typical implementation of DFT requires an exchange-correlation

potential Vxc that is derived using another method, typically with QMC calculations.

From this starting point the ground-state electron density can then be found self-

consistently from the above equation. This typically proceeds much quicker than
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QMC and so more complicated systems can be analysed. However, the improved

speed comes with the cost that one must invoke the approximation that the

exchange-correlation potential Vxc can be applied in situations where electron density

is spatially varying even though it applies only for uniform systems.

The energy of the non-interacting system is the sum of the particle energy

eigenvalues. Compared to the interacting system this double-counts the Hartree

energy and incorrectly accounts for the exchange correlation energy. When

compensated for this gives

E = 2ν

N/2ν
∑

i=1

εi −
1

2

∫ ∫
n(r)n(r′)

|r− r′| drdr′ −
∫

n(r)Vxc(r)dr + Exc[n] , (A.77)

which is in agreement with the energy calculated directly using a uniform charge

density n.

A.6 Many-flavour perturbation expansion

In this appendix we demonstrate which Feynman diagrams dominate in the many-

flavour limit. Our starting point is the work of Andryushin et al. [71] and Keldysh

and Onishchenko [72], who summed over all orders of Green’s function contributions

to derive an exact expression for the interacting energy per particle pair

Eint =
1

2n

∫ 1

0

dλ

λ

∫∫ (
4πχ

1 + 4πχ
− 4πχ0

)
dωd3q

(2π)4
, (A.78)

where χ(q,ω,λ) is the polarisability of the system of electrons and holes of

concentration n and charge ∓
√
λ. Here, λ is a coupling constant, the integral

increases the strength of the electron-electron interaction from λ = 0 up to the

full strength at λ = 1. After expanding out the denominator of the fraction, we can
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use a diagrammatic visualisation to represent the exact interaction energy

+ + + · · · , (A.79)

where a shaded loop represents a sum over all possible irreducible polarisation

operators. An irreducible operator is one that cannot be split in two by breaking

one single interaction line. The irreducible polarisation operator is therefore the

summation

= + + + + · · · . (A.80)

There are two possible diagrams in λ2, that is with four electron-photon vertices.

The alternative electron flavours in these diagrams are labelled ν1, ν2 and ν3

ν2

ν1

︸ ︷︷ ︸

G ∝ ν2

+

ν3

.

︸ ︷︷ ︸

G ∝ ν

(A.81)

The matrix element G for each diagram is proportional to the number of possible

flavours. In the many-flavour limit ν ≫ 1 the first diagram, having a matrix

element proportional to ν2 dominates over the second diagram with a matrix

element proportional to ν. Physically this corresponds to the increased likelihood of

interactions between electrons of different flavours. The left-hand diagram contains

two empty electron loops, in the many flavour limit these empty loops therefore

dominate. The many-flavour limit means we can replace each filled loop in the
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expansion Eqn. (A.79) by a subclass of diagrams with only empty electron loops

+ + + · · · . (A.82)

The perturbation expansion now sums over the same diagrams as in the RPA limit10.

Reducing the expansion to just the empty loop diagrams is equivalent to demanding

that the principal contribution to χ is χ0; that is the polarisation function found in

Sec. 2.1.1 represents the first term in the perturbation theory expansion justifying

the subscript “0” attached to it. The link to the path integral analysis of Sec. 2.2.2

is made by replacing χ 7→ χ0 = −λe2Π0/q
2.

The final term of Eqn. (A.78) (−4πχ0) corresponds the self-energy of an electron

. (A.83)

This cancels following the expansion of the first term. The cancellation verifies the

assertion that the term † in Eqn. (2.6) removes the interaction of the electron with

itself.

A.7 BEC wave function and potential regularisation

In this appendix we determine the non-interacting pair wave function for a contact

interaction, suitable to describe BEC molecules, and confirm the regularisation of

the contact interaction potential strength, Eqn. (4.6). The pair wave function with

10The RPA theory has a dense electron gas [8] which increases the probability of different
electrons partaking in the interaction. Therefore, diagrams with more distinct electrons are
favoured.
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contact interaction strength g in two dimensions is

− 1

r

d

dr

(

r
dψ

dr

)

+ g
δ(r)

πr
ψ(r) = Ebψ(r)

r
d2ψ(r)

dr2
+

dψ(r)

dr
− g

π

δ(r)ψ(r)− k2rψ(r) = 0 , (A.84)

where the energy wave vector −k2 = Eb is negative since the state is bound and

we use δ(r)/πr to represent the two-dimensional contact interaction [374]. The

normalised wave function that satisfies the boundary condition ψ(r)→ 0 as r →∞
is

ψ(r) =

√
π

2
kℜ (Y0(ikr)) , (A.85)

where Yn represents Bessel’s function of the second kind [356] that gives the large

radius behaviour ψ(r) ∼ e−kr/
√
kr. The imaginary part of the Bessel function Y0

cancels with a Bessel function of the first kind J0. This solution gives an expected

particle radius, the Bohr radius, of

a0 ≡ 〈r〉 =
0.616854

k
. (A.86)

At the origin, r = 0, the wave function has to obey the boundary condition

imposed by the contact potential of

r

ψ(r)

dψ(r)

dr

∣
∣
∣
∣
r→rc

=
g

π

. (A.87)

The right-hand side of this expression tends to zero logarithmically, which is

consistent with the regularisation Eqn. (4.6) of the contact interaction strength

g with a cutoff length rc. The consistency means that

1

g

r

ψ(r)

dψ(r)

dr

∣
∣
∣
∣
r→rc

=

∫ Ec

0

1

2E + Eb
dE

r

ψ(r)

dψ(r)

dr

∣
∣
∣
∣
r→0+

=
1

π

. (A.88)

The energy cutoff is related to the cutoff length scale through Ec ∼ ~
2/mr2c . Using

EF = ~
2/(2mr2s ) and Eb = ~

2k2
/(2m) we can therefore relate the ratio of the binding
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~k1

~k2

~k4

~k3

~q12
~q34

~k⊥12

~k⊥34
θ12

Figure A.13: The re-parameterisation of
momenta used to ensure momentum con-
servation. k1,2,3,4 represent the momenta
appearing in the original integral, whose
separate sums are q12 = k1 + k2 and q34 =
k3 + k4, which the Dirac delta function in
Eqn. (A.90) will ensure that q12 = q34. θ12
represents the angle between k1 and k2, k⊥

12

is the vector perpendicular from q12 to k1

and k2, and k⊥
34 is similarly defined.

energy and Fermi energy to Bohr radius and scale radius through

Eb

EF
= 0.380509

(
rs
a0

)2

. (A.89)

A.8 Momentum space integral evaluation

The pivotal integral Eqn. (6.12) of the analysis presented in Chp. 6 is of the form

∫∫∫∫

F (|k1|,|k2|,|k3|,|k4|)δ(k1 + k2 − k3 − k4)dk1dk2dk3dk4 . (A.90)

To evaluate this integral one could substitute k4 = k1 +k2−k3, and then integrate

over three parameters representing the lengths of vectors k1, k2, and k3, and

a minimum of three relative angles between these vectors, giving a total of six

integration parameters. However, numerical integration generally becomes more

prohibitive with increasing number of dimensions. Since the function F depends

only on the magnitude of the momentum, the scheme outlined below allows us to

perform the angular integration separately of the function and leave a numerical

integral over just the four dimensions of the vector lengths.
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The integral can however be re-parameterised according to Fig. A.13, q12 =

k1 + k2 and q34 = k3 + k4, the vector perpendicular from q12 to k1 and k2 is k⊥
12

which has length

k⊥12 =
1

2q

√

2q2
(
k2

1 + k2
2

)
− q4 −

(
k2

1 − k2
2

)2
, (A.91)

and k⊥
34 is similarly defined. We first concentrate on calculating the angular

component just of the integral over k1 and k2, where the angle between these vectors

is θ12. The phase space volume of the angular integral is

sin θ12dθ12 =
k⊥12
k1k2

(

2 +

√

k2
1 − k⊥2

12

k2
2 − k⊥2

12

+

√

k2
2 − k⊥2

12

k2
1 − k⊥2

12

)

dk⊥12 = − q12
k1k2

dq12 , (A.92)

where |k1 − k2| ≤ q12 ≤ k1 + k2. The total number density integrated over two

momenta can then be found using

∫ π

0
4πk2

12πk
2
2 sin θ12dθ12 =

∫ k1+k2

|k1−k2|
4πk12πk2q12dq12 = 4πk2

14πk
2
2 , (A.93)

which is the expected result. A similar procedure is used to parameterise the separate

integral over the angular components of k3 and k4 into q34.

The original integral Eqn. (A.90) is now re-written in terms of the parameters

q12 and q34 using Eqn. (A.93). Momentum conservation is required by the

presence of the Dirac delta function δ(k1 + k2 − k3 − k4) = δ(q12 − q34),

however the q12 and q34 parameters introduced are just scalar quantities. The

momentum conservation requirement is implemented by demanding that the two

scalar integration parameters are equal, which sets the two integration parameters

equal, q12 = q34 = q so that there is just one integral over parameter q remaining.

However, this introduces an extra angular degree of freedom (the angle between q12

and q34). In order to compensate the integrand is divided by the extra phase space

volume of the angular integration, 4πq2. We then obtain our final result

16π3

∫∫∫∫

F (k1,k2,k3,k4)k1k2k3k4×

max (0,min(k1 + k2,k3 + k4)−max (|k1 − k2|,|k3 − k4|)) dk1dk2dk3dk4 . (A.94)
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This integral is better suited to computational evaluation since it is four-dimensional

[rather than the six-dimensional Eqn. (A.90)] and the term introduced to compensate

for the angular integral has a relatively simple form. Physically the introduction of

the max and min functions can be understood in terms of the available phase space

at the Fermi surface following a particle-hole transformation.

A.9 Acronyms and abbreviations

The acronyms and abbreviations used in this thesis are listed alphabetically below:

ac Alternating Current

BaTiO3 Barium Titanate

BCS Bardeen, Cooper, and Schrieffer

BEC Bose-Einstein Condensation

Ca3Ru2O7 Calcium Ruthenate

CePd2Si2 Cerium Palladium Silicon

CoS2 Cobalt (II) Sulphide

CPU Central Processing Unit

Cr Chromium

DFT Density-Functional Theory

DMC Diffusion Monte Carlo

DMFT Dynamical Mean Field Theory

DOS Density of States

EPSRC Engineering and Physical Sciences Research Council

EuTiO3 Europium Titanate

FFLO Fulde-Ferrel-Larkin-Ovchinnikov
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FP Fully Polarised

GaAs Gallium(III) Arsenide

Ge Germanium

GeTe Germanium Telluride

GL Ginzburg-Landau

GW GW

3
He Helium-3

HF Hartree-Fock approximation

HPCS High Perfomance Computing Service

K Potassium

KTaO3 Potassium Tantalate

LDA Local Density Approximation

MFEG Many-Flavour Electron Gas

MnSi Manganese Silicide

NbFe2 Iron-Niobium

OL Optical Lattice

PP Partially Polarised

PS Phase Separated

QMC Quantum Monte Carlo

RPA Random-Phase Approximation

SF Superfluid

Si Silicon
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SnTe Tin Telluride

Sr3Ru2O7 Strontium Ruthenate

SrRuO3 Strontium Ruthenium Oxide

SrTiO3 Strontium Titinate

STLS Singwi, Tosi, Land & Sjölander

TBC Twisted Boundary Conditions

TCM Theory of Condensed Matter

TOF Time of Flight

UGe2 Uranium Digermanide

UV Ultraviolet

VMC Variational Monte Carlo

YbRh2Si2 Ytterbium-Rhodium-Silicon

ZP Zero Particles

ZrZn2 Zirconium 2-Zinc
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[231] T. Hakioğlu and M. Şahin. Phys. Rev. Lett., 98:166405, 2007.

[232] R. Combescot and C. Mora. Eur. Phys. J. B, 44:189, 2005.

[233] B.P. Anderson and M.A. Kasevich. Science, 282:1686, 1998.

[234] S. Burger, F.S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M.L. Chiofalo,

and M.P. Tosi. Phys. Rev. Lett., 86:4447, 2001.

[235] F.S. F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi,

A. Trombettoni, A. Smerzi, and M. Inguscio. Science, 293:843, 2001.

[236] J.K. Chin, D.E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu, and

W. Ketterle. Nature (London), 443:961, 2006.

[237] J.-P. Martikainen and H.T.C. Stoof. Phys. Rev. A, 68:013610, 2003.

[238] M. Wouters, J. Tempere, and J.T. Devreese. Phys. Rev. A, 70:013616, 2004.

[239] W. Zhang, G.-D. Lin, and L.-M. Duan. arXiv:cond-mat/0801.2500v1 [cond-

mat.str-el], 2008.

[240] J.A. Bowers and K. Rajagopal. Phys. Rev. D, 66:065002, 2002.

[241] V.N. Efimov. Phys. Lett. B, 33:563, 1970.



204 BIBLIOGRAPHY

[242] V.N. Efimov. Nuclear Physics A, 210:157, 1973.

[243] M.A. Baranov, C. Lobo, and G.V. Shlyapnikov. arXiv:cond-mat/0801.1815v1

[cond-mat.other], 2008.

[244] Q. Chen, J. Stajic, S. Tan, and K. Levin. Physics Reports, 412:1, 2005.

[245] W. Yi and L.M. Duan. Phys. Rev. A, 73:063607, 2006.

[246] J. Zhang and H. Zhai. Phys. Rev. A, page 041602(R), 2005.

[247] M. Randeria, J.-M. Duan, and L.-Y. Shieh. Phys. Rev. B, 41:327, 1990.

[248] R. Casalbuoni and G. Nardulli. Rev. of Modern Phys., 76:263, 2004.

[249] H. Burkhardt and D. Rainer. Ann. Phys. (Leipzig), 3:181, 1994.

[250] H. Shimahara. Phys. Rev. B, 50:12760, 1994.

[251] G.B. Partridge, W. Li, R.I. Kamar, Y. Liao, and R.G. Hulet. Science, 311:

503, 2006.

[252] G.B. Partridge, W. Li, Y.A. Liao, R.G. Hulet, M. Haque, and H.T.C. Stoof.

Phys. Rev. Lett., 97:190407, 2006.

[253] A. Imambekov, C.J. Bolech, M. Lukin, and E. Demler. Phys. Rev. A, 74:

053626, 2006.

[254] T. Gottwald and P.G.J. van Dongen. arXiv:cond-mat/0708.3161v1 [cond-

mat.str-el], 2007.

[255] E. Wille, F.M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl,

F. Schreck, R. Grimm, T.G. Tiecke, J.T.M. Walraven, S.J.J.M.F. Kokkelmans,

E. Tiesinga, and P.S. Julienne. arXiv:cond-mat/0711.2916v1 [cond-mat.other],

2007.

[256] R. Combescot, M. Yu. Kagan, and S. Stringari. Phys. Rev. A, 74:042717,

2006.



BIBLIOGRAPHY 205
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