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Itinerant ferromagnetism in a two-dimensional atomic gas
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Motivated by the first experimental evidence of ferromagnetic behavior in a three-dimensional ultracold atomic
gas, we explore the possibility of itinerant ferromagnetism in a trapped two-dimensional atomic gas. Firstly, we
develop a formalism that demonstrates how quantum fluctuations drive the ferromagnetic reconstruction first
order, and consider the consequences of an imposed population imbalance. Secondly, we adapt this formalism to
elucidate the key experimental signatures of ferromagnetism in a realistic trapped geometry.
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I. INTRODUCTION

Itinerant ferromagnetism is a ubiquitous strongly correlated
phase of matter in the solid state. The theoretical study of
itinerant ferromagnetism dates back to the pioneering work of
Stoner [1], which showed that ferromagnetism emerges as re-
pulsive pairwise interactions between electrons overcome the
kinetic energy penalty of polarization. Subsequent theoretical
work has determined that soft transverse magnetic fluctuations
have the potential to drive the ferromagnetic transition first
order before the quantum critical point is reached [2–7].
Phenomena consistent with a first order transition have been
observed in the solid state; though it is difficult to determine
whether they are due to soft magnetic fluctuations or the
coupling of the magnetic moment to phonon degrees of
freedom. However, Jo et al. [8] have recently presented the
first tentative evidence [9,10] of itinerant ferromagnetism
in an ultracold atomic gas. The cold atom gas is a clean
system in which to study ferromagnetism, completely devoid
of the interfering phonon degrees of freedom encountered
in the solid state, so gifts investigators with a valuable tool
with which to answer long-standing questions about solid
state ferromagnets. Furthermore, ultracold atoms experiments
also present a unique opportunity to explore fundamentally
new physics associated with ferromagnetism including the
consequences of population imbalance [6], a conserved net
magnetization [11], the damping of fluctuations by three-body
loss [12], spin drag [13], and mass imbalance. Here we aim to
take advantage of the high levels of control investigators can
exercise over the external potential trapping the gas and turn
to study ferromagnetism in a two-dimensional thin film.

Itinerant ferromagnetism is difficult to observe in two
dimensions in the solid state [14,15]. However, it could be
realized in an ultracold atom gas by using counterpropagating
lasers to create one-dimensional potential which will lead
to a stacked two-dimensional gas. The system also offers
investigators the opportunity to study the possibility for a
superconducting instability to emerge near to the ferromag-
netic phase transition [16]. The two-dimensional system is
of particular interest in this case as it could shed light on
high temperature superconductivity where antiferromagnetism
competes with d-wave superconductivity to form the ground
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state [17]. Here we adapt the formalism introduced for the
three-dimensional case [6] to expose the contrasting behavior
of the two-dimensional ferromagnet. We develop a formalism
that captures the effects of transverse quantum fluctuations
and explore how they renormalize the effective interaction
strength. We then address how population imbalance modifies
the behavior of the atomic gas before studying ferromagnetic
ordering in a trapped geometry.

II. FIELD INTEGRAL FORMALISM

It has been long established that quantum fluctuations in
a three-dimensional fermionic gas with repulsive interactions
have the potential to drive the ferromagnetic transition first
order [3–7]. To investigate the impact of quantum fluctuations
in a two-dimensional fermionic gas we explore ferromagnetic
reconstruction within the setting of an atomic gas, adapting
the phenomenology developed for the three-dimensional case
in Ref. [6]. We adopt this formalism because unlike the
Eliashberg theory [2] it provides an exact expression for the
free energy which then allows us to make a prediction of
the critical interaction strength for the onset of ferromag-
netism and study the atomic gas within a harmonic well.
Moreover, ab initio quantum Monte Carlo calculations [7,18]
have recently been used to verify the three-dimensional
formalism, which should therefore provide a solid foundation
from which to study the two-dimensional case. Although
the atoms do not carry spin, we discriminate between the
two fermionic species with a pseudospin σ ∈ {↑ ,↓}. The
species cannot interconvert so separate chemical potentials
µσ tune the population imbalance, which in turn pins the net
polarization along the pseudospin direction. However, when
the spontaneous magnetization formed exceeds the population
imbalance, a nonzero in-plane magnetization emerges. To
study the potential for ferromagnetic ordering we express the
partition function as a fermionic coherent state path integral
Z = Tr e−β(Ĥ − µN̂ ) = ∫

Dψ e−S with the action

S =
∫ ∑

σ={↑,↓}
ψ̄σ (∂τ + εk̂ − µσ )ψσ +

∫
gψ̄↑ψ̄↓ψ↓ψ↑ .

(1)

Here
∫ ≡ ∫ β

0 dτ
∫

d2r with reduced temperature β = 1/kBT ,
and εk̂ denotes the dispersion. As we wish to investigate
two-dimensional ferromagnetism we have constrained the
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spatial integral to a plane. A two-dimensional atomic gas
could be realized experimentally using counterpropagating
laser beams whose antinodes at half-wavelength spacing b will
define stacked quasi-two-dimensional layers. Though at finite
temperature the ferromagnetic ordering is only marginally
stable, long-range order should be stabilized by the weak
interplane coupling [11]. The repulsive contact interaction
parameter g = gδ3(r) that can be tuned with a Feshbach
resonance [19] is linked to the s-wave scattering length a in
three dimensions through g = √

2/πa/b [20]. Unique to two
dimensions, the interaction strength is independent of density.
This means that within a trapped geometry the entire atomic
gas will experience the same effective interaction strength and
therefore adopt the same polarization.

To develop an effective Landau theory of the magnetic
transition, Hertz introduced a scalar Hubbard-Stratonovich
decoupling of the two-body interaction term in the spin
channel [19]. However, this form of decoupling neglects the
potential impact of soft transverse field fluctuations, which
in three dimensions are responsible for driving the second
order transition first order [6,7]. Therefore, we will introduce
a general Hubbard-Stratonovich decoupling that incorporates
fluctuations in all of the spin φ and charge ρ sectors. Integrating
over the fermion degrees of freedom yieldsZ = ∫

e−SDφDρ

with the action

S =
∫

g(φ2 − ρ2) − Tr ln
[
∂τ + εk̂ − µσz + gρ − gσ · φ

]
.

(2)

At this stage a saddle point analysis would determine the
mean-field values of ρ and φ. However, quadratic fluctuations
in these auxiliary fields renormalize these equations. Therefore
we introduce the putative saddle point values ρ0 for density and
m for magnetization, integrate out fluctuations in the auxiliary
fields, and finally minimize the energy to determine ρ0 and m.
It is also convenient to rotate the z axis from the quantization
axis to lie along the direction of the saddle point magnetization
m, with components labeled by s ∈ {+,−}. After integrating
over fluctuations in both the density ρ and magnetization
channels φ to Gaussian order, an expansion of the action to
second order in g leads to

Z = exp

[
−

∫
g(m2 − ρ2) + Tr ln Ĝ−1

− g2

2
Tr(�̂+−�̂−+ − �̂++�̂−−)

]
, (3)

where we have defined the spin-dependent polarization oper-
ator �̂ss ′ = ĜsĜs ′ , and Ĝ−1

± = ∂τ + εk̂ − µ± + gρ0 ∓ g|m|.
The contact interaction means that an unphysical ultraviolet
divergence arises from the term in the action that is second
order in g. To remove it we must affect the standard regulariza-
tion of the linear term g(m2 − ρ2), setting g �→ √

2/πa/b −
2(

√
2/πa/b)2A−1 ∑′

k3,4
(εk1 + εk2 − εk3 − εk4 )−1 [21], where

the prime indicates that the summation is subject to the
momentum conservation condition k1 + k2 = k3 + k4, and A

denotes the total area of one stacked layer.
Finally, after carrying out the remaining Matsubara sum-

mations, one obtains the following expression for the free

energy:

F =
∑

k,s=±
εs

kns(εk) +
√

2

π

a

bA
N+N−

− 2

(√
2

π

a

bA

)2 ∑
k1,2,3,4

′ n+
(
εk1

)
n−

(
εk2

)[
n+

(
εk3

)+n−
(
εk4

)]
εk1 + εk2 − εk3 − εk4

,

(4)

where ns(ε) = 1/[1 + eβ(ε − µs − s|m|√2/πa/b)] is the
Fermi distribution, and Ns = ∑

k ns(εk). To evaluate the final
nine-dimensional integral in Eq. (4) numerically we employ
the reparametrization outlined in the Appendix to reduce it
to a four-dimensional integral. Moreover, as we are interested
in searching for extrema in the free energy with changing
polarization we can differentiate our expression with respect
to magnetization, which at zero temperature further reduces
the integral to just three dimensions.

To highlight the potential importance of fluctuation cor-
rections we briefly study the contribution to the energy
from particle-hole excitations around momentum 2kF. At zero
temperature a nonanalytic contribution to the free energy of
the form |m|3 ln m2 emerges. The same nonanalyticity was
found diagrammatically in Ref. [2]. The formation of a finite
magnetization increases the phase-space available for the
formation of virtual intermediate pairs of particle-hole pairs,
and this phase space enhancement donates a nonanalytic term
to the free energy giving the transition the potential for first
order character. In the next section we study the effect that this
nonanalyticity has on the phase diagram.

III. PHASE BEHAVIOR

With the formal development of the theory complete we
will now apply the formalism to explore the implications
of ferromagnetism in the two-dimensional atomic Fermi gas,
and critically compare the results with the three-dimensional
case [6]. Before we study the phase diagram of the fluc-
tuation corrected free energy, to make contact with the
conventional Stoner theory we first consider the result of
a direct saddle point approximation scheme in which the
second order term in the free energy is neglected. In this
approximation at zero temperature the free energy is F =
(1 + a/b

√
2π3/2)µ2/2π + (1 − a/b

√
2π3/2)m2/2πµ2. This

expression is exact, and with magnetization featuring only
as the lowest available term in a Landau expansion its
analysis is straightforward. For a <

√
2π3/2b ≈ 7.874b this

model predicts that the gas is paramagnetic, whereas for a >√
2π3/2b the system is fully polarized, a scenario that remains

unaltered with the introduction of population imbalance. An
immediate corollary is that the spontaneous magnetization
formed is independent of the local density, which also holds
true when fluctuation corrections are taken into account.
Therefore, within a trap, the entire atomic gas adopts the same
polarization.

Having studied the mean-field limit, we now consider the
repercussions of fluctuation corrections on the behavior of the
magnetization. To orient our discussion, we first consider a gas
with equal populations of up and down-spin atoms. As shown
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FIG. 1. (Color online) (a) The growth of magnetization m with
scattering length for different temperatures. The inset figures show the
energy landscape with magnetization for T = 0 either side of the first
order transition. (b) the phase diagram of temperature with scattering
length shows the first order (dashed red line) and second order
(solid red line) (quasi)ferromagnetic ordering from the paramagnetic
phase.

in Fig. 1(ai) at scattering lengths below a ≈ 3.945b the energy
profile possesses a single minimum at zero magnetization.
With rising interaction strength a second minimum in the
energy landscape develops at m ≈ 0.6, which, with rising
scattering length, deepens in Fig. 1(aii) to become the global
minimum at a ≈ 3.953b and m ≈ 0.8. At this scattering
length the system undergoes a first order transition from
m = 0 into the polarized regime with m ≈ 0.8. As shown in
Fig. 1(a) with a further increase in the interaction strength
the magnetization saturates at a scattering length a ≈ 4.048b.
Fluctuation corrections have had significant impact: they have
driven the ferromagnetic transition to a significantly weaker
interaction strength (a ≈ 3.953b) compared to the mean-field
case (a ≈ 7.874b). At this weaker interaction strength the
m2 term in the free energy has a positive coefficient, and
the ordering is driven by the non-analytic |m|3 ln m2 term.
The abetment of the transition by fluctuation corrections and
reduction in interaction strength at which ferromagnetism is
seen is common to both the two and three-dimensional cases,
though in two dimensions the transition is immediately to
full polarization at mean-field level and fluctuation correc-
tions drive a first order transition at a weaker interaction
strength.

We now turn to address the behavior of the phase transition
at finite temperature in Fig. 1(a). Increasing temperature dulls
the fluctuation corrections and the scattering length of the
first order transition rises and the magnetization following
the transition is reduced. Figure 1(b) shows that at T ≈
0.28TF a tricritical point emerges and the system reverts

to second order behavior. The Mermin-Wagner-Hohenberg
theorem [22] states that although an ordered phase can exist in
two dimensions at zero temperature, at any finite temperature
fluctuations will destroy long range correlations in the system,
and the state will be characterized by exponentially decaying
correlation functions. Therefore we denote the ferromagnetic
state as a “quasiferromagnet” (ferromagnet with fluctuating
polarization direction). However, since the two-dimensional
gas is experimentally realized in a series of disks, each one
can couple to its neighbors and tunneling should stabilize the
phase [11,23]. Furthermore, the Mermin-Wagner-Hohenberg
theorem is valid only in the thermodynamic limit and does not
apply to finite-sized systems. For a two-dimensional Bose gas
with attractive interactions it has been shown that a potential
trap restricts the system and stabilizes a quasi-Bose-Einstein
condensate [24]. In a similar way the harmonic trap should
stabilize a ferromagnetic phase. So far we have focused on
how equilibrium properties can stabilize the ferromagnetic
phase, however, there are also nonequilibrium aspects to
consider. Within the current experimental realization of cold
atom gas ferromagnetism three-body losses necessitate that
the experiment be performed out of equilibrium. Following a
quench small ferromagnetic domains are formed [25] which
then grow steadily [9]. The final size of these ferromagnetic
domains ∼6/kF [9] at T = 0.1TF and kFa = 2 is small
compared to the length-scale of the thermal fluctuations
given by a exp[2π (2kFa/π − 1)TF/T ] ≈ 107/kF [26]. This
means that at sufficiently low temperature fluctuations will
not disrupt the ferromagnetic state and so in experiments a
true ferromagnetic phase should be observed as shown in
Fig. 1.

Having addressed the situation without population imbal-
ance, we now consider how a fixed spin population imbalance
influences the phase diagram. The two constituent species
cannot interconvert so an initial population imbalance is
maintained by the difference in their chemical potentials.
However, if energetically favorable, the gas can become more
polarized either by phase separation or the development of an
in-plane magnetic moment. As shown in Fig. 1(ai and aii),
at weak interactions such that a <≈ 3.945b, the energy mono-
tonically increases with magnetization, but the magnetization
remains pinned to the minimum value defined by the popula-
tion imbalance p. However, with rising interaction strength
a second minimum develops in the free energy landscape
from a ≈ 3.945b and m ≈ 0.6. If that magnetization exceeds
the population imbalance, then as shown in Fig. 2(b) the
system will phase separate between this minimum and that
at zero magnetization, with relative fractions governed by the
Maxwell construction. When the emerging minimum becomes
the global minimum at m ≈ 0.8, then gases with a lower
population imbalance enter this global minimum with an
appropriate in-plane magnetic moment. As the magnetization
of the minimum rises it envelops systems with higher popula-
tion imbalance, and tracks the magnetization curve shown in
Fig. 2(a) until it reaches full polarization at a/b ≈ 4.048. Like
the three-dimensional case, the population imbalance renders
the characteristic interaction strength of the transition to be
almost constant up to an imposed population imbalance of
p ≈ 0.8, which could be a key experimental signature of first
order behavior.
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FIG. 2. (Color online) (a) The growth of magnetization m with
scattering length at T = 0. (b) the T = 0 phase diagram for imposed
population imbalance p with scattering length a/b shows the first
order (dashed red line) and second order (solid red line) ferromagnetic
ordering from the unmagnetized (UnM) to the partially magnetized
(PM) and fully magnetized (FM) regions, here unmagnetized refers
to having no in-plane magnetization.

IV. TRAPPED GEOMETRY

Having addressed the phase behavior of a uniform system,
to make contact with the experiment we now turn to address
the atomic gas trapped within the spherical potential V (r) =
ωr2/2. Following the program developed in Refs. [9–11] we
aim to minimize the free energy within the local density
approximation using the kernel f (r) = F (r) + V (r)[n+(r) +
n−(r)] − γ+n+(r) + γ−n−(r), here F (r) denotes the energy
kernel Eq. (4) evaluated with the local chemical potential
at r. The Lagrange multipliers γ± enforce the constraints
of constant number of atoms imposed by the trap geom-
etry Ntot = ∫

[n+(r) + n−(r)]d2r and population imbalance
p �

∫
[n+(r) − n−(r)]d2r/Ntot; without loss of generality we

assume that p � 0 and therefore γ+ � γ−. To study the effects
of spatial density variations we invoke a local density approx-
imation that enables the variational minimization δf/δns(r)
and yields the simultaneous equations for the effective local
chemical potentials µ±(r) for the species in the rotated spin
basis

µ±(r)

= γ± − V (r) −
√

2

π

a

bA
n∓(r) + 2

[√
2

π

a

bA

]2 ∑
k1,2,3,4

′
n∓

(
εk2

)

×n±
(
εk1

)
δ
(
εk3−µ±

) + [
n±

(
εk3

)+ n∓
(
εk4

)]
δ
(
εk1−µ±

)
εk1 + εk2 − εk3 − εk4

.

(5)

These equations can be understood as having been constructed
out of three orders of perturbation theory. The lowest,
independent of the scattering length a, corresponds to the
Thomas-Fermi approximation within the confining potential,
the term first order in a introduces the mean-field energy
penalty of the interaction whereas the second order term
introduces the energy associated with magnetic quantum
fluctuations. The detailed study of the uniform system revealed
that the polarization depends only on the interaction strength
and not spatial density variations, meaning that the ratio
n+(r)/n−(r) and therefore µ+(r)/µ−(r) is constant across the
trap. Therefore, the two equations reduce to just one that is
solved by iteration.

A. Heuristic observations

We first address what can be determined about the behavior
of the atomic gas heuristically before presenting the results of
the full solution of Eq. (5). To develop our intuition we focus
on perhaps the most physical quantity that can be measured
by experiment, namely the cloud size. To start the analysis
we consider the non-interacting limit a = 0 where the system
is unpolarized and the effective chemical potentials given by
Eq. (5) follow the familiar Thomas-Fermi form. The root mean
square (rms) radius would increase with population imbalance
as [1 + ( 1−p

1+p
)3/2]1/2/

√
2 due to the increasing Fermi degener-

acy pressure. With weak interactions a � √
2π3/2b we need

consider Eq. (5) only to first order in a which yields µ±(r) =
γ± − V (r) − a max[γ∓ − V (r),0]/21/2π3/2b. The first order
term reduces the effective chemical potential so to conserve
the total number of trapped atoms we renormalize the Lagrange
multipliers upward from the Thomas Fermi value by a
factor of 1 + a(1 − p)/(2π )3/2b(1 + p) for the majority spin
species and 1 + a[2 − ( 1−p

1+p
)1/2]/(2π )3/2b for the minority

spin species. This reduction in the effective chemical potential
and corresponding fall in local density can be understood in
terms of an increase in the local pressure within the cloud due
to the repulsive interactions between the atoms. This pressure
inflates the cloud causing the rms radius to rise through a
factor of 1 + a(1 − p)(3

√
1 + p − √

1 − p)/25/2π3/2b[(1 +
p)3/2 + (1 − p)3/2]. Having analyzed the weakly interacting
regime it is natural to also examine the strongly interacting
limit. Here the atomic gas is fully polarized so µ− = 0 and
µ+(r) = γ+ − V (r), meaning that the system is firmly in the
Thomas Fermi regime. We again require that the number of
particles is conserved which sets the majority spin Lagrange
multiplier to rescale by a factor of 21/2 from its original value
if there were no population imbalance. Consequentially the
enhanced Fermi degeneracy pressure dilates the rms radius of
a cloud with zero population imbalance by a factor of 21/4. The
key limits of weak and strong interactions hold true whatever
the true theory of ferromagnetism so provide two valuable
handles for potential experiments.

B. Exact analysis of trapped behavior

Having completed the overview of the trapped behavior
we now turn to consider the ramifications of fluctuation
corrections and self-consistently solve Eq. (5) for the chemical
potentials µ±. We then integrate over the trap to extract the
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FIG. 3. (Color online) The variation of (a) cloud size, (b) kinetic
energy, and (c) atom loss rate on ferromagnetic ordering with
increasing scattering length a/b for the orthodox Stoner mean-field
theory case. The thin blue dashed line highlights the small a/b

behavior. The solid lines are at zero population imbalance whereas
the dotted line is with an imposed population imbalance of 0.5.

full behavior of the experimental observables, namely cloud
size, kinetic energy, and three-body loss rate, which for the
mean-field limit are shown in Fig. 3. The same calculation
repeated for fluctuation corrections is shown in Fig. 4.
A useful reference throughout will be the complementary
analysis in three dimensions [9,10]. The orthodox Stoner
mean-field theory predicts that at the onset of ferromagnetic
ordering the system immediately fully polarizes across the
entire trap at a/b = √

2π3/2 ≈ 7.874, whereas fluctuation
corrections allow the cloud to adopt partial polarization over
the window of scattering lengths 3.953 <≈ a/b <≈ 4.048. In two
dimensions as the entire gas polarizes at the same interaction
strength striking features emerge at these respective interaction
strengths. Current experiments [8] can probe scattering lengths
to ∼ 10% accuracy, therefore in current experiments the
fluctuation corrected transition will also appear to immediately
give complete polarization.

To develop our intuition we first examine the projected
cloud size. In the mean-field limit [Fig. 3(a)] with weak
interactions the rms radius grows linearly with scattering
length as the atoms repel each other within the trap. The
radius grows following the universal scaling described above.
Population imbalance causes the cloud to have an initially
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FIG. 4. (Color online) The variation of (a) cloud size, (b) kinetic
energy, and (c) atom loss rate on ferromagnetic ordering with
increasing scattering length a/b when fluctuation corrections are
taken into account. The thin blue dashed line highlights the small a/b

behavior. The solid lines are at zero population imbalance whereas
the dotted line is with an imposed population imbalance of 0.5.

larger radius due to the increased Fermi degeneracy pressure.
The entire cloud becomes fully polarized at the same scattering
length, a/b = √

2π3/2, and at this point the cloud size
immediately adopts its final inflated radius R/R0 = 21/4,
maintained by Fermi degeneracy pressure. This is in contrast
to the three-dimensional case [9,10] in which the transition
takes place over a range of interaction strengths, thus making
the transition less distinct. Fig. 4(a) shows that fluctuation
corrections drive the cloud expansion faster, causing it to
dilate rapidly. In contrast to the three-dimensional case [9,10],
this pressure cannot drive the cloud to grow larger than the
fully polarized size 21/4Rrms

0 . As the interaction strength is
unaffected by the density of atoms, the transition occurs at the
same scattering length a ≈ 3.954b seen in the uniform case.

The total kinetic energy is probed experimentally by
releasing the atoms from the trap and imaging them following
a ballistic expansion. Starting from the mean-field analysis in
Fig. 3(b), at zero interactions an initial population imbalance
increases the kinetic energy due to the enlarged majority
spin Fermi surface by a factor of [1 + ( 1−p

1+p
)3/2]/2. The

weak interactions dilate the cloud, causing local density and
kinetic energy to fall with the universal scaling 1 − a(1 −
p)(3

√
1 + p + √

1 − p)/25/2π3/2b[(1 + p)3/2 + (1 − p)3/2].
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When the scattering length is increased beyond a/b = √
2π3/2

the entire gas becomes ferromagnetic and the atoms all enter
the same Fermi surface. This Fermi surface is inflated and the
kinetic energy plateaus at the final value that is 21/2 times that
for the non-interacting gas. When fluctuation corrections are
taken into account one recovers the variation of kinetic energy
shown in Fig. 4(b). The fluctuations drive the transition to
take place at a reduced interaction strength a ≈ 3.954b seen
in the uniform case.

The atom loss rate due to three-body recombination is
� = �0(a/b)6

∫
n+(r)n−(r)[n+(r) + n−(r)]d2r [27]. In the

recent experiment [8] the three-body loss was significant
and forced the experiment to be performed rapidly and
out of equilibrium, and here we study the situation in two
dimensions. We start by examining the mean-field limit in
Fig. 3(c), which shows the three-body loss integrated over the
entire trap. At weak interaction strengths the loss rate rises
rapidly as � = �0(a/b)6µ4(1 − p2)/8π2ω. At a scattering
length a/b = √

2π3/2 the gas across the entire trap becomes
fully polarized so n− = 0 and therefore the three-body loss
is completely cut off. This immediate elimination of loss
contrasts the three-dimensional case where loss remains until
high interaction strengths, where it forces the experiment
out of equilibrium [9], and also renormalizes the effective
interaction strength [12]. Figure 3 highlights how these effects
are reduced in the two-dimensional case which could aid with
the positive identification of the ferromagnetic phase. It can
also be seen that population imbalance reduces atom loss
primarily through reduction of the n+(r)n−(r) term. Having
studied the mean-field limit we now look at the impact of
fluctuation corrections on three-body loss in Fig. 4(c). The
fluctuation corrections drive the ferromagnetic transition to
take place at a reduced scattering length of a/b = 3.954.
This in turn means that the peak three-body loss (∝ a6

crit) is
significantly reduced. This fall in loss rate will mean that an
experiment searching for signatures of ferromagnetism can be
performed nearer to the equilibrium regime which should yield
clearer results.

V. DISCUSSION

In conclusion, on the repulsive side of the Feshbach
resonance coupling of transverse magnetic fluctuations drives
ferromagnetic ordering first order. We studied the specific
variation of three experimental signatures of ferromagnetism:
cloud size, release energy, and atom loss rate. The formalism
highlighted the benefits of studying ferromagnetism in two
rather than three dimensions. In two dimensions the effective
interaction strength is independent of density and therefore
radius in the harmonic well. As the interaction strength is
ramped upward the entire gas will enter into the ferromagnetic
phase at the same Feshbach field, whereas in three dimensions
the gas first enters the ferromagnetic state at the center. There-
fore the signatures of the ferromagnetic phase are enhanced in
two dimensions, which should aid the exact characterization
of the state. At weak interactions these observables displayed
universal scaling, and the variation with an imposed population
imbalance was also considered.

One intriguing possibility opened up by the new formalism
developed to study fluctuation corrections is ferromagnetic

reconstruction into a spin textured state, in a matter analogous
to the Fulde-Ferrell-Larkin-Ovchinnikov state in supercon-
ductors. This has already been shown to be possible in three
dimensions [7] and, with enhanced Fermi surface nesting
in two dimensions, poses an interesting direction for future
research.
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APPENDIX: COMPUTING THE MOMENTUM
SPACE INTEGRAL

An important integral Eq. (4) encountered in this paper has
the form∫∫∫∫

dk1dk2dk3dk4F (k1,k2,k3,k4)δ(k1 + k2 − k3 − k4).

(A1)

To evaluate this integral one could substitute k4 = k1 + k2 −
k3, and then integrate over the three parameters representing
the lengths of vectors k1, k2, and k3, and a minimum of three
relative angles between these vectors, giving a total of six
integration parameters. However, since numerical integration
generally becomes prohibitive with increasing number of
dimensions we outline a scheme that takes advantage of the
fact that the function F depends only on the magnitude of
the momenta to perform the angular integrals and leave a
numerical integral over just the four vector lengths. A similar
scheme has been developed in the three-dimensional case [6].

The integral is reparametrized according to Fig. 5. The
angular integral associated with vectors k1 and k2 is∫ 2π

0 2πk1k2dθ12, where θ12 is the angle between k1 and
k2. We now change the variable of the angular integral
over θ12 to the vector p12 = k1 + k2 through the rela-
tionship cos θ12 = (k2

1 + k2
2 − p2

12)/2k1k2 and so
∫ 2π

0 dθ12 =∫ k1+k2

|k1−k2| dp128πk1k2p12[4k2
1k

2
2 − (k2

1 + k2
2 − p2

12)2]−1/2. This
expression, and an analogous one in p34 = k3 + k4, allows

k3

p34

k4
θ12

k2

k1

p12

FIG. 5. The reparametrization of the momenta k1,2,3,4. θ12 repre-
sents the angle between k1 and k2. The two momenta p12 = k1 + k2

and p34 = k3 + k4 are constrained to be equal, p12 = p34, by the
Dirac delta function in Eq. (A1).
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us to rewrite the original integral Eq. (A1) in terms of
the parameters p12 and p34. The momentum conservation
requirement is imposed by δ(k1 + k2 − k3 − k4) which now
introduces a new conservation law δ(p12 − p34). This sets the
two integration parameters equal, p12 = p34 = p, so there is
just one integral over parameter p remaining, and since the
delta function constrains the angle between p12 and p34 we
must also divide by the phase space associated with the angular
integration of 2πp. We then obtain

32π

∫∫∫∫
dk1dk2dk3dk4

∫ min(k1 + k2,k3 + k4)

max(|k1−k2|,|k3−k4|)
dp

× F (k1,k2,k3,k4)k1k2k3k4p√
4k2

1k
2
2 − (

k2
1 + k2

2 − p2
)2

√
4k2

3k
2
4 − (

k2
3 + k2

4 − p2
)2

.

Finally, we note that the integral over variable p is Carlson’s
standard elliptic integral of the first kind, which we denote by
RF. This yields the final result

32π

∫∫∫∫
dk1dk2dk3dk4F (k1,k2,k3,k4)

×�(k1 + k2 − |k3 − k4|)�(k3 + k4 − |k1 − k2|)

×
RF

(
0,1 +

∣∣∣ [(k1+k2)2−(k3−k4)2][(k1−k2)2−(k3+k4)2]
[(k1+k2)2−(k3+k4)2][(k1−k2)2−(k3−k4)2]

∣∣∣ ,1)
√

|[(k1 − k2)2 − (k3 − k4)2][(k1 + k2)2 − (k3 + k4)2]|
.

The term introduced to compensate for the angular integrals
can be efficiently computed by a suitable numerical library.
This four-dimensional integral is now better suited to computa-
tional evaluation than the six-dimensional form of the original
expression Eq. (A1).
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