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Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized

phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase

behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By

adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic

transition would take place at a weaker interaction strength than is observed in experiment. This discrep-

ancy motivates a simple nonequilibrium theory that takes account of the dynamics of magnetic defects and

three-body losses. The formalism developed displays good quantitative agreement with experiment.
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The transition between ferromagnetism and paramag-
netism with increasing temperature is considered to be a
canonical example of a continuous phase transition, and
the phenomenon has been firmly established in many
materials. The ability to tune the critical temperature
through varying pressure presents experimentalists with
an opportunity to investigate the novel many-body physics
predicted to arise in the vicinity of a quantum critical point
[1]. However, whether this phase behavior derives from
soft magnetic fluctuations, which are believed to drive the
Stoner transition first order [2–4], or is a consequence of
coupling to auxiliary degrees of freedom such as lattice
vibrations remains a subject of considerable interest and
debate [5]. The control afforded by Feshbach resonance
phenomena in ultracold degenerate Fermi gases presents a
controlled platform from which to explore strongly corre-
lated repulsive Fermi systems, including collective effects
from nonequilibrium dynamics and spin textures [6,7], and
quantum critical phenomena [1].

Although a few early experiments [8,9] conducted on the
repulsive side of the resonance hinted at ferromagnetic
behavior [3], these investigations were hindered by the
challenges posed by the cold atomic gas setup, with the
fixed relative populations of particles, trap confinement,
atom loss through three-body interactions, and nonequilib-
rium physics, rendering the conclusive identification of
ferromagnetism impossible. However, in a recent study,
Jo et al. [10] succeeded in observing the first strong evi-
dence for novel phase behavior, consistent with itinerant
ferromagnetism in an atomic gas of�6:5� 105 6Li atoms.
To overcome the obstacle of atom loss through three-body
interactions the experiment was carried out under non-
adiabatic conditions, with the atoms prepared in the dis-
ordered nonferromagnetic state and the magnetic field
ramped to the repulsive side of the resonance in 4.5 ms
and then held fixed for a further 2 ms. To assess the
viability of the experimental design, it is crucial to have
detailed predictions for the expected phase behavior in the
trap geometry. In the following, we will adopt two stands
of investigation. First, it is important to understand what

we expect to see in an idealized equilibrium trap geometry.
This study provides a benchmark both to assess the current
experiment and to guide future studies. However, while
this analysis achieves a qualitative agreement with experi-
ment, it also exposes important discrepancies highlighting
the need to consider nonequilibrium effects. Second, we
turn to address nonequilibrium dynamics to critically ana-
lyze the experimental observations and establish strong
quantitative agreement between theory and experiment.
An atomic gas at equilibrium provides an ideal platform

from which to analyze experiment. For a two-component
Fermi gas with a local contact interaction and equal

masses, the Stoner Hamiltonian is defined by H ¼R
d3x½P�a

y
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are distinguished by a pseudospin index � 2 f"; #g. Note
that the pseudospin nature of the Fermi degrees of freedom
implies that the Hamiltonian remains spin rotationally
invariant even in the presence of an external magnetic field.
Taking into account all contributions to second order in g,
the energy density of the Stoner Hamiltonian for a spatially
uniform system can be expressed as [2–4],
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where nF�ð�Þ ¼ 1=½1þ e�ð����Þ� denotes the Fermi distri-
bution, with spectrum �k, chemical potential ��, and
reduced temperature �, N� is the number of particles, �
is the density of states at the Fermi surface, kF is the Fermi
wave vector of the corresponding noninteracting system,
and the scattering length a fully characterizes the strength
of the contact interaction close to resonance. We also set
@ ¼ m ¼ 1. Retaining only the leading interaction correc-
tion, OðkFaÞ, Eq. (1) recovers the conventional mean-field
Stoner theory, which predicts that the transition remains
second order down to zero temperature. However, the soft
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transverse magnetic fluctuations [11] encoded in the sec-
ond order term [12] have the effect of driving the ferro-
magnetic transition first order [2–4] at low temperature.

To address the nonuniform atomic trap geometry, we
must determine the free energy density, f ¼ "�
�½n"ðrÞ þ n#ðrÞ�. Here the Lagrange multiplier � enforces

the constraint of a fixed total particle number imposed by

the trap geometry. It is also convenient to rotate the basis to
the axis of net magnetization s 2 fþ;�g. To analyze the
spatially inhomogeneous atom distribution we invoke a
local density approximation which allows the variational

minimization �f
�nsðrÞ . This leads to two equations for the

effective local chemical potentials ��ðrÞ of the majority
and minority species in the rotated basis that must be
solved self-consistently,
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within the external confining potential VðrÞ ¼ !r2=2. To
provide a reference with experiment [10], we describe the
interactions in terms of a dimensionless interaction
strength expressed in terms of the Fermi wave vector k0Fa
at the center of a trapped noninteracting Fermi gas.

We first address the behavior of the cloud size across the
range of interaction strengths. Figure 1(b) confirms that,
for weak interactions, the root-mean square (rms) cloud
size follows the universal scaling relationship Rrms

0 ð1þ
1024
945�2 k

0
FaÞ that can be derived from Eq. (2). However,

fluctuation corrections soon increase the cloud pressure
causing it to inflate rapidly to its fully polarized value

21=6Rrms
0 . As cloud density is suppressed by pressure, the

onset of ferromagnetism at the center of the trap takes
place at an enhanced interaction strength compared with
the uniform system. Second, in Fig. 1(c) we study the total
kinetic energy of the atoms, which is in agreement with the
mean-field prediction of LeBlanc et al. [7]. With increasing
interaction strength the local density falls so that the ki-
netic energy decreases to 3

8E
0
Fð1� 2048

945�2 k
0
FaÞ. The fluctua-

tion corrections increase the cloud pressure and reduce the
density so driving the kinetic energy downwards still fur-
ther. The release energy recorded by experiment extrapo-
lated to zero interaction strength is �0:45E0

F, which is
marginally higher than the analytical prediction of
0:375E0

F. This discrepancy could arise through the recov-
ery of interaction energy upon release from the trap, rem-
nant eddy currents in the coils, or nonequilibrium effects.
The final experimental probe that we address here is the
atom loss rate due to three-body recombination.
Integrating the loss rate � ¼ �0ðkFaÞ6

R
nþðrÞn�ðrÞ�

½nþðrÞ þ n�ðrÞ�d3r [13] over the trap yields the variation
with interaction strength shown in Fig. 1(d). The mean-
field case agrees with the prediction of LeBlanc et al. [7].
The initial rapid rise in the loss rate can be attributed to the
increase in the ðk0FaÞ6 coefficient, through the universal

relation �=�0 � 7ðk0FaÞ6�6=288�4!3=2. The later decay
in the loss rate is due to the suppression of the product
nþðrÞn�ðrÞ with the onset of magnetization.

Although there is reasonable qualitative agreement be-
tween theory and experiment, a marked divergence arises
in the experimental prediction of the interaction strength at
the onset of ferromagnetism at kFa � 2:2. The theoretical

prediction from mean-field theory is kFa � 1:9, whereas it
is at kFa � 1:1 if fluctuation corrections are taken into
account. This discrepancy prevents us from drawing a
definitive conclusion on whether the transition is first or
second order. However, in future experimental studies, it
should be possible to gain insight into this question by
studying the momentum distribution of the atoms shown in
Fig. 2. The latter can be directly measured by studying the
spatial distribution following a ballistic expansion [14]. A
single noninteracting atomic species has the momentum

distribution nk / k2ð2�� k2Þ3=2. In the partially polarized
regime the atomic gas will be ferromagnetic in the high
density regions—at the center of the trap. Since the tran-
sition from an unpolarized to a fully polarized gas takes
place over a small range of interaction strengths, the
atomic gas will be partially polarized over a small range
of radii. The remainder of the gas is unpolarized. The thin
shell of partially polarized gas gives rise to a sharp double
peak structure in the momentum distribution in both the
mean-field case and also when fluctuation corrections are
taken into account. However, the mean-field ferromagnetic
transition takes place over a larger range of radii than the
fluctuation corrected case, which smears out the double
peak feature.
To assess whether the observed experimental phenome-

nology [10] is consistent with the development of itinerant
ferromagnetism, it is important to understand the source of
the discrepancy in the predicted interaction strength. In
doing so, we will exploit the marginally adiabatic nature of
the experiment to explore the quench dynamics of the tran-
sition. This necessitates taking into account two contribut-
ing factors: how the ferromagnetic state condenses out of
the normal phase, and the renormalization of the interac-
tion strength due to three-body losses. The emergence of
the ferromagnetic state is nontrivial since the propagation
of the condensed spin alignment is bounded by the spin
wave velocity. The quench propels the system deep into the
ferromagnetic regime, so monopole defects are condensed
out from the paramagnetic phase [15,16]. As the defects
grow they mutually annihilate, delaying the formation of
the ferromagnetic phase, which in turn increases the effec-
tive interaction strength required to observe ferromagnetic
phenomena. The second component of our dynamical
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study is three-body interactions. These reduce the atom
density and therefore abate the effective interaction
strength kFa, which to compensate must be artificially
raised to observe ferromagnetism. The interplay between
these two dynamical effects is expected to raise the inter-
action strength required to observe ferromagnetism to be
more in accord with the experimental findings. We now
detail how to separately incorporate these effects into a
description of the atomic gas, before merging them into a
single formalism. Since the characteristic time scale asso-
ciated with temperature, 0.5 ms, is similar to time scales of
the Ketterle experiment [10], we can treat the atomic gas as
if it were at zero temperature. Because of the short time
scale of the quench, for simplicity we can focus attention
on just the mean-field component of the theory [17] and
make the approximation that the ferromagnetic transition
takes place at the Stoner criterion kFaCRIT ¼ �=2.

The ferromagnetic quench deep beyond the spinodal line
leads to the condensation of topological monopole defects
[15]. In each defect the spins radiate out from a central core
with magnetization �ðr > 	Þ ¼ �0ð1� 	2=r2Þ, where

	 ¼ 1=kF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kFa=kFaCRIT � 1

p
is the healing length. A uni-

form atomic gas would be only partially polarized over a
range of interaction strengths � � 0:29, so therefore dur-
ing the field ramp over time tramp to a target interaction

strength kFaAIM, the gas will be partially polarized for the
time tramp�=kFaAIM. The study of Babadi [17] shows that

after this characteristic quench time the defects will adopt

an initial size L0 ¼ ½ð@=mk0F
3=2=6�2Þtramp�=kFaAIM�1=3.

Subsequently, the defects grow and annihilate as they
compete to select the equilibrium spin. This expansion of

the defects can be summarized by the growth law of
ffiffiffiffiffiffiffiffiffiffiffi
@t=m

p
[16]. Combined with the initial condensed size of the

defects, we therefore model the defect size by LðtÞ ¼

ðL0 þ

ffiffiffiffiffiffiffiffiffiffiffi
@t=m

p Þ, with 
 being an unknown dimensionless
constant that we include to account for the system depen-
dent dynamics that go beyond the current analysis.
Having captured defect growth in the model, we now

incorporate it into a formalism that also accounts for the
atom loss due to three-body interactions. We employ the
standard atom loss rate formula [13] to describe three-body

recombination _n ¼ �111ðna3Þ2 ��n"n#=@n, where �� ¼
4:56@2n2=3=m is the average kinetic energy. The fall in
loss rate due to Pauli blocking is described by a geometric
term that can be expressed in terms of the magnetization�
through n"n#=n2 ¼ ðn2 ��2Þ=4n2. As the spins within a

defect are not parallel, three-body recombination occurs
within a defect, which can be expressed through the geo-
metric term as n"n#=n2 ¼ 	2=2r2 þOð	4Þ. Integrating this
loss over one defect predicts a net loss rate of

FIG. 2 (color online). The momentum distribution nk=N of a
half net polarized atomic gas in (a) the mean-field case and
(b) with fluctuation corrections. The cyan or gray filled curve
shows the population of majority spin particles and the blue or
dark gray filled curve shows the minority spin particles. The
dotted curves show the expected distribution for the majority
spin particles in a harmonic trap, nk / k2ð2�� k2Þ3=2, and
simply due to the density of states, nk / k2. The inset curves
show the radial distribution of atoms (orange or gray, primary y
axis) and magnetization (blue or dark gray, secondary y axis).

FIG. 1 (color online). (a) Atoms remaining after the hold time,
(b) rms cloud size, (c) release energy, and (d) loss rate with the
dimensionless interaction parameter k0Fa shown on the primary

x axis in the mean-field case (green or dark gray), with fluctua-
tion corrections (red or dark gray), and with defects (dashed
magenta line). The dotted blue line shows the trend in the small
k0Fa limit, the vertical cyan line at k0Fa ¼ �=2 is the Stoner

criterion, and the experimental points of Ref. [10] are also
highlighted.
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Starting in the disordered regime, following the magnetic
field ramp we numerically propagate the atom loss for-
wards in time. If the system breaks into the ferromagnetic
regime, LðtÞ starts to grow as the defects expand and
annihilate. Should atom loss cause the system to reenter
the normal regime we immediately revert to the L ¼ 0
limit. To determine the atomic distribution within the
trap we self-consistently evaluate the local effective poten-
tial following the method outlined in Eq. (2).

In Fig. 1(a) we first analyze the population of remnant
atoms following the field ramp. At weak interaction
strengths the number of atoms lost to three-body recombi-
nation scales as�ðk0FaÞ6. However, the more rapid onset of
ferromagnetism and smaller core length conspire to cut
losses. Deep within the ferromagnetic regime, around 80%
of the atoms remained in the experiment [10], which was
used to calibrate the constant 
 ¼ 5. Having determined
the dimensionless constant, we now monitor the ramifica-
tions of this choice on the growth of the defects. The ratio
of the defect size to the core radius, L=	, after the hold
time, increases with kFa due to the proliferation of defects
commencing earlier and the falling core radius. The rise of
L leads to a fall in the number of defects remaining after
the field hold to �8. However, no firm evidence has yet
been reported for domain formation in experiment.

Now that we have calibrated the theory against the
experimental results we can proceed to compare the other
physical observables against the experimental data. We
first look at the rms cloud size in Fig. 1(b). In the weakly
repulsive regime the cloud size increases with interaction
strength due to the enhanced pressure between atoms.
However, at interaction strengths 1< k0Fa < 2:2 the in-
creasing atom loss dominates, causing the cloud to shrink.
The characteristic minimum formed is in accord with the
experimental results, and critically is delayed until the
interaction strength k0Fa � 2:2, both because the loss of
atoms hinders the onset of ferromagnetism, and since on
the border of ferromagnetism the longer core length in-
creases atom loss. Upon ferromagnetic ordering the atom
loss falls off causing the cloud to reexpand, which even-
tually exceeds its original radius. With weak interactions
the kinetic energy in Fig. 1(c) falls both as atoms are lost
and the cloud dilates. Upon reaching the critical interaction
strength of k0Fa � 2:2 ferromagnetic ordering takes place
and the kinetic energy rises as the ordered atoms posses a
larger Fermi surface. Across the whole range of interaction
strengths the theoretical prediction for the kinetic energy
falls short of the experimental results, which could be due
to the gas being inherently out of equilibrium, recovery of
some interaction energy upon release from the trap, or

remnant eddy currents in the coils. At high interaction
strength the kinetic energy continues to rise as the atom
loss decreases, indicative of the upturn seen in the experi-
mental results. Finally, in Fig. 1(d) we address the atom
loss rate which climbs strongly as�ðk0FaÞ6 before the onset
of ferromagnetism. Consistent with the other experimental
probes, the peak atom loss is delayed until k0Fa � 2:2.
Following the onset of ferromagnetism the atom loss drops
away more slowly than without dynamic effects due to the
necessity for the defects to grow and the reduced atom loss
during the ramp time.
In conclusion, we have performed a detailed critique of

the results of the first experimental signs of ferromagne-
tism in a cold atom gas. First, we demonstrated that the
results are not consistent with the formation of an equilib-
rium ferromagnetic phase. Second, we demonstrated how
the experiment indicates that the ferromagnetic phase is
formed through the condensation of defect-antidefect pairs
that subsequently undergo mutual annihilation, which de-
lays the formation of the ferromagnetic phase to an en-
hanced interaction strength of kFa ¼ 2:2.
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C. Godrèche (Cambridge University Press, Cambridge,
U.K., 1992).

[17] M. Babadi, D. Pekker, R. Sensarma, A. Georges, and
E. Demler, arXiv:0908.3483.

PRL 103, 200403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 NOVEMBER 2009

200403-4


