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ABSTRACT
We develop a formalism to directly evaluate the matrix of force constants within a Quantum Monte Carlo calculation. We utilize
the matrix of force constants to accurately relax the positions of atoms in molecules and determine their vibrational modes,
using a combination of variational and diffusion Monte Carlo. The computed bond lengths differ by less than 0.007 Å from
the experimental results for all four tested molecules. For hydrogen and hydrogen chloride, we obtain fundamental vibrational
frequencies within 0.1% of experimental results and ∼10 times more accurate than leading computational methods. For car-
bon dioxide and methane, the vibrational frequency obtained is on average within 1.1% of the experimental result, which is at
least 3 times closer than results using restricted Hartree-Fock and density functional theory with a Perdew-Burke-Ernzerhof
functional and comparable or better than density functional theory with a semi-empirical functional.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5070138

I. INTRODUCTION
Quantum Monte Carlo (QMC) is a leading class of

approaches used to establish and study the electronic ground
state of molecules and solids. Specifically, Diffusion Monte
Carlo (DMC) is widely used to project out the exact elec-
tronic ground state wave function of a system, subject only
to the fixed node approximation, fully accounting for corre-
lation effects such as van der Waals interactions.1,2 Although
DMC is an ideal tool for studying the electronic wave func-
tion of the system,3 the determination of the wave function
of the atoms—their expected positions and energy landscape—
remains a challenge for the method. Several approaches have
been put forward to calculate the force acting on the atoms
with DMC,4–11 but a more comprehensive characterization
of the atomic wave function requires the second deriva-
tive of the energy—the matrix of force constants—to both
efficiently relax atomic positions and calculate vibrational
modes.

We propose a method to directly calculate the matrix
of force constants, d2E/dRIdRJ, where RI is the position
of the Ith and RJ is the position of the Jth, atom in the

system. The energy, E = 〈Ĥ〉, is calculated in the Born-
Oppenheimer approximation of Hamiltonian Ĥ, that is, with
the electrons always in their ground state for the respec-
tive atomic configuration. The calculation is implemented in
QMC through a new quantum mechanical expectation value,
d2〈Ĥ〉/dRIdRJ, meaning that it can be evaluated with one con-
figuration of the atoms to recover the entire matrix of force
constants. The matrix of force constants allows us to effi-
ciently relax atomic positions and determine the vibrational
modes.

We start by introducing the formalism and the QMC
methods in Sec. II. We subsequently outline the applications
and implementation of the matrix of force constants in Sec. III,
followed by a series of case studies in Sec. IV. We begin
with atomic and diatomic hydrogen and then move on to
hydrogen chloride, carbon dioxide, and methane. For each
molecule, we derive the matrix of force constants,relax the
positions of the atoms, and determine the vibrational modes.
We critically evaluate the results with respect to existing
computational methods: Restricted Hartree-Fock (RHF)12–14
and Density Functional Theory (DFT).15,16 Finally, in Sec. V, we
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summarize the results and discuss future opportunities for the
new formalism.

II. FORMALISM
In this section, we present the matrix of force constants.

We then outline the numerics by discussing how the elec-
tronic orbitals are generated and the details of the QMC
algorithms.

A. Matrix of force constants
We consider many-body quantum systems comprised of

Nn nuclei and Ne electrons. The three-dimensional position
vectors are denoted as RI for nuclei and ri for electrons, with
I = 1, . . ., Nn and i = 1, . . ., Ne. These are used to construct
the corresponding multi-dimensional vectors in configuration
phase space: R ≡ (R1, . . . ,RNn ) and r ≡ (r1, . . . , rNe ).

We use the non-relativistic Hamiltonian17

Ĥ = −
1
2

Ne∑
i=1

∇2
ri

+
Ne∑
i<j

1
|ri − rj |

−

Ne∑
i=1

Nn∑
I=1

VI(RI − ri) +
Nn∑
I<J

ZIZJ

|RI − RJ |
,

which is comprised of the electron kinetic energy, as well
as the electron-electron, electron-ion, and ion-ion interac-
tions.18 VI and ZI represent the electron-ion pseudopotential
and full nuclear charge, of atom I, respectively.

We use a Hartree-Fock average effective Trail-Needs
pseudopotential,19 which has been specifically optimized for
DMC calculations, to screen the effects of the core electrons
and nucleus on the valence electrons.

In an electron position basis, the expectation value of the
energy5 may be written as

E = ∫
Ψ∗ĤΨdr
∫ |Ψ |

2dr
,

where the many-body wave function, Ψ, and Hamiltonian, Ĥ,
are both functions of nucleus configuration, R, and electron
configuration, r.

The force acting on ion I is defined as the negative total
derivative of the energy with respect to the nuclear coordi-
nates. Taking the first derivative of the energy with respect to
atom position5 yields

dE
dRI

=
∫ Ψ

∗ dĤ
dRI
Ψdr

∫ |Ψ |
2dr

+


∫
dΨ∗
dRI

(Ĥ − E)Ψdr

∫ |Ψ |
2dr

+ c.c.

,

which is decomposed into Hellmann-Feynman and Pulay
terms, respectively. When the wave functions are exact eigen-
states of the Hamiltonian such that (Ĥ − E)Ψ = 0, the Pulay
term vanishes. However in practice, the wave functions are
not exact in Variational Monte Carlo (VMC) or DMC, so the
Pulay term needs to be included to obtain the total force.

In this paper, we derive the matrix of force constants from
the second derivative of the energy that takes the form of

d2E
dRIdRJ

=
∫ Ψ

∗ d2Ĥ
dRIdRJ

Ψdr

∫ |Ψ |
2dr

+
∫ Ψ

∗

[
dΨ
dRI

(
Ψ−1 dĤ

dRJ
Ψ − dE

dRJ

)
+ (I↔ J)

]
dr

2 ∫ |Ψ |2dr

+
∫

[
d

dRJ

[
dΨ
dRI

(
Ĥ − E

)
Ψ

]
+ (I↔ J)

]
dr

2 ∫ |Ψ |2dr
+ c.c..

This comprises one component of the matrix of force
constants, so we must cycle over all atom pairs {I, J} to deter-
mine the entire matrix. The second derivative of the Hamilto-
nian with respect to the atom position does not commute with
the Hamiltonian; hence, we approximate the pure expectation
value of the force constants in the DMC procedure, as dis-
cussed in Sec. II C. The first two terms of the matrix of force
constants stem from the Hellmann-Feynman force, whereas
the third is due to the Pulay force.

To calculate the entire matrix of force constants using
the Monte Carlo algorithm, we need to compute the ion-ion
and electron-ion components at a cost of at most O(N3

nNe) +
O(N2

nN2
e). This leads to an overall dominant scaling of O(N4

i )
assuming that O(Nn) ∝ O(Ne).

Having evaluated the matrix of force constants and imple-
mented the formalism, we can then use it to study atomic
relaxation and vibrational modes.

B. Variational Monte Carlo
For the fermionic many-body trial wave function in the

VMC method,20 we take a Slater-Jastrow wave function of the
form17

ΨT = eJD↑D↓,

where D↑(D↓) denotes the Slater determinant of the molecular
spin-up(down) orbitals. Here, the usual Hartree-Fock ansatz,
ΨHF = D↑D↓, which encodes Pauli exclusion through the anti-
symmetry of the Slater determinant, is multiplied by a Jastrow
factor, eJ, which is an optimizable function used to impose
further constraints on ΨT.

Initially, we compute the VMC energy, which is the expec-
tation value of the Hamiltonian operator with respect to the
trial wave function,5

EVMC =
∫ |ΨT(r) |2EL(r)dr

∫ |ΨT(r) |2dr
,

where EL = Ψ
−1
T (r)ĤΨT(r) is the local energy, dr is the infinites-

imal hypervolume element in electron configuration phase
space, and the integrals are performed using Monte Carlo21
in the CASINO program.22

Single-particle orbitals for the different molecular struc-
tures were calculated using the CRYSTAL program.23 The RHF
and DFT calculations with two exchange-correlation function-
als the Perdew-Burke-Ernzerhof (PBE)24 containing no exact
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orbital exchange and the B3LYP25–27 hybrid functional con-
taining a fixed amount of exact exchange were performed with
triple-ζ-valence Gaussian basis sets, as well as polarization
and diffuse basis functions.28 The exact exchange-correlation
functional is unknown, and the choice of functional depends
heavily on the system and the property of interest. PBE as a
general functional was chosen for its greater predictive power
across all simulations and properties,29 though it is less likely
to achieve the accuracy of a semi-empirical functional such as
B3LYP, which was chosen in addition for its good agreement
with post-DFT methods within its range of applicabilities on
molecules.30,31 We use a Jastrow factor in its most general
form comprising of an electron-electron term, an electron-
nucleus term, and an electron-electron-nucleus term. The
wave function parameters are optimized by using the vari-
ance minimization method32 first, followed by the energy
minimization method.33–35

C. Diffusion Monte Carlo
DMC evolves a wave function, Φ, according to the

imaginary-time Schrödinger equation, in order to project out
the lowest energy eigenstate, Φ0, with the same nodal surface
as the trial wave function.17

The efficiency of the DMC algorithm is improved by
importance sampling.36 By multiplying the wave function,
Φ, by a trial wave function, ΨT, from VMC, we may solve
the Schrödinger equation for the mixed distribution f(r, τ)
= Φ(r, τ)ΨT(r), where τ denotes the imaginary time. We tested,
and found negligible error, with time steps of τ = 0.01 a.u.,
and so this is used throughout.37 The fixed-node approxima-
tion38,39 is introduced to overcome the fermion sign problem
by constraining the nodal surface of Φ0 to match that of ΨT.40

The expectation value of the energy in the DMC method5
is given by

EDMC =
∫ Φ(r)ΨT(r)EL(r)dr
∫ Φ(r)ΨT(r)dr

.

This is an unbiased estimator, up to the approximations made,
since EDMC does not depend on the trial wave function used.
However, the mixed expectation value of an operator that does
not commute with the Hamiltonian is biased. In these cases,
we approximate the pure expectation value of an operator Ô
with the extrapolation formula41

O = 2ODMC −OVMC + O
[
(Φ − ΨT)2

]
.

Alternatively, the future-walking method may be used, for
example, to obtain an exact pure estimator.42 Although the
extrapolation formula improves the results, this procedure
depends on an almost complete error cancellation and is
strongly dependent on the quality of the wave function
employed. We run the simulations for longer to systemati-
cally reduce the statistical error associated with variational
techniques.

D. Contributions of the Hellmann-Feynman
and Pulay terms

Both the Hellmann-Feynman and Pulay terms contribute
to the force and matrix of force constants, and both Pulay

terms are zero at the exact electronic ground state. However,
the Pulay contribution to the matrix of force constants con-
tains a second derivative of the wave function with respect to
the atom position, and so it is more susceptible to steep gradi-
ents due to an incorrect trial wave function. Therefore, when
using the electronic structure methods, it is useful to deter-
mine the relative contributions of the Hellmann-Feynman and
Pulay terms so that we can gauge the importance of refining
the electronic wave function.

The interatomic force in a hydrogen molecule and
methane molecule is shown in Fig. 1. Different bond lengths
within the vicinity of the equilibrium were chosen, and forces
were evaluated using the methods described in Secs. II B
and II C. The addition of the Pulay force to the Hellmann-
Feynman force shifts the equilibrium bond length by 2% in
both examples; therefore, the Pulay force is crucial for finding
the correct equilibrium geometry.

We now turn to consider the calculation of the matrix
of force constants—the gradient of the force. We first note
from Fig. 1 that the Pulay force is remarkably constant with
respect to bond length across all molecules tested in this
paper, regardless of the molecular geometry. This means that
the gradient of the force is negligible and therefore does
not significantly contribute to the matrix of force constants.
We find that, when directly evaluated, the value of the Pulay
term in the matrix of force constants is smaller than its stan-
dard error, as well as the standard error of the contribu-
tion from the Hellmann-Feynman term. Furthermore, based
on the analysis of variance at the α = 0.05 level, the gra-
dient of the Pulay force does not significantly deviate from
zero. This means that the change in vibrational frequency due
to the Pulay force gradient (FG) is just 1% of that from the
Hellmann-Feynman gradient for both hydrogen and methane.
This conclusion is also backed up by independent studies:
taking a numerical derivative of the results for H2 and LiH
reported by Casalegno et al.,43 CO2 reported by Lee et al.,4
as well as adenine-thymine reported by Ruiz-Serrano et al.44
confirms the small contribution of the Pulay term to the matrix
of force constants.

FIG. 1. Interatomic force estimates for the molecules (a) H2 and (b) CH4. The red
dots correspond to the Hellmann-Feynman (HF) force, the blue triangles corre-
spond to the Pulay force, and the magenta squares correspond to the total force.
Error bars for all of the data are given—some error bars are smaller than the data
points on the scale of the plot.
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The effect of the Pulay term in the force is significant
for force analysis and, when suitably formulated, can reduce
the statistical noise in the expectation value and improve
the convergence of the optimization algorithm.44 However,
as the Pulay force is almost constant with interatomic bond
length, its contribution to the matrix of force constants is
negligible. Therefore, we expect the Pulay contribution to
the matrix of force constants to be insensitive to the qual-
ity of the trial wave function. Another corollary is that for our
zero-variance scheme,45,46 the expected −5/2 power law tail
associated with infinite variance that could arise from Pulay
terms5,47 will only make a limited contribution to the tail
of the total probability distribution, and as shown in Fig. 4,
we have not been hindered by this problem in our practical
application.

III. APPLICATIONS OF FORCE CONSTANTS
A. Atomic relaxation

The primary requirement for a versatile geometry model
is the ability to minimize the energy of an arbitrary configu-
ration of atoms.48 For quantum mechanical simulations, this
is often performed using VMC due to the algorithm’s effi-
ciency. In this paper, we relax the positions of the atoms first
with VMC using the additional information provided by the
matrix of force constants. The wave function from VMC is then
optimized in DMC, and we perform the same iteration steps
using DMC to confirm convergence and further reduce the
error.22,49–51

Requiring that the energy of the system is constant up
to quadratic order in atomic displacement, and explicitly cor-
recting for global translation and rotation, as well as anhar-
monicity, we find that the atomic displacement, ∆R, is given
by

∆R = −2M−1
· ∇RE −

∑
I mIRI∑

I mI
− R × θ, (1)

where M ≡ d2E/dRIdRJ is the matrix of force constants;
∇RE ≡ dE/dRI is the multi-particle gradient of the energy with
respect to the atom position; θ is the three-dimensional global
angular displacement vector for the configuration R. On each
step, we displace the atoms by ∆R in order to compare with
other methods in determining the minimum energy of the
system. This yields the interatomic bond length at the mini-
mum of the total potential. The details of the calculation are
outlined in Appendix A.

Though 〈R̂〉minimizes the total potential after the atomic
relaxation procedure, if the potential is not symmetric, then
the expected separation of the atoms does not coincide with
the minimum. We capture the lowest-order difference with
the addition of an anharmonic correction term ∆Ra, outlined
in Appendix A 4.

B. Vibrational modes
One main motivation for incorporating the matrix of force

constants into the QMC procedure is the ability to calculate
vibrational modes and frequencies directly. In this paper, we

use a variety of methods to calculate the vibrational frequency
for a cross comparison.

Up to a simple mapping, the eigenvectors of the matrix
of force constants correspond to the vibrational modes of the
system, and the eigenvalues correspond to the vibrational fre-
quencies. We can, therefore, use a complete diagonalization of
the matrix of force constants to estimate the eigenmodes and
frequencies. To benchmark the results, we also calculate the
frequencies from a numerical second derivative of the energy
with respect to bond length—referred to as the energy cur-
vature (EC) method—and from a numerical derivative of the
force—force gradient (FG) method.

A discussion of all of these methods, including the analy-
sis of statistical uncertainty and the anharmonic correction, is
detailed in Appendix B.

IV. CASE STUDIES
In this section, we evaluate the effectiveness of the

matrix of the force constant formalism for a selection of
molecules. We first confirm the theory with the simplest
possible molecules, before testing the generalizability of the
formalism on molecules containing more atoms.

A. Hydrogen atom and molecule
We begin by analyzing the simplest physical system: the

hydrogen atom. By performing a DMC calculation, we ver-
ify that the hydrogen atom obeys Newton’s laws since it has
a net force of (3.68 ± 5.17) × 10−3 Eh Å−1 acting on it, which
is zero within the standard error. Furthermore, the hydro-
gen atom has a computed eigenfrequency of 0 cm−1. This
system behaves as expected and confirms the translational
invariance.

From this, it is natural to increment the complexity by
adding another hydrogen atom to form an H2 molecule. This
is the simplest physical example that allows us to verify the
eigenfrequencies from our DMC method, which has no nodes
and gives an exact wave function, by comparing them against
both experimental results in the literature and RHF/DFT
predictions from the CRYSTAL program.

The energy, force, and diagonal elements of the matrix of
force constants for the hydrogen atom is shown as a function
of bond length in Fig. 2. We verify that the energy is at a min-
imum and the force is zero at the correct equilibrium bond
length of 74.13 pm,52 within the standard error. Furthermore,
in Fig. 2(b), we show that in the vicinity of the equilibrium
bond length for the hydrogen molecule, the energy curva-
ture, the force gradient, and the direct computation, all agree
within error bounds. The entire matrix of force constants is
sparse. If we are only interested in the vibrational mode, it can
be reduced to be a 2 × 2 matrix, with the off-diagonal force
constants to be minus the diagonal elements within the error,
as required by symmetry.53 Note that here the diagonal ele-
ments of the matrix of force constants are not constant across
the range of bond lengths shown, as can also be seen in the
slight curvature of the force in Fig. 2(a). This is due to the
anharmonicity of the potential in a diatomic molecule. We
may use the gradient of the force constant to calculate the
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FIG. 2. (a) Energy, force, and (b) diagonal force constant against bond length, for
the hydrogen molecule. For the energy and force plots, the parabolic and linear
curves of the best fit for the visible data are overlaid. For the force constant plots,
we show the diagonal force constant derived using the finite difference method
from the energy curvature, the force gradient, and the direct analytical evaluation
of the force constant. The line of the best fit for the visible MFC data is overlaid.
The dashed line indicates the experimental equilibrium bond length. Error bars for
all of the data are given—some error bars are smaller than the data points on the
scale of the plot.

anharmonic constant and correct for the anharmonicity, as
discussed in Appendix A 4.

For the hydrogen molecule, it is possible to extract the
matrix of force constants efficiently from the force, or energy,
because the computational cost of obtaining the numerical
derivatives is low. However, for more complicated molecules,
where structural optimization is influential, using the matrix
of force constants would be beneficial, as it provides both
the movement direction and amplitude towards the minimum
energy configuration. In these cases, the equivalent informa-
tion would take considerably longer to extrapolate from either
energy or force, if possible.

Equipped with reliable results for the matrix of force con-
stants directly from DMC at each bond length, we may now
exploit this information to efficiently relax the bond length
of the molecule. The force tells us the direction to move the
atoms, and the matrix of force constants additionally tells us
how far to move them, on each step [Eq. (1)]. Owing to the
anharmonicity of the potential, we must relax to the equilib-
rium bond length of 74.13 pm over several steps. The predicted
bond length on the next atomic relaxation step as a function
of initial bond length is shown in Fig. 3. We see that the PBE
curve intersects the equilibrium line at 0.753 Å and the B3LYP
curve intersects at 0.745 Å, whereas our DMC calculation
intersects at 0.7420 ± 0.0007 Å, in close agreement with the
experimental value of 0.741 30 Å.52,54 Furthermore, we note
that PBE and B3LYP curves have a similar shape as a result
of sharing the same optimization algorithm. However, both
are steeper than the DMC curve in the vicinity of equilibrium
and therefore converge more slowly due to the fact that the

FIG. 3. Bond length on the next step of atomic relaxation as a function of initial
bond length, for the hydrogen molecule. The unconstrained parabolas of the best
fit, with respect to the visible DFT (PBE, B3LYP) and DMC data points, are over-
laid. The dashed lines indicate the experimental equilibrium bond length, whereas
the solid line indicates the equilibrium fixed points with respect to the plot. DMC
error bars are smaller than the data points on the scale of the plot.

DFT algorithm uses an inaccurate estimate for the force con-
stant. The number of iteration steps reduced is particularly
apparent when there are multiple atoms in a molecule; how-
ever, the lower number of steps does not necessarily indicate a
more efficient algorithm, as the complexity of each step needs
to be taken into consideration. In some cases where complex
molecules cannot be relaxed sufficiently for a long time using
DFT, our approach may be more efficient in giving the ground
state geometry. In general, due to DFT’s inaccurate estimate of
the force constant, we observe at least a slight improvement
for all molecules.

An additional important check, before we proceed, is an
analysis of the probability distribution of the matrix of force
constants generated by DMC. Figure 4 shows the histogram
of a force constant value for the DMC run at the computed
equilibrium bond length. From this, we can see that the force
constant heavy tails decay with the same ∼|M − M0|−4 power
law as the energy and Hellmann-Feynman force.5,47 This is as
expected since the effective remaining term is the Hellmann-
Feynman term due to the quasi-constant Pulay contribu-
tion in proximity to the ground state, as seen in Sec. II D.
Reassuringly, the expected value of the distribution is also the
modal value.

Now that the configuration is relaxed, we may ana-
lyze the fundamental vibrational modes. For the hydro-
gen molecule, we obtain six eigenmodes, as expected for a
diatomic molecule. Three modes correspond to global transla-
tion, two correspond to global rotation, and one corresponds
to a symmetric stretch. The symmetric stretch mode has
the largest eigenfrequency. We extract the frequency using
a selection of methods, outlined in Appendix B, for a cross-
comparison. In this case, we obtain a fundamental vibrational
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FIG. 4. Distribution of probability densities for the observed values of an element
of the matrix of force constants from DMC, offset by the mean M0. Data are shown
for the hydrogen molecule at the equilibrium bond length.

frequency of ωDMC = 4166 ± 4 cm−1, compared to the exper-
imental value of ωexp = 4161.1663 ± 0.0002 cm−1, which is
4.83 cm−1 away. This is a firm statistical confirmation of the
accuracy of DMC compared to RHF, PBE, and B3LYP results,
which have deviations of 218 cm−1, 45 cm−1, and 223 cm−1 from
the experiment, respectively. All of our computational values
for the vibrational frequency from DMC—the matrix of force
constants, force gradient, and energy curvature—agree with
each other within the standard error and show close agree-
ment to experiment. The DMC procedure yields no transla-
tional or rotational modes, just as for the hydrogen atom. A
summary of the results is shown in Table I. Note that the less
computationally expensive calculation of the energy was run
for four times longer, compared to the force gradient and
matrix of force constant methods, in order to give the error
bars of the energy curvature eigenfrequency to a comparable
value.

B. Hydrogen chloride
Now that we have verified that the matrix of force

constants agrees with numerical estimates, and that by
exploiting this information, it is possible to relax the molecule
more efficiently and outperform RHF and DFT estimates for
the fundamental vibrational frequency for the hydrogen case,
we move onto a more complex molecule: hydrogen chloride.

We increment the complexity of our case study in order to
verify that our formalism can cope with an asymmetric system
with unequal masses.

The hydrogen chloride molecule again relaxes quickly to
equilibrium, with a computed bond length of 128.0 ± 0.6 pm,
which agrees with the experimental value of 127.5 pm within
the standard error. Both atoms have the appropriate dis-
placement to ensure that the center of mass is stationary.
We obtain six eigenmodes for the system, including one
symmetric stretch mode with eigenfrequency ωDMC = 2995
± 8 cm−1. This result agrees with the experimental value of
ωexp = 2990.946 ± 0.003 cm−1 within the standard error,
whereas RHF, PBE, and B3LYP methods are 107 cm−1, 112 cm−1,
and 50 cm−1 away, respectively. A summary of the results is
shown in Table II(a).

C. Carbon dioxide
In the previous two examples, we found that the matrix

of force constants can correctly calculate the modes of a
diatomic molecule. Building on this, we increment the com-
plexity to carbon dioxide: a three-atom system with several
non-trivial vibrational modes, some of which are in orthogonal
directions.

In this case, the O==C==O configuration is relaxed to an
equilibrium C==O bond length of 116.7 ± 0.3 pm along one axis,
which is within three standard deviations of the experimental
value of 115.98 pm. For carbon dioxide, we obtain nine vibra-
tional modes: three of which correspond to global translations,
two to global rotations, and four to vibrational modes. Of the
vibrational modes, we obtain one symmetric stretch mode,
one asymmetric stretch mode, and two bending modes along
orthogonal axes.

The modes examined in this section show a consistent
improvement over the RHF and PBE calculations, with DMC
eigenfrequency deviations from the experiment of −1.80%
(symmetric), −1.58% (antisymmetric), and −0.75% (bending).
The recovery of the non-trivial antisymmetric mode is our first
example to break the underlying symmetry of the molecule,
and the bending mode shows that our formalism can extend to
atoms moving in orthogonal directions. On average, our DMC
result is 22 cm−1 away from the experimental value, which is
an improvement over the RHF results (on average, 122 cm−1

away) and PBE results (on average, 45 cm−1 away). We note
that in this particular case, the B3LYP results are on average
13 cm−1 away from the experimental results, which is why it is
a popular choice for non metal-containing molecules.58

TABLE I. Vibrational frequencies, evaluated at the computed equilibrium bond length, for the hydrogen molecule in units of
cm−1, where ωRHF denotes the vibrational frequency obtained from a RHF calculation, ωPBE and ωB3LYP are obtained
from DFT calculations with a PBE/B3LYP functional,ωEC is obtained from the curvature of the DMC energy,ωFG is obtained
from the gradient of the DMC force, ωDMC is obtained from the DMC matrix of force constants, and ωexp is obtained from
the experiment. All values are presented at zero temperature and post anharmonic corrections. These quantities, as well as
their associated errors, are discussed in Appendix B.

Mode ωRHF ωPBE ωB3LYP ωEC ωFG ωDMC ωexp55

Stretch 4379 4116 4384 4170 ± 10 4180 ± 8 4166 ± 4 4161.1663 ± 0.0002
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TABLE II. Vibrational frequencies, evaluated at the computed equilibrium bond length,
for (a) the hydrogen chloride, (b) carbon dioxide, and (c) methane molecules in units of
cm−1, where ωRHF denotes the vibrational frequency obtained from a RHF calcula-
tion,ωPBE andωB3LYP are obtained from DFT calculations with a PBE functional and
a B3LYP hybrid functional, respectively, ωDMC is obtained from a DMC calculation,
and ωexp is obtained from the experiment. All values are presented at zero temper-
ature and post anharmonic corrections. These quantities, as well as their associated
errors, are discussed in Appendix B.

(a) Hydrogen chloride

Mode ωRHF ωPBE ωB3LYP ωDMC ωexp56

Stretch 3098 2879 2941 2995 ± 8 2990.946 ± 0.003

(b) Carbon dioxide

Mode ωRHF ωPBE ωB3LYP ωDMC ωexp57

Sym. stretch 1468 1284 1325 1309 ± 5 1333 ± 6
Antisym. stretch 2480 2297 2321 2312 ± 6 2349± 1
Bending 766 634 664 662 ± 2 667 ± 1

(c) Methane

Mode ωRHF ωPBE ωB3LYP ωDMC ωexp57

Sym. stretch 3101 3034 3074 2874 ± 8 2917 ± 1
Scissor 1655 1496 1544 1534 ± 9 1534 ± 1

It is worthwhile to mention that the experimental results
come with a larger error for carbon dioxide when compared
to smaller molecules, as shown in Table II(b). The symmetric
stretch mode is Raman active and infrared inactive, whereas
for the other modes, the opposite is true.57 The Raman
measurement typically comes with a larger uncertainty than
infrared spectroscopy in this case, complicating the compar-
ison to DMC. Additionally, for these larger molecules, as the
number of modes increases, the chances of eigenfrequency
interference are increased. Here we notice that the symmetric
stretch mode eigenfrequency is quasi-degenerate with twice
the bending mode eigenfrequency in Table II(b), which could
also potentially contribute to the increased uncertainty of the
symmetric stretch mode.59 Finally, we note that the precise
eigenfrequencies for arbitrarily large molecules have not been
studied as extensively. By contrast, the eigenfrequency calcu-
lation for hydrogen especially, as well as for other common
diatomic molecules, is often used as an experimental

benchmark.55 Together these factors motivate the need for
improving the accuracy and precision of electronic structure
calculations, such as QMC.

D. Methane
For the last example, we extend our formalism to a

three-dimensional molecule containing five atoms, methane,
to demonstrate that the formalism can be applied to diverse
configurations of atoms.

We find that the configuration relaxes to a C–H bond
length of 109.7 ± 0.2 pm, within two standard deviations of
the experimental value of 109.3 pm, in fewer iterations than
existing methods. The equilibrium bond lengths for all case
studies are summarized in Table III. In this case, we obtain fif-
teen eigenmodes of the system: three corresponding to global
translation, three corresponding to global rotation, and nine
corresponding to non-trivial vibrational modes. Of the vibra-
tional modes, we select two modes to examine in detail: the
symmetric stretch mode and a scissor mode, as summarized
in Table II(c) and illustrated in Fig. 5.

An analysis of these modes yields a DMC deviation from
the experiment of −1.47% for the symmetric stretch mode and
an expected agreement for the scissor mode, which is gen-
erally comparable to the results for carbon dioxide, i.e., still
of the order of 1% from the experimentally measured values.
The successful recovery of these modes demonstrates that
the formalism holds in three dimensions, and the excellent
agreement for the scissor mode demonstrates that we are
able to capture a non-trivial symmetry for this molecule. The
symmetric stretch DMC eigenfrequency is 43 cm−1 away from
the experiment, whereas the RHF, PBE, and B3LYP results are
184 cm−1, 117 cm−1, and 157 cm−1 away, respectively.

FIG. 5. (a) The symmetric stretch and (b) scissor vibrational modes of methane.

TABLE III. Computed equilibrium bond lengths for the hydrogen, hydrogen chloride, carbon dioxide, and methane molecules,
in units of Å, where xRHF

0 denotes the equilibrium bond length obtained from a RHF calculation, xPBE
0 and xB3LYP

0 are obtained

from DFT calculations with a PBE/B3LYP functional, xDMC
0 is obtained from a DMC calculation, and xexp

0 is obtained from
the experiment. The details of the atomic relaxation calculation in DMC are discussed in Appendix A.

Molecule xRHF
0 xPBE

0 xB3LYP
0 xDMC

0 xexp
0

52

H2 0.736 0.753 0.745 0.7420±0.0007 0.741 30
HCl 1.260 1.286 1.278 1.280±0.006 1.275
CO2 1.145 1.182 1.171 1.167±0.003 1.159 8
CH4 1.089 1.104 1.098 1.097±0.002 1.093
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V. CONCLUSION
In this paper, we develop and implement a formalism to

evaluate the matrix of force constants in QMC. We calculate
vibrational frequencies and improved estimates for the atomic
displacements on each relaxation step, as well as correcting
for anharmonicity. We report statistically significant improve-
ments over RHF and DFT methods in the vast majority of cases,
both in terms of the vibrational frequency and the efficiency
of the atomic relaxation, for the hydrogen, hydrogen chloride,
carbon dioxide, and methane molecules.

The ability to calculate the matrix of force constants
within DMC, in particular, makes us well positioned to cal-
culate vibrational modes where high accuracy is a necessity
and relax atomic positions in complex systems with many
degrees of freedom where the extrapolation from energy or
force is difficult, if not impossible, to optimize the geometry.
The approach applies to both molecules and periodic con-
figurations. This will be especially beneficial in systems with
heavy atoms that are challenging to analyze accurately with
DFT, systems with significant anharmonic corrections, and
also those with strong van der Waals interactions, such as
layered materials and surfaces.
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APPENDIX A: ATOMIC RELAXATION CALCULATION
In this section, we describe in detail how the configura-

tion coordinates are adjusted on each step during the atomic
relaxation process.

Let us define the atomic displacement on each Monte
Carlo step as

∆R = ∆Re + ∆Rt + ∆Rr,

where ∆Re is the energy-minimizing term, ∆Rt is the cor-
rection for global translations, and ∆Rr is the correction for
global rotations. We adjust the atomic displacements from R
to R + ∆R on each step, so as to minimize the total energy of
the system. Once the equilibrium is reached, the anharmonic
correction ∆Ra is applied.

1. Minimizing the energy
Consider a system of Nn atoms in three dimensions. Tay-

lor expanding the total energy of the system as a function of

atomic displacements, up to quadratic order, yields

E = E0 +
Nn∑
I=1

dE
dRI
∆RI +

1
2

∑
IJ

d2E
dRIdRJ

∆RI∆RJ,

where E0 is a constant. Demanding that the sum of the first-
and second-order terms in the energy is zero at the minimum
gives

[
1
2
∆RᵀM + ∇RE

]
· ∆R = 0,

which, excluding the trivial solution, implies that

∆Re = −2M−1
∇RE,

where M is the matrix of force constants and ∇RE is the
multi-atom energy gradient with respect to the configuration
atomic displacement vector, R. This is the bare estimate for
the atomic displacement correction, up to second order in the
energy.

2. Correction for global translations
In order to ensure that the origin of our configuration is

fixed and that we have no global translational mode, we explic-
itly subtract the center of mass motion of the configuration.

Given Nn atoms, each with mass mI, this implies that the
global translation correction term is

∆Rt = −

∑
I mIRI∑

I mI
.

This term is particularly important for non-symmetric
molecules, such as hydrogen chloride in Sec. IV B.

3. Correction for global rotations
Similarly, to ensure that the bond length corrections do

not result in a rotation of the configuration, or atomic pair
rotations, we explicitly subtract global rotational modes.

The law of moments states that the total moment about
the center of mass of any atomic pair, as well as the total
moment about the origin of the configuration, is zero, which
gives

∑
ImIbI = 0 and

∑
ImIRI = 0, where b is the half-bond

length between an atomic pair. Together, these relations
imply ∑

I

mIRI × (bI − RI × θ) = 0, (A1)

where br,I ≡ bI − RI × θ is the corrected half bond length to
be found. Hence, an expression for the angular displacement
of the molecule θI ≡ (θxI, θyI, θzI) is needed. Using the vector
triple product identity, we find that Eq. (A1) reduces to∑

I

mIRI × bI =
∑

I

[mIRI(RI · θ) −mIθ(RI · RI)],

which after rearrangement becomes
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∑
I

mI
*..
,

RyIbzI − RzIbyI

RzIbxI − RxIbzI

RxIbyI − RyIbxI

+//
-︸                         ︷︷                         ︸

a

=
∑

I

mI

*...
,

−R2
yI − R2

zI RyIRxI RzIRxI

RxIRyI −R2
xI − R2

zI RzIRyI

RxIRzI RyIRzI −R2
xI − R2

yI

+///
-︸                                                        ︷︷                                                        ︸

B

*..
,

θx

θy
θz

+//
-
.

This implies that the atomic displacement correction for
global rotations is

∆Rr,I = −RI × θ,
where θ = B−1a.

4. Correction for anharmonicity
Up to this point in the analysis, we have assumed that

the interaction between atomic pairs is harmonic. Although
this is a valid approximation at short distances, at larger dis-
tances, this approximation breaks down and so a correction
term is necessary. One of the most well-studied models used
to capture anharmonicity in the interaction between diatomic
molecules is the Morse Hamiltonian, which we use as an
approximation for our case studies. The Morse Hamiltonian
is given by

Ĥ =
p̂2

2µ
+ V̂,

with a Morse potential

V̂ = V(x) = D[1 − e−αx]2, (A2)

where D is the x = x0 energy minimum depth relative to the
dissociation limit at x→ ∞ and α determines the curvature of
the potential.60

The eigenvalues of the Morse Hamiltonian are

En = ~ω0



(
n +

1
2

)
− xe

(
n +

1
2

)2
,

where ω0 =
√

2Dα2/µ is the fundamental frequency, xe
= ~ω0/4D is the anharmonic constant, and n ∈ Z+ is the
principal quantum number.

Note that the minima of the harmonic and Morse poten-
tials are the same. However, due to the dissociative limit of the
Morse potential, the expectation value of position is shifted in
the positive x direction in the Morse case. One of the main
advantages of this model is that the majority of its properties
can be expressed analytically.

By setting D = ~
2α2

2µ (N + 1/2)2, the Morse Hamiltonian may
be written as

Ĥ = −
~2

2µ
∂2

∂x2
+
~2α2

2µ

(
N +

1
2

)2

(e−2x − 2e−x)

up to a constant term. The expectation value of the position
with respect to the ground state Morse wave function is then

〈0 |x̂ |0〉 =
ln(2N + 1) − ψ(2N)

α
,

where ψ is the digamma function.61 Expanding the expecta-
tion value of position gives

〈0 |x̂ |0〉 =
3
2

√
~xe

2µω0

up to leading order in xe. This is the shift in the equilibrium
bond length due to the anharmonicity of the Morse potential.

In order to evaluate this shift, an estimate for the anhar-
monic constant is needed. Expanding the Morse potential
[Eq. (A2)] about the equilibrium displacement x = x0 in powers
of x, we find that

V(x) =
1
2
µω2

0x2 +

√
µ3xeω

5
0

2~
x3 + · · ·

up to a constant term. Comparing quadratic and cubic terms
in x with the general form of the Taylor expansion, and solving
simultaneously, yields

xe =
~

18
√
µ

*.
,

d3V
dx3

������x0

+/
-

2

*.
,

d2V
dx2

������x0

+/
-

−5/2

.

Conventionally, the third derivative of the energy is extracted
from the curvature of the force; however now utilizing the new
information available, we extract the anharmonic constant
directly from the gradient of the force constant.

APPENDIX B: VIBRATIONAL MODE CALCULATION
In this section, we describe in detail the methods used

to determine the vibrational modes and frequencies of atomic
configurations, as well as their associated statistical uncer-
tainties.

1. Exisiting computational approaches
In order to calculate an estimate for the frequency using

the RHF and DFT methods, we use the default scheme, PBE
and B3LYP exchange-correlation functionals, respectively,
within the CRYSTAL program.23

2. Matrix of force constant approach
The direct method to obtain the vibrational frequencies

of a molecule is from an exact diagonalization of the matrix of
force constants. Consider, for example, a diatomic molecule in
one dimension, such as the hydrogen molecule discussed in
Sec. IV A. The matrix of force constants for this system may be
written as

M =
*..
,

d2E
dR2

1

d2E
dR1dR2

d2E
dR2dR1

d2E
dR2

2

+//
-
. (B1)

By exactly diagonalizing the matrix, we obtain the eigenmodes
and eigenfrequencies of the system given by

ω2 =
1
2

*
,

d2E
dR2

1

+
d2E
dR2

2

+
-
±

√√
1
4

*
,

d2E
dR2

1

−
d2E
dR2

2

+
-

+
(

d2E
dR1dR2

)2

, (B2)
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where the positive frequencies are physical. The errors are
calculated using Monte Carlo, as discussed in Appendix B 5.

There are two possible disadvantages of this method for
obtaining the vibrational frequencies of a configuration. First,
since it is a complete diagonalization method, it uses all of
the entries in the matrix of force constants. However, many
of these entries are related by symmetries, and so these cal-
culations are potentially redundant. Second, due to numeri-
cal inaccuracy, Eq. (B2) may result in an overestimate of the
frequencies if the diagonal terms in Eq. (B1) are not equal.

Following from the previous example, by imposing the
known modes of a diatomic molecule in one dimension, we
may write the matrix of force constants as

MKM =
1
2

*.
,

d2E
d(R1+R2) 0

0 d2E
d(R1−R2)

+/
-
,

which now yields the eigenfrequencies

ω2
KM =

1
2

*
,

d2E
dR2

1

+
d2E
dR2

2

+
-
±

(
d2E

dR1dR2

)
.

Notice that |ωKM| ≤ |ω| due to the absence of the diagonal
terms in the square root of Eq. (B2).

For a general system, we may input a set of known
modes {x}. These 3Nn-dimensional row vectors act on the
3Nn × 3Nn dynamical matrix, D, to extract the corresponding
eigenfrequency such that

ωKM,i = x̂iDx̂
ᵀ
i ,

with the corresponding error

σKM,i =
√

x̂ij(2Σ2
jk − Σjkδjk)x̂k

i ,

where the hats denote normalization, Σ is the standard error
matrix corresponding to M, and the dynamical matrix, D, is the
matrix of force constants weighted by the atomic masses.

By imposing known modes on the system, we can
reduce the potential for numerical error and speed up the
matrix diagonalization. However, these advantages only hold
if the correct eigenmodes are known a priori, and there-
fore, we do not employ this scheme as standard for our DMC
calculations.

3. Approaches based on derivatives
of the force and energy

Further to the methods based on the matrix of force con-
stants, we also consider traditional techniques, for compari-
son.

We obtain an estimate of the frequency (ωFG) from the
gradient, κ, of the interatomic force against the bond length
graph. The error in the gradient of the slope is the asymptotic
standard error from a linear regression, and this is propagated
to the vibrational frequency in the usual way

σ2
ω =

�����
∂ω

∂κ

�����

2

σ2
κ .

Similarly, an additional estimate of the vibrational fre-
quency (ωEC) is obtained by computing the second deriva-
tive of the energy at a series of displacements along the tra-
jectory of an eigenmode. For this, we use a numerical cen-
tral difference scheme. Since this result is based on a lin-
ear superposition of energy data points, the errors add in
quadrature.

4. Correction for anharmonicity
All of the above methods for calculating the vibrational

frequency rely on the harmonic potential approximation.
However, there are certain cases where anharmonic vibration
is dominant and a correction to these frequencies needs to
be applied. As for atomic relaxation, we apply an approximate
correction, due to a Morse potential, which for the fundamen-
tal vibrational frequency is given as ∆ω = −xe/4, where xe is
the anharmonic constant.

5. Monte Carlo uncertainty
The matrix of force constants M comes with an associ-

ated standard error matrix, Σ, from the reblocking method
in CASINO.62 Calculating the errors in eigenvalues given the
errors in the matrix elements is a non-trivial task and one
which has been studied extensively in pure mathematics.63–68
For the purposes of this paper, we calculate the eigenvalue
errors using Monte Carlo.

For each Monte Carlo run, we generate a dynamical
matrix, whose matrix elements are normally distributed, with
a mean equal to the original matrix elements and a standard
deviation equal to the corresponding standard errors. We then
perform many runs until the average eigenvalues converge to
the true eigenvalues, and we use the standard errors of these
Monte Carlo runs as the errors in the eigenvalues.
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