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We present a microscopic model of the quantum paraelectric-ferroelectric phase transition with a focus on
the influence of coupled fluctuating phonon modes. These may drive the continuous phase-transition first order
through a metaelectric transition and furthermore stimulate the emergence of a textured phase that preempts the
transition. We discuss two further consequences of fluctuations, first for the heat capacity, and second we show
that the inverse paraelectric susceptibility displays �−1�T2 quantum critical behavior, and can also adopt a
characteristic minimum with temperature. Finally, we discuss the observable consequences of our results.
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I. INTRODUCTION

Ferroelectric materials feature in many modern day elec-
tronic devices including computer memory and capacitors,
and are a simple setting for studying quantum criticality.1–3

In this paper we focus on the family of displacive ferroelec-
trics where the optical lattice modes condense, forming a
structural distortion. Near to quantum criticality excitations
can become highly degenerate and new phases can emerge.
Motivated by recent experiments that signal the emergence
of novel quantum critical behavior in ferroelectrics,1 we ex-
plore the possibility that transverse components of polar
fluctuating phonons conspire to drive a first-order displacive
metaelectric transition and investigate the implications for
the inverse susceptibility.

The soft-mode optical phonons in ferroelectrics can be
well described by a bosonic field theory. If the dynamics
were not damped by free electrons and the interactions re-
main short ranged then the general quantum-critical behavior
would adhere to the well-established rules reviewed in Ref.
4. However, in ferroelectrics the motion of the atoms in op-
tical modes leads to the emergence of electric dipoles. A
good description of these long-range dipole forces is essen-
tial to properly describe the ferroelectric transition. The ef-
fect of long-range dipolar forces was first studied by
Rechester5 and Khmel’nitskii and Shneerson.6 Aharony and
Fisher7 found that anisotropies associated with the dipolar
interaction led to a universality class in the classical ferro-
electric. The quantum ferroelectric phase transition in the
mean-field approximation, and its universality class, was
studied by Roussev and Millis.8 However, recent experimen-
tal evidence points to new physics that emerges close to
quantum criticality; for example, the coexistence of a quan-
tum paraelectric phase with a quantum ferroelectric phase in
18O-exchanged SrTiO3 provides strong evidence for a first-
order phase transition.1 Additional motivation to study ferro-
electrics arises from the inverse dielectric constant behavior
of SrTiO3 which falls at low temperature before increasing
as �−1�T2 at intermediate temperatures and rises as �−1�T
at high temperature. One suggestion is that new phenomena
are driven by the coupling of acoustic to optical phonons.3,6,9

However, inspired by the ramifications of quantum fluctua-
tions in ferromagnets,10 we show that the transverse coupling

of fluctuating phonons can drive a first-order metaelectric
transition.

Having realized that fluctuations can cause the emergence
of a first-order transition it is natural to search for further
phase reconstruction. Motivated by the development of a tex-
tured Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� phase11,12

and evidence for a textured ferromagnetic state near to the
ferromagnetic first-order transition,13–15 here we search for
the emergence of an analogous textured ferroelectric phase.
Finally, to connect to prevailing experimental methods, we
derive an appropriate expression for the inverse susceptibil-
ity that is consistent with recent experimental results3,16,17

over a wide range of the phase diagram and demonstrate that
the transverse coupling of fluctuating phonons could cause it
to have a characteristic minimum at low temperature.

II. ACTION AND MEAN-FIELD THEORY

We adopt a bosonic field theory to describe the soft opti-
cal phonon modes that should recover the main physical be-
havior of the system. The order parameter of the theory is the
local polarization ��x , t�=�i=1

n eiri�x , t�, which is formally
defined for one unit cell at x containing n atoms of charge ei
each individually displaced through ri by the optic mode. As
the optical phonon softens, the action develops an instability
and the order parameter must describe both thermal and
quantum fluctuations. Following Ref. 8 we describe the ac-
tion in three-dimensional space and imaginary time via the
Ginzburg-Landau phenomenology
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where a is the lattice constant, c is the speed of the phonons,
q2=��q�

2 , the dimensionless momenta −	
q��	, and the
second summation is carried out under the conservation of
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momentum �q1+q2+q3+q4=0�. Since the field � describes
an electric dipole, the action includes a long-range dipole
interaction, and also a coupling to the underlying lattice
through the parameters r, f , g, and h. The terms u and v that
describe the local anharmonic interactions give a net positive
contribution which ensures that the polarization remains
bounded. In general these parameters are tensorial but for
simplicity we have assumed that they adopt cubic symmetry.
Estimates for the parameters shown in Table I were obtained
from ab initio calculations8,18,19 in the two-key ferroelectrics
SrTiO3 and KTaO3.3 The typical energy scale of ferroelectric
fluctuations along �100� is E0=�	c /a; using this definition
we can then employ a dimensionless bosonic Matsubara fre-

quency ̃= /E0 and a dimensionless temperature T̃=T /E0.
Throughout the paper we adopt the units a=�=kB=1.

To establish the connection to previous work we first con-
sider the mean-field phase diagram that is sketched in Fig. 1.
Making the ansatz that the ground state is uniform we obtain
the action S=r�2+ �u+v��4, where �= ���. When v
0 the
polarization �x=�y=0, �z

2=−r /2�u+v� has an Ising con-
figuration, whereas when v�0 the polarization �x

2=�y
2=�z

2

=−r /2�3u+v� exhibits diagonal order. The term proportional
to v controls the polarization direction in the ferroelectric
phase whereas the u term is rotationally invariant. We note
that while sweeping v through v=0 with u�0 the first-order
rotation of polarization direction is accompanied with a con-
tinuous change in the magnitude of the polarization. This is
driven by a similar mechanism to the Blume-Emery-Griffiths
model involving two bosonic fields.20 Within the mean-field
approximation the condition for stability of the polarization

is that the net coefficient of the quartic term is positive which
translates to u+v�0 when v
0 and u+v /3�0 if v�0. If
these conditions are not fulfilled then higher-order terms
must be included and rather than undergo a second-order
transition at r=0, the system might have a first-order ferro-
electric transition at mean-field level. We can neglect the
higher order terms such as ��6 provided that the model re-
mains stable, which requires that ��2�u+v. Here we wish
to investigate whether near criticality the fluctuating modes
can conspire to drive an otherwise second-order transition to
become first order. In order to access this behavior we now
go beyond mean field and consider the consequences of
quantum fluctuations on the system.

III. FIELD-INTEGRAL FORMULATION

To account for fluctuation corrections to the system Rous-
sev and Millis8 employed the renormalization group, which
is tailored to study the well-established second-order ferro-
electric transition. However, motivated by recent
experiments1,3 we wish to explore the possibility of a first-
order metaelectric transition. Therefore, rather than consider-
ing just the corrections due to slow fluctuations that are en-
compassed by renormalization group, we need to consider
fluctuations � over all length scales in the polarization �
+� around the saddle-point solution �. When u�r2 we can
neglect fluctuations in � beyond second order which reduces
the action to

S = �̃��r +
g

3
	�2 + u�4 + v�

�

��
4


+ �̃�
̃,q

�T�̃,q�G−1��− ̃,− q� , �2�

where G�,�
−1 =G�

−1��,�+U�,�, the diagonal inverse Green’s
function takes the form G�

−1= ̃2+q2+r+ fq�
2 + �g

−hq2�q�
2 /q2+ �4u+6v���

2 +2u�2, and the off-diagonal terms
are U�,�= �g−hq2�q�q� /q2+4u����. We now integrate over
quantum fluctuations to yield the free energy

F = �r +
g

3
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�
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Tr ln G−1, �3�

where �̃=1 / T̃ is the dimensionless inverse temperature. If
�=0 and r�g−h	2 or if ��0 and r�	2 then UG�1. In
this regime we can expand the inverse Green’s function in its
off-diagonal terms U using Tr ln G−1=Tr ln G−1+Tr ln�1
+GU� which enables us to describe the renormalization of
fluctuations by off-diagonal coupling. This yields

F = �r +
g
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where �q
�= �q2+r+ fq�

2 + �4u+6v���
2 +2u�2�1/2. To remove

the fluctuations of the static uniform component of �, which

TABLE I. Model parameters for the ferroelectrics SrTiO3 and
KTaO3 �Refs. 3, 8, 18, and 19�.

E0

�meV�
a

�Å�
�c

�meV� r f g h

SrTiO3 4.47 3.9 5.55 5.31 55.7 0.39 5.1

KTaO3 10.6 3.9 13.1 9.77 472 39.2 165
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FIG. 1. �Color online� The phase diagram in the u-v plane at
zero temperature in the mean-field approximation. The cross-
hatched forbidden region denotes where the polarizability would
diverge without higher-order corrections. The solid thick line high-
lights a first-order phase boundary between the light gray region
that denotes diagonal order and the dark gray which labels the Ising
phase. In each regime the inset axes illustrate the polarization solu-
tion highlighted by the bold �red� vector.

G. J. CONDUIT AND B. D. SIMONS PHYSICAL REVIEW B 81, 024102 �2010�

024102-2



are included in �, we must introduce the second logarithm.
This has the effect of regularizing the divergence which
would otherwise develop from the first logarithm. This ex-
pression, except for the final fluctuation correction term,
agrees with that of Ref. 8, and is analogous to the coupling
of transverse ferromagnetic fluctuations that led the emer-
gence of first-order behavior.10 The condition for stability is
the same as for the mean-field case.

The momentum integrals are in general evaluated numeri-
cally. However, to further investigate the diagonal ordered
phase we make the approximation that the cuboid Brillouin-
zone boundary �−	
q�
	� that bounds the momentum
space integral can be replaced with a spherical boundary that
encloses the same total phase space so has radius qD=�36	2.
In the low-temperature limit with the polarization aligned in
the �1,1,1� direction, the resulting integrals can then be
evaluated analytically to yield

F = �r +
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with ��r+2�u+v��2+4u�2 /3 and were found to be in
good agreement with the corresponding numerical result.

A. Phase behavior and heat capacity

The phase behavior of the system is shown in Fig. 2. The
forbidden region indicates where the action polarizability
and free energy would diverge without considering higher-
order corrections to the original action. When considered
within the framework of mean-field phenomenology, here the
system could undergo a first-order paraelectric-ferroelectric
transition. However, the corrections due to quantum fluctua-
tions renormalize the action, causing a metaelectric boundary
to peel away from the first-order transition associated with
the forbidden region. This metaelectric transition is consis-
tent with recent experimental evidence for a first-order phase

transition1 in 18O-exchanged SrTiO3. In both of the planes
considered, the line of first-order metaelectric transitions
covers an extensive region of the phase diagram, terminating
in a tricritical point at u=0. The first-order transition at small
u is destroyed at nonzero temperature with the tricritical
point moving up the line of transitions to u�6	T̃1/2v /r. This
critical behavior does not depend on the long-range dipole
interactions since the lowest-order term in g and h averages
to zero on integrating over momenta.8 The �→−� symme-
try could be destroyed by applying a uniaxial electric field
misaligned to the lattice.

A further ramification of the quantum-fluctuation correc-
tions is that the rotation of the polarization from Ising to
diagonal order no longer occurs where v turns negative.
Though, as for the mean-field case, the magnitude of the
polarization is conserved, fluctuations renormalize the quar-
tic terms and shift the phase boundary in Fig. 2�b�. This
behavior can also be recovered by a renormalization-group
analysis.8 One experimental probe of the metaelectric transi-
tion is the changing behavior of the heat capacity C=
−T�2F /�T2. Before the metaelectric transition �small nega-
tive r� the relevant optic mode is “soft” and so the heat
capacity follows the familiar Debye form C�T3 whereas
after the metaelectric transition �large negative r�, the rel-
evant optic modes are “stiff” and so the heat capacity has an
exponential dependence on temperature. At high tempera-
ture, in both cases the heat capacity has the expected classi-
cal behavior C=3kB.

Having confirmed the existence of a possible metaelectric
behavior, we now turn to consider the stability of the phase
in the vicinity of the transition. Recent studies of itinerant
ferromagnetism have suggested that such first-order behavior
can be preempted by the development of textured magnetic
order analogous to that seen in the FFLO phase of
superconductors.15 This leaves open the question as to
whether a textured phase can develop in the vicinity of the
metaelectric transition. Our strategy to explore this possibil-
ity is to assume that the inhomogeneous phase is formed
continuously, which allows us to develop a Landau expan-
sion in the polarization � and texture wave vector Q. The
onset of an inhomogeneous phase is signaled by the coeffi-
cient of the �2Q2 term turning negative. In our analysis we
search primarily in the vicinity of the metaelectric transition
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FIG. 2. The phase diagram at T̃=0 in the �a� u-v plane with r
0 and �b� u-r plane with v�0, both at zero temperature. The
cross-hatched forbidden region denotes where the polarizability would diverge without higher-order corrections, the light gray denotes
diagonal ordered polarization, and the dark gray the �a� Ising phase and �b� paraelectric phase. Solid thick lines denote first-order phase
boundaries, dashed lines second-order transitions, and the circle the tricritical point.
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at �=0 and consider a trial state with uniform polarization �
that is for simplicity superimposed by an inhomogeneous
component � cos�Q ·r��1,1 ,1�. We then expand the free en-
ergy to quartic order in Q and discover that the presence of a
textured phase makes a contribution to the total energy of
Q2�2�1−u2�2 /6	2�+7u2�2Q2 /60	2�2�. Short of the first-
order transition where �
0, the coefficient of Q2 is positive
so the phase is not modulated. After the first-order transition
� turns positive driving the coefficient of Q2 negative, reveal-
ing a finite Q instability in the region highlighted in Fig.
2�b�. The modulation carries polarization �=r /2�u+3 /v�.
Though the analysis is restricted to the consideration of a
potential continuous transition into the textured phase and a
simple form for the texture, it is sufficient to validate its
existence. Refinements to include a putative first-order tran-
sition or further textured phases would only enlarge the re-

gion of the phase diagram over which inhomogeneities could
be observed. Leaving aside potential textured phases we now
turn to consider the behavior of the susceptibility across the
phase diagram.

B. Inverse susceptibility

The inverse susceptibility provides an experimental
window3,16,17 onto the quantum-critical properties of ferro-
electrics. Deep in the paraelectric regime where R�r+g /3
�qD, the contribution to the inverse susceptibility is �−1

=�2F /��2 ��eqm
=R+ 5u+3v

	2 + R
6 ��−tan−1 ��coth�

�R

2T̃
�, which is

consistent with Barrett’s formula21 for a gapped system. In
the quantum-critical regime we see three characteristic types
of behaviors for the inverse susceptibility
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	2

2
T̃2	 T̃ �
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2

2qDT̃ T̃ �
qD

2
� ,

where the first term is from the diagonal contributions to Eq.
�4� and the latter two terms are the off-diagonal contribution,
and �=qD /R. At low-temperature the effects of long-range
dipole interactions prevail as the off-diagonal fluctuating
contribution renormalizes the on-diagonal terms with the lin-
ear temperature dependence of the term proportional to g
giving a positive slope to the inverse susceptibility whereas
the �gh term could provide a negative slope. At higher tem-
peratures the T2 contribution from the mean-field term domi-
nates, which is also characteristic of quantum-critical behav-
ior and is in good agreement with recent experimental
results.3 We note that the T2 behavior is recovered by
other models, including a diagrammatic resummation,5,6

the quantum-spherical model,22 renormalization-group
studies,23,24 a self-consistent phonon model,3 and an analogy
to the temporal Casimir effect.9 The behavior has also been
observed experimentally.3,16,17 In both SrTiO3 and KTaO3
the initial linear negative slope and the quadratic �−1�T2

term conspire to cause a characteristic minimum in the in-
verse susceptibility. Using estimates for the parameters in

Table I, the minimum occurs at T�1 K in both SrTiO3 and
KTaO3 which is in good agreement with the experimental
values of T=1.6 K and T=3.0 K, respectively.3 Finally,
at high temperatures a classical term �−1�T from the
longitudinal fluctuating term dominates from �100 K
which is again in good agreement with the experimental
observations.3

IV. DISCUSSION

In this paper we have found that the polar fluctuating
phonons can drive a displacive ferroelectric through a first-
order metaelectric transition. Long-range dipolar interactions
did not affect this critical-phase behavior.8 However, long-
range dipole interactions introduced into the action through
the term �g−hq2��2 were pivotal in creating the correction to
the inverse susceptibility �−1�−T that could explain the
characteristic inverse susceptibility minimum3 as well as pro-
vide important corrections to the self-consistent phonon
treatment.3
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However, another mechanism, coupling of the soft optic
modes to acoustic phonons could be significant. It has al-
ready been understood3,6,9 that a coupling with the acoustic
phonons � of the form −������2 leads to a correction in �−1

of −T4 that could explain the characteristic minimum in the
inverse susceptibility and also has the capability of driving a
first-order transition.3,9 This work and the results presented
here motivate further experimental investigations into the in-
verse susceptibility and putative metaelectric transition that
could shed light on the origin of the phase structure. Though
the coupling to acoustic phonons complicated the solid-state
system, ultracold atoms in an optical lattice with long-range
dipole interactions25 present a clean system that could pro-
vide powerful tools to help unravel the properties of the ge-
neric Hamiltonian.

One important simplification was to model the ferroelec-
tric with undamped dynamics. Damping would primarily
arise due to free electrons, which can be introduced control-

lably through doping. Analogous to “avoided criticality” at a
magnetic critical point which leads to non-Fermi-liquid be-
havior and superconductivity, ferroelectrics might also be ex-
pected to adopt novel behavior; for example, doped
SrTiO3,26 whereas undoped SnTe �Ref. 27� and GeTe �Ref.
28� become superconducting at low temperatures. This area
presents a promising avenue of research. Further open ques-
tions are to determine whether with just a change in
parameters8,29 the same formalism be applied to order-
disorder ferroelectrics and to consider the consequences of
the coupling of fluctuating polarization and magnetization
that could arise in EuTiO3.30
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