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ABSTRACT: The Open Source Malaria (OSM) consortium is developing compounds that kill the human malaria parasite,
Plasmodium falciparum, by targeting PfATP4, an essential ion pump on the parasite surface. The structure of PfATP4 has not been
determined. Here, we describe a public competition created to develop a predictive model for the identification of PfATP4
inhibitors, thereby reducing project costs associated with the synthesis of inactive compounds. Competition participants could see all
entries as they were submitted. In the final round, featuring private sector entrants specializing in machine learning methods, the
best-performing models were used to predict novel inhibitors, of which several were synthesized and evaluated against the parasite.
Half possessed biological activity, with one featuring a motif that the human chemists familiar with this series would have dismissed
as “ill-advised”. Since all data and participant interactions remain in the public domain, this research project “lives” and may be
improved by others.

■ INTRODUCTION

Efficiency in the early stages of the drug discovery pipeline,
from hit identification to lead optimization, is key to the
development of new drugs. The initial identification of a hit
compound is typically carried out using one of two approaches.
In target-based drug discovery, the molecular target of interest
is known.1 With this knowledge, libraries containing many
compounds are screened (experimentally or computationally)
against the known target to identify promising candidates or
chemical scaffolds for further development. Through testing
these chemicals, the key binding interactions may be identified
and more directed structure−activity relationship (SAR)
studies can be conducted to optimize activity.
Alternatively, if the biological target is not known,

phenotypic drug discovery may be undertaken.2 This process
involves the initial identification of potent compounds that
give rise to the desired effect (e.g., inhibition of cell growth),
with target determination performed thereafter. The lead-
optimization phase in this type of drug discovery is less
streamlined than that in the former method as it is conducted

without guidance from target binding interactions and often
relies upon the intuition of the medicinal chemist to design and
synthesize compounds to explore the SAR. There are a number
of obvious limitations to this approach, including the personal
bias/imagination of the scientist or the availability/cost of
resources. As a result, good hypotheses or key insights may be
overlooked, which can lengthen the time taken to identify a
lead candidate and increase costs associated with synthesizing
complex molecules that are later revealed to be inactive.
Nevertheless, the advantage of phenotypic drug discovery,
which underpins its popularity, is that hit or lead compounds
are already known to be effective in their overall role (e.g., the
killing of a pathogen).
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To aid this latter approach and overcome the absence of
knowledge of the target or its structure, computational models
may be developed using artificial intelligence (AI) and machine
learning (ML).3,4 Such approaches allow the activities of new
compounds in a phenotypic-screening program to be
predicted. For instance, matched molecular pair analysis5 and
quantitative structure−activity relationship (QSAR)6 models
are commonly used in medicinal chemistry campaigns to
determine the relationships between the physical and bio-
logical properties of a series of compounds. This information
can then be used to guide the design of new active compounds.
In those cases in which a target has been identified, but its
structure is not yet determined, a structural model may be
developed based on a known close homolog of the target.7

This method allows for docking studies to be conducted to
examine potential binding interactions that may occur in the
actual target, thus guiding the lead-optimization process more
effectively. Recent years have seen the increased use of
computational methods such as these to aid the drug discovery
process.8−11 For instance, there have been successes in the in
silico target prediction of small molecules with activity against
Mycobacterium tuberculosis.12,13

In the case of the malaria parasite, the development of
resistance to frontline treatments is an ever-present problem.
Since the isolation of artemisinin from the plant Artemisia
annua in 1971 by Tu Youyou and colleagues,14 this natural
product and its derivatives have been used in some of the most
effective treatments for malaria. The artemisinin-based
combination therapies (ACTs) utilize a short-acting artemisi-
nin derivative in combination with one or more comple-
mentary antimalarials that are long acting and possess a
different mechanism of action (MoA). The use of these
combinations has, in part, been responsible for the slow
development of resistance to ACTs; yet in recent years,
increasing numbers of cases have emerged of reduced
efficacy.15 There is an urgent need for new medicines that
possess novel MoAs.16

One promising biological target in the human malaria
parasite, Plasmodium falciparum, is the essential P-type ATPase
PfATP4, which localizes to the plasma membrane of the
intraerythrocytic parasite and exports Na+ while importing H+

equivalents.17,18 The structure of this membrane-bound
protein remains unsolved. Evidence for the involvement of
PfATP4 in the mechanism of action of a wide range of
antiplasmodial compounds identified in phenotypic screens
comes from several sources, including from analysis of
mutations in resistant lines and from a range of physiological
and biochemical assays (measurement of parasite cytosolic Na+

concentration ([Na+]) and pH, as well as parasite volume and
Na+-ATPase activity). PfATP4 has been implicated as the
target for spiroindolone cipargamin17,19 (currently in Phase III
clinical development), dihydroisoquinolone (+)-SJ733,20 and
28 compounds from the Medicines for Malaria Venture
(MMV) Malaria Box21 as well as 11 compounds from the
MMV Pathogen Box.22 These compounds represent a
strikingly diverse range of chemotypes (Figure 1).23 A
homology model of PfATP4 was developed using crystal
structures from the closest mammalian homolog, a sarco/
endoplasmic reticulum Ca2+-ATPase (SERCA).20 However, in
the absence of a solved structure of PfATP4, ideally bound to
small-molecule inhibitors, it remains unclear how such a
diverse range of molecules might share the same target. Indeed,
a challenge to understanding such data is that structurally
different molecules generating the same phenotype may be
interacting with the biological target differently.
Since 2011, contributors to Open Source Malaria (OSM)

have been evaluating several series of compounds originating
from high-throughput screens (HTS) performed by pharma-
ceutical companies.25 The recent focus of OSM has been on a
class of triazolopyrazine-based compounds (“Series 4”) that
emerged from a screen carried out at Pfizer. There are
currently more than 200 compounds in Series 4, with in vitro
potencies against P. falciparum ranging from single-digit
nanomolar to inactive. The highly promising nature of this

Figure 1. Examples of diverse chemotypes (colored) that have been linked to PfATP4. Each of the compounds gives rise to effects on the parasite’s
internal Na+ concentration and pH that are consistent with PfATP4 inhibition.20,21,24
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series derives from several members having been found to be
effective in the in vivo mouse model of the disease.26 Based on
preliminary investigations against PfATP4-resistant mutant
strains (generated from the parent Dd2 strain by exposure to
hits from the Malaria Box against PfATP421), Series 4
compounds are thought to target PfATP4.27 The intraseries
similarity of their structures ought to imply a similarity in the
way that the compounds interact with the target, but the
interaction may differ from other compounds with the same
phenotype.
The OSM Series 4 project is at the lead-optimization stage,

with minor structural modifications being made in the search
for improved solubility, potency, and metabolic clearance. As is
typical in such a search, analogues are being made that possess
low potency, and these represent expensive “failures” (ca. $ 2K
per compound for one postdoc-week per analogue). Better
predictions of compound potency would save valuable
resources and accelerate the science, so a predictive model
was high on the list of priorities for the OSM consortium.
For the best means to develop such a model, we maintained

an open mind. Available to us was a data set of analogues with
their associated activities, whether against the parasite or
derived from biochemical ([Na+], pH, and/or ATPase) assays.
Many of these compounds were from OSM Series 4, and there
were also candidate antimalarials from other, structurally
unrelated, series. It was possible to include “presumed
inactives”: randomly selected molecules from commercial
catalogues that were unlikely to display activity. There is
obviously a rich history of QSAR-based approaches that might
be called upon. A homology model (vide supra) was available
that might permit a more target-based approach. Acknowl-
edging these varied resources, we opted not to prescribe the

approach to be taken and instead, in 2014, approached the
scientific community simply with the need for a model that
would allow us to predict the activity of hypothetical
compounds. All data from OSM research projects are freely
available to anyone online, representing an ideal starting point
for such an open competition.
Between then and now, there has been an explosion of

interest in machine learning and AI methods in drug
discovery.28,29 While these new methods had the potential to
be game changing, there is the ever-present challenge in this
sector of hype, in the sense that the actual capabilities of some
of the newer technologies, outside of marketing statements, are
sometimes not clear. In OSM, the openness extends to the
research process itself, allowing contributors to share what they
are doing, rather than what they have done. The use of
competitions to progress scientific research is not novel in
itself, with previous examples of this in data analysis for drug
discovery,30 but it is uncommon for competitions to be
accompanied by the next crucial step: benchmarking by
chemical synthesis and biological evaluation of predicted
molecules. It is rarer still for science competitions to run
completely openly, where everyone can see, and potentially
incorporate, other entrants’ solutions as they are submitted.
We felt we could achieve two things by running this
competition with OSM’s open source ethos, in which those
submitting entries would reveal their predictions in real time
and, ideally, provide full methods (within the boundaries of
commercial sensitivities). We would be able to approach the
scientific problem along multiple paths, but we would also be
able to provide a clear case study of the current effectiveness of
predictive modeling in phenotypic drug discovery.

Figure 2. Model creation workflow. (A) Four-feature pharmacophore model chosen for further development with MMV006429 mapped. (B) All
28 active compounds used in Round 0 superimposed onto the four-feature model. (C) Shape feature added based on poses in (B). (D) Inactive
molecules from the data set mapped. (E) Exclusion spheres added.
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■ RESULTS AND DISCUSSION

Round 0. An initial attempt by a single OSM contributor to
develop a pharmacophore model was based around the known
PfATP4 active compounds from the MMV Malaria Box.31,32

Using Discovery Studio from Accelrys (now BIOVIA) to
process 28 active compounds with the Common Feature
Pharmacophore Generation protocol, 10 four-feature models
were produced. These were then narrowed down based on
poses and score to one model that was developed further
(Figure 2A).
The 28 active compounds were mapped to the model and a

shape feature was created (Figure 2B). It was thought that this
could give a general idea of the shape of the compound binding
site (Figure 2C). Exclusion features were next added in areas
where high scoring, inactive ligands penetrated outside of the
shape figure. Unfortunately, when this model was applied in
2014 to a set of compounds that were evaluated for their ability
to dysregulate ion homeostasis, the predictions were found to
correlate poorly with the experimental potency results (Figure
3). The test set was selected to be structurally diverse,
including features known to be associated with inactivity (e.g.,
transposition of the northwest pendant) but also features
where minor variations were known to be important for
activity (aromatic substituents in the pendant amide). It was
suggested that the lack of correlation could be due to factors
not being taken into account by this first model (overlapping
binding sites and compound chirality); a pharmacophore
model explains aspects of the geometry of the interaction but
not the details of the thermodynamics of the protein−small
molecule contacts.

This model was also used to screen32 the Maybridge library
of compounds33 to identify a small and diverse selection of
molecules to evaluate in biochemical assays. The results were
filtered manually to give a final selection of 18 compounds that
were subsequently evaluated for their effects on the parasite’s
cytosolic Na+ concentration (at 1 μM) and pH (at 5 μM).
None of the compounds were found to increase the parasite’s
cytosolic [Na+] or pH, which confirmed that the model
required further optimization and led to the start of a
crowdsourced attempt to solve this challenge.

Round 1. The first full round of the predictive modeling
competition was run between 2016 and 2017 and was intended
to elicit the participation of members of the wider scientific
community with expertize in computational chemistry.34 The
competition adhered to the open science principles under-
pinning the OSM consortium. Specifically, all participants were
required to work openly for the duration of the competition,
with working and data posted on open Electronic Laboratory
Notebooks (ELN) that were made publicly available.35 The
participants were tasked with developing a predictive model
using data provided by OSM that included a list of compounds
with activity data for both in vitro whole cell potency and
PfATP4 ion assays,36 along with the entire data set of OSM
compounds from previous series ((mostly presumed)
inactives). Once the models were developed and deposited,
the participants were provided with the molecular identifiers
(e.g., SMILES strings) for the 400 compounds contained
within the MMV Pathogen Box and were required to rank
them in order of predicted activity in the ion assays. The
compounds were at the same time screened for their effects on
parasite cytosolic [Na+] concentration and pH and the data

Figure 3. Poor correlation was seen between the first model’s predictions and experimental data. While there is an excellent correlation between in
vitro parasite killing potency and the ability to dysregulate parasite ion homeostasis, the majority of the model predictions did not correlate well
with the experimental data. The compounds were tested for their effects on cytosolic [Na+] and pH in isolated parasites (Dd2 strain), at 1 and 5
μM, respectively; “Yes”: it indicates that the compound gave rise to an increase in cytosolic [Na+] and a cytosolic alkalinization similar to that seen
on addition of a 50 nM concentration of the PfATP4 inhibitor cipargamin. “No”: it indicates that the compound did not affect the resting cytosolic
[Na+] or pH. “Moderate”: it indicates that the compound gave rise to an increase in cytosolic [Na+] and pH that was less than that observed on the
addition of 50 nM cipargamin.
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held back until the models had been submitted. A small cash
prize inducement was employed to stimulate interest, despite
the risk this brings of making the intrinsic reward for
participation more extrinsic.37

Six diverse, fully fledged entries were submitted from
individuals working in both public and private sectors, with
all working shared online (Table 1).38 The submissions were
reviewed by a panel of four judges (Prof. Matthew Todd, A/
Prof. Alice Motion (University of Sydney), Dr. Murray
Robertson (University of Strathclyde, creator of the previous
model in Round 0), and Prof. Alexander Tropsha (University
of North Carolina, Chapel Hill)) who evaluated the top 20
ranked compounds from each model against the undisclosed
Pathogen Box data. Two entrants developed models that were
able to predict correctly two active compounds within their top
20 rankings, with a further model a close third place.39

While this first round of the competition was successful in
demonstrating the capabilities of the community to work
openly and provide quality data, the models, though obtained
with diverse methods, were not yet highly predictive. A
possible reason for this was the dissimilarity of the structures in
the OSM Series 4 data set and the contents of the MMV
Pathogen Box. Of note was, again, the striking diversity of
chemotypes (A−K, Table 1) sharing a target. Interestingly,
opinions of the performance of the models in this round
differed between laboratory chemists (who regarded the 2/20
hit rate as not being practically helpful) vs cheminformatics-
based entrants and judges (who regarded the 2/20 hit rate
from a structurally diverse set of 400 compounds that was not

strongly correlated with the training set, as a respectable
outcome).

Round 2. Given the diverse, spontaneous inputs from the
initial round of the open competition, and the high quality of
the associated dialogue that had taken place on the relevant
project website, GitHub, it was decided that a second round
would be run in 2019 since “expensive failure analogues” were
still arising in the experimental program. The aim for this
round was not only to allow for the entrants from Round 1 to
improve upon the original models, but for new participants to
get involved with inputs from larger companies that specialized
in artificial intelligence and machine learning (AI/ML)
approaches. Since the series had moved on in the interim
(with further compounds being evaluated), the community
had access to an expanded data set, including all of the data
used as the test set for the previous round.22

The competition’s second round was launched in July
2019.41 In this new phase of the competition, it was the
intention to use the best-performing models to perform the
most important task of all: to predict new chemical matter that
would be active (rather than merely look at the fit of
retrospective data). Synthesis and evaluation of these
predictions would then serve as model validation in a “real”
case. A small, new data set of activity from recently synthesized
analogues was kept back to serve as the basis for judging model
fitness.
By the conclusion of Round 2 (a period of ∼10 weeks), 10

entries had been submitted, five of which were from returning
participants (Table 2). In a similar fashion, submissions were

Table 1. Summary of the Results from Round 1 of the Predictive Modeling Competitiona

entrant description of model

correctly
predictive
actives result

Jonathan
Cardoso-Silva

Gradient boosting model (using XGBoost) to predict actives and nonactives. B just outside
top 20

runner-
up

Giovanni
Cincilla

PfATP4 Ion regulation activity classification model using: CDK descriptors,40 ECFC4 fingerprints, and random
forest.

B, D runner-
up

Davy Guan semisupervised machine learning used to construct QSAR models. Molecules were featurized by either graph
convolutional techniques or with 1024 Bit ECFP4 descriptors.

B, F runner-
up

James
McCulloch

Deep neural network ML using a vector of the chemo-physical properties of the target molecules. B, D, I winner

F just outside
top 20

Ho-Leung Ng QSAR model based on homology modeling of PfATP4Cresset Forge. K, D winner
J just outside
top 20

Vito
Spadavecchio

library of “common” transformations as seen in CHEMBL. B runner-
up

aCompounds A−K shown to be active from the MMV Pathogen Box screen against PfATP4.22
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reviewed by a panel of four judges (Prof. Matthew Todd, Dr.
Edwin Tse (UCL), Dr. Murray Robertson (Strathclyde), and
Prof. Robert Glen (Cambridge)) who compared the predicted
potencies against the experimentally derived blood-stage
potency values for 34 compounds.
The precision of each model was calculated according to:

precision = x/(x + y), where x is the number of correct
predictions (active and inactive combined) and y is the
number of false-positive predictions.42

It was originally intended for each of the four winning
entrants (first and second place winners) to generate two new
structures that were predicted to be active using their models:
one possessing the Series 4 triazolopyrazine core and the other

being structurally distinct. This would give a total of eight
molecules to be synthesized and validated experimentally. In
addition to optimizing potency, model generators were tasked
with keeping good solubility in mind as a design criterion. It
became evident that certain suggested compounds were
synthetically inaccessible or would take major resources to
pursue, and these were triaged with some minor human inputs
from the computational and synthetic teams; these inputs
varied from team to team and typically involved selecting
between the highest-scoring compounds. Synthetic tractability
is often an issue when predictive models do not take into
account known synthetic pathways, though there is significant

Table 2. Summary of the Results from Round 2 of the Predictive Modeling Competition

entrant (affiliation) description of modela

precision of accurate
predictions (active and

inactive)b result

Jonathan Cardoso-Silva
(King’s College London)

Network-based piecewise linear regression for QSAR modeling.43 36% runner-up

Giovanni Cincilla
(Molomics)

P. falciparum inhibition classification model using: CDK descriptors,40 ECFC4 fingerprints, and
logistic regression (with: stochastic average gradient as solver, uniform regularization, and
learning step size = 0.01).

91%c winner
(company)

Mykola Galushka
(Auromind)

SMILES variational autoencoder to generate chemical compounds fingerprint and cascade
models Naive Bayes classifier with multilayer perceptron regressor for filtering active
components and identifying a specific potency value.

58% runner-up

Davy Guan (The University
of Sydney)

Automated machine learning method with 21 quantum mechanical descriptors using the Hartree
Fock with three corrections method44 and JCLogP, optimized for mean absolute error.

82% winner
(noncompany)

Ben Irwin, Mario Öeren,
Tom Whitehead
(Optibrium/Intellegens)

Deep imputation45−47 with quantum mechanical StarDrop6.6 AutoModeller and pKa
descriptors.48

81% second place

Raymond Lui (The
University of Sydney)

Automated machine learning method using 59 permutation feature importance selected mordred
and quantum mechanical descriptors optimized for mean absolute error.

58% runner-up

Slade Matthews (The
University of Sydney)

Random forest model using 200 mordred descriptors based on optimized 3D structures. Training
RMSE = 0.805.

N.A. runner-up

Ho-Leung Ng (Kansas State
University)

QSAR model based on detailed homology modeling of PfATP4 and docking. 3D features are
combined with 1D/2D QSAR features using XGBoost (gradient boosted trees) to make a
regression model.

71% runner-up

Vito Spadavecchio
(Interlinked TX)

Ensemble classification (logistic regression) and regression (MLP) using ECFP4 (Morgan radius
2).

79%c runner-up

Laksh Aithani, Willem van
Hoorn (Exscientia)

Ridge regression model with α = 1. ECFP4 fingerprints with (Morgan radius 2) were the input to
the model.

81% second place

aSee the Supporting Information (SI) for full experimental details. bBased on regression prediction. cBased on classification prediction.

Figure 4. Examples of the suggested compounds predicted by the winning entrants from Round 2.
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activity at present to improve the incorporation of synthetic
planning into library suggestion (Figure 4).49,50

The initial list was narrowed to focus on six predicted
triazolopyrazine compounds (Figure 5). The six compounds
were successfully synthesized and subsequently evaluated for in
vitro (growth inhibition) activity against P. falciparum along
with the previously reported positive control for the series.51 In
addition to the standard potency (in vitro growth) assay, these
compounds were evaluated for their ability to inhibit PfATP4
in biochemical (cytosolic [Na+]) assays to confirm that the
MoA had not changed following these structural changes.
Three of the six compounds were found to be active (<1

μM) or moderately active (1−2.5 μM) in in vitro growth
assays with asexual blood-stage P. falciparum (3D7) parasites,
representing a hit rate of 50% on a small sample size. Up to this
point, a total of 398 compounds had been made and evaluated
for in vitro activity in OSM Series 4, with the design of these
compounds driven entirely by the intuition of medicinal
chemists. By setting a potency cutoff of 2.5 μM (the upper
limit of reasonable activity), the tally of active compounds
discovered in this series stands at 165, representing a
comparable human intuition-derived hit rate of 41% on a
larger sample size. Most of the compounds were tested (blind)
for their ability to disrupt cytosolic [Na+] in isolated asexual
blood-stage parasites, which confirmed an unchanged mech-
anism of action: two of the compounds found to be active in in
vitro growth assays disrupted Na+ regulation, whereas the three
compounds inactive in growth assays did not, at the
concentrations tested (Figure S9).
It is interesting to compare these results with the intuition of

the chemists who have deep experience of this series and who
are familiar with the SAR. A recurring observation was the
sensitivity of the length of the ether linker between
triazolopyrazine core and northwest phenyl group, with a
spacer of two methylene units (between phenyl ring and
oxygen) leading to far higher potencies than other lengths. The
Davy Guan prediction involving the shorter linker, and the

Molomics 1 prediction without the pendant phenyl ring, lies in
the class of inactive compounds subject to human retrospective
wisdom (i.e., the “Could Have Told You That” class). In
contrast, Exscientia compounds were thought by the human
team to be likely to be potent, but only one performed well
(i.e., the “That’s Odd” class). Finally, the Optibrium/
Intellegens suggestion that included the tert-butyl pendant
was thought by the human team to be a certain inactive, given
what was known of variation in that part of the molecule
(where related substituents such as -OMe have been observed
to perform poorly, and much time had been spent in the
production of inactive variants); yet, this compound displayed
good potency and is a particularly useful outcome (i.e., the
“Machine Overlords” class).
To gain more insight, and to improve these potential

antimalarials, further iterations of these models are needed.
The open nature of competitions and of the overarching
consortium is that anyone may work on improvements since
everyone has access to all of the data, making this a “living”
research project. A potential explanation for the predicted hit
rate not being higher is the relatively small data set (∼400
compounds) from which each model was developed,
potentially compromising perfectly reasonably computational
approaches yet representing a fairly typical situation for lead
optimization. Two further points are of particular note: (1) it
was possible to involve leading experts from the private sector
in an open competition to solve a public health challenge
without those participants needing to compromise their
competitive business advantage; indeed, success in this
endeavor has already been used as an unvarnished demon-
stration of capabilities.52 (2) The private sector participants
displayed high and sustained levels of collaborative working
and commitment to a public good, in what is counter to the
public’s perception of the secretive nature of the modern
pharmaceutical industry; indeed, the “winning” and “losing” of
the competition were less important than the extent to which

Figure 5. Six chosen suggested compounds for experimental validation. The predictions were synthesized (see the SI) and their potencies and
MoAs (Figure S9) were experimentally validated. Three compounds were found to be active. *PfATP4 activity was not obtained for this
compound.
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entrants worked together openly to improve the underlying
research.41

■ CONCLUSIONS
With hit identification and lead optimization being key steps in
the development of any new drug, the continued advance-
ments in machine learning and artificial intelligence approaches
possess significant promise to streamline this process, which
would result in more efficient medicinal chemistry campaigns.
In the absence of target structural information, a crowdsourced
approach was used to develop predictive models for a
promising antimalarial series. Importantly, the winning models
of the most recent competition round were used to generate
novel compounds, which were then synthesized and evaluated
for experimental validation of each model leading to a new
counterintuitive “active”. The simple open science and
crowdsourcing principles used throughout this campaign are
applicable to many medicinal chemistry projects, whereby
community’s combined efforts can be used to accelerate the
early stages of drug discovery and involve participants from
public and private sectors. The work conducted here has been
designed to be “living”, in that all methods and results are
publicly available and contributions can continue to be made
by anyone because everyone has access to all data and ideas.

■ EXPERIMENTAL SECTION
General Information. Reagents were purchased from either

Sigma−Aldrich, Alfa Aesar, Acros, Merck, Fischer Scientific, Matrix
Scientific, Ajax or Fluorochem. Unless otherwise specified, the
reagents were used without further purification. Anhydrous solvents
were obtained by drying over activated 3 Å molecular sieves. Argon
gas was used as acquired. Reduced pressure means under rotary
evaporation at 40 °C from 900 to 50 mbar. Flash chromatography was
performed on a Biotage Selekt. Analytical thin-layer chromatography
was performed on Merck Silica Gel 60 F254 precoated aluminum
plates (0.2 mm) and visualized with UV irradiation (254 nm) and
potassium permanganate. High-temperature reactions were carried
out in silicone oil baths, controlled by a temperature probe in the oil
bath.
Melting points (mp) were recorded on a Stuart SMP10 at 2 °C

min−1 (capillaries ø = 1.8−1.9 mm, 100 mm). Nuclear magnetic
resonance spectroscopy was carried out at 300 K on Bruker
spectrometers: either AVANCE 200 (1H at 200 MHz), AVANCE
300 (1H at 300 MHz, 13C at 75 MHz), AVANCE III 400 (1H at 400
MHz, 13C at 101 MHz), or AVANCE III 500 (1H at 500 MHz, 13C at
126 MHz). Spectra were processed using Mestrelab Research Mnova.
Deuterated solvents (CDCl3, DMSO-d6, CD3OD) were obtained
from the Cambridge Isotope Laboratories. 1H and 13C chemical shifts
are reported in parts per million (ppm) with respect to
tetramethylsilane (TMS) at 0.00 ppm. The chemical shifts of the
spectra were calibrated to residual solvent peaks (1H: CHCl3 7.26
ppm, dimethyl sulfoxide (DMSO) 2.50 ppm, MeOH 3.31 ppm, TMS
0.00 ppm; 13C: CHCl3 77.16 ppm, DMSO 39.52 ppm, MeOH 49.00
ppm, TMS 0.00 ppm). 1H signal multiplicity is reported as: singlet
(s), doublet (d), triplet (t), quartet (q), pentet (p) and combinations
thereof, or multiplet (m). Broad signals are designated broad (br).
Coupling constants (J) are reported in Hertz (Hz). Integrals are
relative. app = apparent when the multiplicity was unexpected, e.g.,
coincidental or unresolved. Low-resolution mass spectrometry (m/z)
was carried out on a Finnigan quadrupole ion trap mass spectrometer
using electrospray ionization (ESI) or atmospheric-pressure chemical
ionization (APCI). High-resolution mass spectrometry (HRMS) was
performed on a Bruker 7T FT-ICR using ESI or APCI. Positive and
negative detection is indicated by the charge of the ion, e.g., [M + H]+

indicates positive ion detection. Analytical liquid chromatography-
mass spectrometry (LCMS) was performed on an Agilent Infinity
1290 II system consisting of a quaternary pump (G7111A) and a

diode array detector WR (G7115A) coupled to an InfinityLab LC/
MSD (G6125B) using ESI. An Agilent Poroshell 120 EC-C18 column
(2.7 μm, 3.0 mm × 50 mm) was eluted at a flow rate of 1.5 mL/min
with a mobile phase of 0.05% formic acid in H2O and 0.05% formic
acid in MeCN.

The purity of all evaluated compounds was >95% as determined by
NMR spectroscopy (provided for all compounds evaluated bio-
logically).

Compounds 2-chloro-6-hydrazinylpyrazine (1), (E)-2-chloro-6-(2-
(4-(difluoromethoxy)benzylidene)hydrazinyl)pyrazine (5), 5-chloro-
3-(4-(difluoromethoxy)phenyl)-[1,2,4]triazolo[4,3-a]pyrazine (9),
and 3-(4-(difluoromethoxy)phenyl)-5-phenethoxy-[1,2,4]triazolo-
[4,3-a]pyrazine (+ve Control compound in Figure 4) were previously
synthesized according to literature procedures.51

General Procedure 1: Condensation of Hydrazinylpyrazine
with Aldehyde. Compound 1 (1 equiv) was dissolved in EtOH
(112 mM). Aldehyde (1 equiv) was added and the reaction stirred at
rt overnight. The suspension was filtered and washed with cold EtOH
to give the corresponding hydrazone that was used without further
purification.

General Procedure 2: Cyclization of Hydrazone to
Triazolopyrazine Core. The product from General Procedure 1
(1 equiv) was dissolved in CH2Cl2 (112 mM). PhI(OAc)2 (1 equiv)
was added and the reaction stirred at rt overnight. The reaction was
quenched with sat. NaHCO3 solution, diluted with CH2Cl2, and the
organic layer was separated. The aqueous layer was extracted with
CH2Cl2 (2×) and the combined organic layers were washed with sat.
NaHCO3 solution, brine, dried (MgSO4), filtered, and concentrated
under reduced pressure to give the crude product, which was purified
by automated flash chromatography on silica to give the
corresponding triazolopyrazine core.

General Procedure 3: Reduction of Esters to Alcohols. Ester
(1 equiv) was dissolved in anhydrous tetrahydrofuran (THF) (566
mM) and cooled to 0 °C. LiAlH4 (1 M in THF, 2 equiv) was added
dropwise, and the reaction mixture stirred for 10 min at 0 °C, then at
rt. Upon completion, the reaction was diluted with THF and cooled
to 0 °C. H2O (1 mL/1 g of LiAlH4) was added followed by 15% aq.
NaOH (1 mL/1 g of LiAlH4) and H2O (3 mL/1 g of LiAlH4). The
mixture was allowed to warm to rt and stirred for 15 min. MgSO4 was
added, and the reaction mixture was filtered through a pad of celite
and concentrated under reduced pressure to give the crude product,
which was purified by automated flash chromatography on silica to
give the corresponding alcohol.

General Procedure 4: Nucleophilic Displacement of
Triazolopyrazine Core Chlorine with Alcohol. Alcohol (1.0
equiv) was added to PhMe (168 mM) along with triazolopyrazine
core (1.0 equiv), KOH (3.0 equiv), and 18-crown-6 (0.1 equiv). The
reaction was stirred at rt until completion as indicated by thin-layer
chromatography (TLC) (100% EtOAc). The reaction was diluted
with H2O and then extracted with EtOAc (3×). The combined
organic layers were washed with H2O until the aqueous layer became
neutral, followed by brine, dried (MgSO4), filtered, and concentrated
under reduced pressure to give the crude product, which was purified
by automated flash chromatography on silica to give the
corresponding ether-linked product.

(E)-2-(2-(4-(tert-Butoxy)benzylidene)hydrazinyl)-6-chloro-
pyrazine (2). Prepared according to General Procedure 1 from:
compound 1 (750 mg, 5.19 mmol, 1 equiv) and 4-(tert-butoxy)-
benzaldehyde (904 μL, 5.19 mmol, 1 equiv) to give 2 as a pearlescent
pale yellow powder (1.29 g, 82%). Mp 207−211 °C; 1H NMR (500
MHz, DMSO-d6) δ: 11.47 (s, 1H), 8.53 (s, 1H), 8.03 (s, 1H), 8.02 (s,
1H), 7.65 (d, J = 8.6 Hz, 2H), 7.02 (d, J = 8.6 Hz, 2H), and 1.33 (s,
9H); 13C NMR (126 MHz, DMSO-d6) δ: 156.5, 152.4, 145.6, 142.5,
132.1, 129.1, 128.7, 127.6, 123.5, 78.6, and 28.6; m/z (ESI+) 305 ([M
+ H]+, 100%).

(E)-2-Chloro-6-(2-(4-isopropylbenzylidene)hydrazinyl)-
pyrazine (3). Prepared according to General Procedure 1 from:
compound 1 (1.00 g, 6.92 mmol) and 4-isopropylbenzaldehyde (1.05
mL, 6.92 mmol) to give 3 as a yellow powder (1.49 g, 78%). Mp
231−233 °C; 1H NMR (500 MHz, DMSO-d6) δ: 11.51 (s, 1H), 8.54

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.1c00313
J. Med. Chem. 2021, 64, 16450−16463

16457

pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.1c00313?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(s, 1H), 8.04 (s, 2H), 7.65 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz,
2H), 2.92 (p, J = 6.9 Hz, 1H), and 1.21 (d, J = 6.9 Hz, 6H); 13C NMR
(126 MHz, DMSO-d6) δ: 152.4, 150.1, 145.6, 142.8, 132.2, 132.1,
128.7, 126.8, 126.7, 33.4, and 23.7; m/z (ESI+) 275 ([M + H]+,
100%).
(E)-2-Chloro-6-(2-(4-chlorobenzylidene)hydrazinyl)pyrazine

(4). Prepared according to General Procedure 1 from: compound 1
(1.00 g, 6.92 mmol) and 4-chlorobenzaldehyde (972 mg, 6.92 mmol)
to give 4 as a yellow powder (1.53 g, 82%). Mp 230−233 °C; 1H
NMR (500 MHz, DMSO-d6) δ: 11.64 (s, 1H), 8.58 (s, 1H), 8.07 (s,
1H), 8.05 (s, 1H), 7.77 (d, J = 8.5 Hz, 2H), and 7.48 (d, J = 8.5 Hz,
2H); 13C NMR (126 MHz, DMSO-d6) δ: 152.2, 145.5, 141.3, 133.8,
133.4, 132.6, 128.9, and 128.3 (one obscured signal); m/z (ESI+) 267
([M + H]+, 100%).
3-(4-(tert-Butoxy)phenyl)-5-chloro-[1,2,4]triazolo[4,3-a]-

pyrazine (6). Prepared according to General Procedure 2 from:
compound 2 (750 mg, 2.46 mmol); purified by automated flash
chromatography on silica (25−100% EtOAc in hexanes) to give 6 as a
pale yellow powder (595 mg, 80%). Mp 143−147 °C; 1H NMR (500
MHz, CDCl3) δ: 9.31 (s, 1H), 7.85 (s, 1H), 7.52 (d, J = 8.7 Hz, 2H),
7.12 (d, J = 8.7 Hz, 2H), and 1.43 (s, 9H); 13C NMR (126 MHz,
CDCl3) δ: 158.2, 148.4, 147.3, 143.1, 132.4, 129.8, 123.0, 122.2,
121.0, 79.7, and 29.0; m/z (ESI+) 303 ([M + H]+, 100%).
5-Chloro-3-(4-isopropylphenyl)-[1,2,4]triazolo[4,3-a]-

pyrazine (7). Prepared according to General Procedure 2 from:
compound 3 (750 mg, 2.73 mmol); purified by automated flash
chromatography on silica (25−100% EtOAc in hexanes) to give 7 as a
pale orange powder (662 mg, 89%). Mp 133−137 °C; 1H NMR (500
MHz, CDCl3) δ: 9.32 (s, 1H), 7.85 (s, 1H), 7.54 (d, J = 8.3 Hz, 2H),
7.37 (d, J = 8.1 Hz, 2H), 3.02 (p, J = 6.9 Hz, 1H), and 1.32 (d, J = 6.9
Hz, 6H); 13C NMR (126 MHz, CDCl3) δ: 152.0, 148.6, 147.3, 143.1,
131.5, 129.7, 126.2, 124.0, 122.2, 34.3, and 24.0; m/z (ESI+) 273 ([M
+ H]+, 100%).
5-Chloro-3-(4-chlorophenyl)-[1,2,4]triazolo[4,3-a]pyrazine

(8). Prepared according to General Procedure 2 from: compound 4
(750 mg, 2.81 mmol); purified by automated flash chromatography
on silica (25−100% EtOAc in hexanes) to give 8 as an orange powder
(634 mg, 85%). Mp 180−183 °C; 1H NMR (300 MHz, CDCl3) δ:
9.29 (s, 1H), 7.86 (s, 1H), 7.55 (d, J = 8.6 Hz, 2H), and 7.48 (d, J =
8.5 Hz, 2H); 13C NMR (75 MHz, CDCl3) δ: 147.2, 142.9, 137.2,
132.6, 129.8, 128.3, 125.1, and 121.8 (one obscured signal); m/z (ESI
+) 265 ([M + H]+, 100%).
Methyl 2-(3,4-Difluorophenyl)-2-hydroxyacetate (10). 2-

(3,4-Difluorophenyl)-2-hydroxyacetic acid (850 mg, 4.52 mmol, 1
equiv) and p-TsOH monohydrate (17.2 mg, 0.09 mmol, 0.02 equiv)
were dissolved in MeOH (3.12 mL, 1.45 M) and the reaction heated
to reflux (80 °C). The reaction was cooled to rt and the solvent
removed. EtOAc was added to the residue and the organic layer
washed with H2O, sat. NaHCO3 solution, brine, dried (MgSO4),
filtered, and concentrated under reduced pressure to give 10 as clear
colorless oil that solidified on standing (738 mg, 81%). No further
purification required. Mp 44−49 °C; 1H NMR (500 MHz, CDCl3) δ:
7.30−7.24 (m, 1H), 7.23−7.02 (m, 2H), 5.14 (d, J = 5.0 Hz, 1H),
3.78 (s, 3H), and 3.52 (d, J = 5.1 Hz, 1H); 13C NMR (126 MHz,
CDCl3) δ: 173.6, 151.5 (d, J = 12.6 Hz), 149.5 (d, J = 12.6 Hz),
135.1, 122.8, 117.5 (d, J = 17.5 Hz), 115.8 (d, J = 18.4 Hz), 71.8, and
53.5; m/z (ESI+) 225 ([M + Na]+, 100%).
Methyl 2-(3,4-Difluorophenyl)-2-((tetrahydro-2H-pyran-2-

yl)oxy)acetate (11). Compound 10 (600 mg, 2.97 mmol, 1.0
equiv) was dissolved in CH2Cl2 (10.7 mL, 277 mM), p-TsOH (102
mg, 0.59 mmol, 0.2 equiv), and 3,4-dihydro-2H-pyran (0.3 mL, 3.26
mmol, 1.1 equiv) were added and the reaction stirred at rt. The
reaction was quenched with ice cold H2O and the organic layer
separated. The aqueous layer was extracted with CH2Cl2 (3×) and the
combined organic layers washed with H2O, brine, dried (MgSO4),
filtered, and concentrated under reduced pressure to give the crude
product, which was purified by automated flash chromatography on
silica (6−50% ethyl acetate in hexanes) to give 11 as a viscous dark
orange oil (395 mg, 46%). 1H NMR (500 MHz, CDCl3, present as a
mixture of diastereomers) δ: 7.38−7.28 (m, 2H), 7.24−7.10 (m, 4H),

5.27 (s, 1H), 5.18 (s, 1H), 4.86 (t, J = 3.0 Hz, 1H), 4.57 (t, J = 3.4 Hz,
1H), 3.72 (s, 6H), 3.55−3.44 (m, 4H), and 1.93−1.36 (m, 12H); 13C
NMR (126 MHz, CDCl3, present as a mixture of diastereomers) δ:
171.3, 170.7, 150.7 (dd, J = 249.4, 12.0 Hz), 150.6 (dd, J = 249.3, 13.1
Hz), 150.5 (dd, J = 249.3, 13.4 Hz), 150.4 (dd, J = 248.5, 12.6 Hz),
133.8 (dd, J = 5.4, 4.2 Hz), 133.7−132.9 (m), 123.8 (dd, J = 6.6, 3.6
Hz), 123.4 (dd, J = 6.4, 3.7 Hz), 117.5 (t, J = 18.1 Hz, 2C), 116.6 (d, J
= 18.0 Hz), 116.4 (d, J = 18.4 Hz), 97.4, 97.0, 75.8, 74.5, 62.5, 62.3,
52.62, 52.58, 30.3, 30.2, 25.3 (2C), 19.1, and 18.8; m/z (ESI+) 309
([M + Na]+, 100%).

2-(3,4-Difluorophenyl)-2-((tetrahydro-2H-pyran-2-yl)oxy)-
ethan-1-ol (12). Prepared according to General Procedure 3 from:
compound 11 (300 mg, 1.05 mmol); purified by automated flash
chromatography on silica (25−100% EtOAc in hexanes) to give 12 as
a viscous pale yellow oil (150 mg, 55%). 1H NMR (500 MHz, CDCl3,
present as a mixture of diastereomers) δ: 7.28−6.92 (m, 6H), 4.92−
4.81 (m, 1H), 4.81−4.72 (m, 1H), 4.68 (dd, J = 6.8, 4.6 Hz, 1H), 4.50
(dd, J = 5.6, 2.8 Hz, 1H), 4.00 (dt, J = 11.0, 5.2 Hz, 1H), 3.73−3.62
(m, 4H), 3.56 (tt, J = 10.2, 4.6 Hz, 2H), 3.32 (dt, J = 10.9, 4.7 Hz,
1H), 3.05−2.96 (m, 1H), 2.18−2.07 (m, 1H), and 1.91−1.36 (m,
12H); 13C NMR (126 MHz, CDCl3, present as a mixture of
diastereomers) δ: 150.5 (dd, J = 248.8, 12.8 Hz), 150.4 (dd, J = 248.2,
12.7 Hz), 150.1 (dd, J = 248.3, 12.7 Hz), 149.9 (dd, J = 247.6, 12.6
Hz), 137.7−136.7 (m), 136.3−135.5 (m), 122.9 (dd, J = 6.3, 3.6 Hz),
122.7 (dd, J = 6.3, 3.6 Hz), 117.4 (d, J = 17.3 Hz), 117.2 (d, J = 17.2
Hz), 115.9 (d, J = 17.7 Hz), 115.8 (d, J = 17.8 Hz), 99.6, 98.1, 79.6,
78.8, 67.5, 66.5, 63.9, 62.9, 31.1, 30.7, 25.30, 25.26, 20.3, and 19.6; m/
z (ESI+) 281 ([M + Na]+, 100%).

(6-Methylpyridin-3-yl)methanol (13). Prepared according to
General Procedure 3 from: 6-methylnicotinic acid (750 mg, 5.47
mmol); purified by automated flash chromatography on silica (1−
10% MeOH in CH2Cl2) to give 13 as a yellow oil (103 mg, 15%). 1H
NMR (500 MHz, CDCl3) δ: 8.42 (d, J = 2.0 Hz, 1H), 7.61 (dd, J =
7.9, 2.2 Hz, 1H), 7.14 (d, J = 7.9 Hz, 1H), 4.66 (s, 2H), and 2.53 (s,
3H) (alcohol OH signal not seen); 13C NMR (126 MHz, CDCl3) δ:
157.6, 147.8, 135.8, 133.6, 123.3, 62.8, and 30.1; m/z (ESI+) 146 ([M
+ Na]+, 100%). Spectroscopic data matched those in the literature.53

tert-Butyl (3-(2-Hydroxyethyl)benzyl)carbamate (14). Pre-
pared according to General Procedure 3 from: 2-(3-(((tert-
butoxycarbonyl)amino)methyl)phenyl)acetic acid (500 mg, 1.88
mmol); purified by automated flash chromatography on silica (1−
10% MeOH in CH2Cl2) to give 14 as a viscous clear colorless oil (332
mg, 70%). 1H NMR (500 MHz, CDCl3) δ: 7.27 (t, J = 7.8 Hz, 1H),
7.18−7.05 (m, 3H), 4.90 (br s, 1H), 4.29 (br d, J = 5.5 Hz, 2H), 3.84
(t, J = 6.6 Hz, 2H), 2.84 (t, J = 6.6 Hz, 2H), and 1.46 (s, 9H) (alcohol
OH signal not seen); 13C NMR (126 MHz, CDCl3) δ: 156.1, 139.3,
139.1, 129.0, 128.2, 128.1, 125.7, 79.7, 63.7, 44.7, 39.2, and 28.5; m/z
(ESI+) 274 ([M + Na]+, 100%).

Methyl 2-(3-((tert-Butoxycarbonyl)amino)phenyl)acetate
(15). Boc2O (363 mg, 1.66 mmol, 1.1 equiv) was added to a solution
of 3-aminophenylacetic acid methyl ester (250 mg, 1.51 mmol, 1.0
equiv) in CH2Cl2 (4 mL) and the reaction was stirred at rt overnight.
Sat. NH4Cl solution (6 mL) was added and the organic layer
separated. The aqueous layer was extracted with CH2Cl2 (2 × 8 mL)
and the combined organic layers were dried (Na2SO4), filtered, and
concentrated under reduced pressure to give the crude product, which
was purified by automated flash chromatography on silica (12−50%
ethyl acetate in hexanes) to give 15 as a clear colorless oil (174 mg,
43%). 1H NMR (500 MHz, CDCl3) δ: 7.33 (br s, 1H), 7.23 (d, J =
4.4 Hz, 2H), 6.99−6.90 (m, 1H), 6.51 (br s, 1H), 3.68 (s, 3H), 3.59
(s, 2H), and 1.51 (s, 9H); 13C NMR (126 MHz, CDCl3) δ: 172.0,
152.8, 138.7, 135.0, 129.3, 124.0, 119.4, 117.4, 80.7, 52.2, 41.2, and
28.4; m/z (ESI+) 288 ([M + Na]+, 100%).

tert-Butyl (3-(2-Hydroxyethyl)phenyl)carbamate (16). Pre-
pared according to General Procedure 3 from: compound 15 (130
mg, 0.49 mmol); purified by automated flash chromatography on
silica (12−100% EtOAc in hexanes) to give 16 as a viscous clear
colorless oil (71.3 mg, 61%). 1H NMR (500 MHz, CDCl3) δ: 7.30 (br
s, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.16 (d, J = 8.1 Hz, 1H), 6.90 (d, J =
7.3 Hz, 1H), 6.55 (br s, 1H), 3.84 (t, J = 6.5 Hz, 2H), 2.83 (t, J = 6.5

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.1c00313
J. Med. Chem. 2021, 64, 16450−16463

16458

pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.1c00313?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Hz, 2H), and 1.51 (s, 9H) (alcohol OH signal not seen); 13C NMR
(126 MHz, CDCl3) δ: 152.9, 139.7, 138.7, 129.2, 123.9, 119.2, 116.8,
80.7, 63.6, 39.3, and 28.5; m/z (ESI+) 260 ([M + Na]+, 100%).
Spectroscopic data matched those in the literature.54

2-(Furan-2-yl)ethan-1-ol (19). Prepared according to General
Procedure 3 from: 2-(furan-2-yl)acetic acid (500 mg, 3.96 mmol);
purified by automated flash chromatography on silica (12−100%
EtOAc in hexanes) to give 16 as a yellow oil (291 mg, 65%). 1H NMR
(500 MHz, CDCl3) δ: 7.69−7.19 (m, 1H), 6.30 (dd, J = 2.9, 2.0 Hz,
1H), 6.09 (d, J = 3.1 Hz, 1H), 3.85 (t, J = 6.3 Hz, 2H), and 2.88 (t, J
= 6.3 Hz, 2H) (alcohol OH signal not seen); 13C NMR (126 MHz,
CDCl3) δ: 153.0, 141.6, 110.4, 106.5, 61.1, and 31.6.
3-(4-(tert-Butoxy)phenyl)-5-(2-(3,4-difluorophenyl)-2-((tet-

rahydro-2H-pyran-2-yl)oxy)ethoxy)-[1,2,4]triazolo[4,3-a]-
pyrazine (20). Prepared according to General Procedure 4 from:
compound 12 (100 mg, 0.39 mmol) and compound 6 (117 mg, 0.39
mmol); purified by automated flash chromatography on silica (25−
100% EtOAc in hexanes) to give 20 as an orange powder (95.9 mg,
47%). Mp 72−75 °C; 1H NMR (500 MHz, CDCl3, present as a
mixture of diastereomers) δ: 9.02 (s, 1H), 9.01 (s, 1H), 7.62 (dd, J =
8.6, 1.5 Hz, 4H), 7.38 (s, 1H), 7.29 (s, 1H), 7.14 (dd, J = 8.6, 1.5 Hz,
4H), 7.09−7.01 (m, 1H), 7.00 (dt, J = 9.9, 8.2 Hz, 1H), 6.95 (ddd, J =
10.6, 7.6, 2.1 Hz, 1H), 6.80 (dq, J = 6.4, 2.0 Hz, 1H), 6.73 (ddd, J =
10.2, 7.6, 2.1 Hz, 1H), 6.60 (dq, J = 6.1, 1.9 Hz, 1H), 4.89 (t, J = 5.5
Hz, 1H), 4.70 (dd, J = 6.7, 4.8 Hz, 1H), 4.44 (dd, J = 9.9, 5.3 Hz,
1H), 4.37 (q, J = 5.1, 4.3 Hz, 2H), 4.29 (dd, J = 9.8, 6.9 Hz, 1H), 4.22
(ddd, J = 19.1, 9.9, 5.3 Hz, 2H), 3.77 (ddd, J = 10.7, 7.1, 3.3 Hz, 1H),
3.47−3.40 (m, 1H), 3.37 (ddd, J = 11.7, 9.1, 3.0 Hz, 1H), 3.25 (dt, J =
11.0, 4.6 Hz, 1H), 1.87−1.45 (m, 12H), 1.44 (s, 9H), and 1.43 (s,
9H); 13C NMR (126 MHz, CDCl3, present as a mixture of
diastereomers) δ: 157.8, 157.7, 150.5 (dd, J = 249.7, 12.6 Hz),
150.42 (dd, J = 250.0, 12.5 Hz), 150.36 (dd, J = 249.0, 13.0 Hz),
150.2 (dd, J = 248.7, 12.5 Hz), 147.90, 147.88, 147.3, 147.2, 144.04,
143.99, 137.1, 137.0, 136.2−135.5 (m), 134.6 (t, J = 4.2 Hz), 131.7,
131.6, 123.3 (dd, J = 6.3, 3.5 Hz), 123.1, 123.0, 122.6 (dd, J = 6.2, 3.6
Hz), 122.3, 122.1, 117.6 (d, J = 17.4 Hz), 117.4 (d, J = 17.4 Hz),
116.1 (d, J = 17.7 Hz), 115.8 (d, J = 17.9 Hz), 109.1, 108.7, 99.3,
96.6, 79.6, 74.0, 73.7, 73.4, 63.2, 62.4, 30.6, 30.5, 29.04, 29.03, 25.3,
25.2, 19.7, and 19.1 (two obscured signals); m/z (ESI+) 525 ([M +
H]+, 100%).
tert-Butyl (3-(2-((3-(4-Chlorophenyl)-[1,2,4]triazolo[4,3-a]-

pyrazin-5-yl)oxy)ethyl)benzyl)carbamate (21). Prepared accord-
ing to General Procedure 4 from: compound 14 (150 mg, 0.60 mmol)
and compound 8 (158 mg, 0.60 mmol); purified by automated flash
chromatography on silica (25−100% EtOAc in hexanes) to give 21 as
a light brown powder (209 mg, 73%). 1H NMR (500 MHz, CDCl3)
δ: 8.98 (s, 1H), 7.59 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H),
7.30 (s, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 6.86
(br s, 1H), 6.75 (d, J = 7.4 Hz, 1H), 4.86 (br s, 1H), 4.43 (t, J = 6.6
Hz, 2H), 4.22 (d, J = 5.6 Hz, 2H), 2.94 (t, J = 6.5 Hz, 2H), and 1.43
(s, 9H); 13C NMR (126 MHz, CDCl3) δ: 156.0, 147.9, 146.3, 143.9,
139.7, 136.6, 136.5, 136.4, 132.1, 129.1, 128.1, 127.7, 127.6, 126.33,
126.26, 108.5, 79.7, 71.2, 44.6, 34.5, and 28.5; m/z (ESI+) 480 ([M +
H]+, 100%), 502 ([M + Na]+, 52%).
tert-Butyl (3-(2-((3-(4-Chlorophenyl)-[1,2,4]triazolo[4,3-a]-

pyrazin-5-yl)oxy)ethyl)phenyl)carbamate (22). Prepared accord-
ing to General Procedure 4 from: compound 16 (35.0 mg, 0.15
mmol) and compound 8 (39.1 mg, 0.15 equiv); purified by
automated flash chromatography on silica (25−100% EtOAc in
hexanes) to give 22 as a light brown powder (30.1 mg, 44%). 1H
NMR (500 MHz, CDCl3) δ: 9.02 (s, 1H), 7.58 (d, J = 8.5 Hz, 2H),
7.42 (d, J = 8.5 Hz, 2H), 7.31 (s, 1H), 7.18−7.06 (m, 3H), 6.55 (d, J
= 7.3 Hz, 1H), 6.43 (br s, 1H), 4.44 (t, J = 6.5 Hz, 2H), 2.93 (t, J =
6.5 Hz, 2H), and 1.51 (s, 9H); 13C NMR (126 MHz, CDCl3) δ:
152.7, 148.0, 146.4, 144.0, 138.9, 137.2, 136.6, 136.4, 132.2, 129.4,
128.2, 126.4, 123.1, 118.5, 117.2, 108.5, 80.9, 71.2, 34.6, and 28.5; m/
z (ESI+) 466 ([M + H]+, 100%), 488 ([M + Na]+, 45%).
2-((3-(4-(tert-Butoxy)phenyl)-[1,2,4]triazolo[4,3-a]pyrazin-

5-yl)oxy)-1-(3,4-difluorophenyl)ethan-1-ol (Optibrium/Intelle-
gens). Compound 20 (70.0 mg, 0.13 mmol, 1 equiv) was dissolved in

EtOH (1.63 mL, 82 mM). CuCl2·2H2O (1.14 mg, 6.67 μmol, 5 mol
%) was added and the reaction heated at reflux. The solvent was
removed and EtOAc was added. The mixture was washed with H2O
(3×), then brine, and the organic layer was dried (MgSO4), filtered,
and concentrated under reduced pressure to give the crude product,
which was purified by automated flash chromatography on silica (25−
100% EtOAc in hexanes) to give Optibrium/Intellegens as a pale
orange powder (49.2 mg, 84%). Mp 75−79 °C; 1H NMR (500 MHz,
CDCl3) δ: 9.05 (s, 1H), 7.66 (d, J = 8.6 Hz, 2H), 7.17 (d, J = 8.6 Hz,
2H), 7.17−7.06 (m, 1H), 7.03 (ddd, J = 10.2, 7.4, 1.6 Hz, 1H), 6.93−
6.87 (m, 1H), 4.78 (dt, J = 7.4, 3.3 Hz, 1H), 4.26 (dd, J = 9.3, 3.3 Hz,
1H), 4.19−4.08 (m, 1H), 2.00 (d, J = 3.7 Hz, 1H), and 1.42 (s, 9H)
(alcohol OH signal not seen); 13C NMR (126 MHz, CDCl3) δ: 158.0,
150.6 (dd, J = 249.5, 12.7 Hz), 150.4 (dd, J = 249.7, 12.6 Hz), 147.8,
146.9, 143.8, 137.3, 135.2−135.0 (m), 131.7, 123.2, 122.6, 122.2 (dd,
J = 6.4, 3.6 Hz), 117.8 (d, J = 17.4 Hz), 115.4 (d, J = 18.2 Hz), 108.5,
79.9, 75.0, 70.6, and 29.0; m/z (ESI+) 441 ([M + H]+, 100%);
HRMS (ESI+) found 441.1739 [M + H]+; C23H22F2N4O3H

+ requires
441.1738.

3-(4-Isopropylphenyl)-5-((6-methylpyridin-3-yl)methoxy)-
[1,2,4]triazolo[4,3-a]pyrazine (Davy Guan). Prepared according
to General Procedure 4 from: compound 13 (100 mg, 0.81 mmol)
and compound 7 (221 mg, 0.81 mmol); purified by automated flash
chromatography on silica (25−100% EtOAc in hexanes) to give a
white powder (181 mg, 62%). Repurified by automated reversed-
phase flash chromatography on silica (5−100% MeOH in H2O) to
give a white powder (40.6 mg). Repurified by automated reversed-
phase flash chromatography on silica (5−75% MeOH in H2O) to give
Davy Guan as a white powder (16.3 mg, 6%). Mp decomposed >150
°C; 1H NMR (400 MHz, CD3OD) δ: 9.00 (s, 1H), 8.33 (d, J = 2.0
Hz, 1H), 7.65 (s, 1H), 7.54−7.48 (m, 3H), 7.23 (d, J = 8.0 Hz, 1H),
7.12 (d, J = 8.2 Hz, 2H), 5.32 (s, 2H), 2.87 (p, J = 6.9 Hz, 1H), 2.53
(s, 3H), and 1.20 (d, J = 6.9 Hz, 6H); 13C NMR (101 MHz, CD3OD)
δ: 160.0, 153.0, 152.3, 149.9, 148.9, 146.0, 139.2, 136.6, 131.9, 128.7,
126.6, 125.8, 124.8, 110.2, 71.3, 35.2, 24.2, and 23.7; m/z (ESI+) 360
([M + H]+, 100%); HRMS (ESI+) found 360.1832 [M + H]+;
C21H21N5OH

+ requires 360.1824.
(3-(2-((3-(4-Chlorophenyl)-[1,2,4]triazolo[4,3-a]pyrazin-5-

yl)oxy)ethyl)phenyl)methanamine (Exscientia 1). Compound
21 (150 mg, 0.31 mmol, 1.00 equiv) was dissolved in CH2Cl2 (0.91
mL, 345 mM). Trifluoroacetic acid (TFA) (0.27 mL, 3.50 mmol, 11.2
equiv) was added and the reaction stirred at rt overnight. The solvent
was removed and the residue directly purified by automated flash
chromatography on silica (1−10% MeOH in CH2Cl2, then 100%
MeOH) to give a sticky brown solid (135 mg). Repurified by
automated reversed-phase flash chromatography on silica (5−100%
MeOH in H2O) to give Exscientia 1 as a white powder (77.0 mg,
65%). Mp 74−77 °C; 1H NMR (400 MHz, CD3OD) δ: 8.97 (s, 1H),
7.68 (d, J = 8.5 Hz, 2H), 7.54 (s, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.32−
7.25 (m, 2H), 7.07 (s, 1H), 6.98−6.89 (m, 1H), 4.60 (t, J = 6.2 Hz,
2H), 4.03 (s, 2H), and 3.02 (t, J = 6.2 Hz, 2H) (amine NH2 signal not
seen); 13C NMR (126 MHz, CDCl3) δ: 149.0, 147.6, 145.9, 139.7,
137.5, 136.2, 134.7, 133.5, 130.6, 130.4, 130.1, 129.2, 128.1, 127.6,
110.0, 72.4, 44.2, and 35.2; mj/z (ESI+) 380 ([M + H]+, 100%);
HRMS (ESI+) found 380.1282 [M + H]+; C20H18ClN5OH

+ requires
380.1278.

3-(2-((3-(4-Chlorophenyl)-[1,2,4]triazolo[4,3-a]pyrazin-5-yl)-
oxy)ethyl)aniline (Exscientia 2). Compound 22 (21.0 mg, 0.05
mmol, 1.00 equiv) was dissolved in CH2Cl2 (0.13 mL, 345 mM). TFA
(0.04 mL, 3.50 mmol, 11.2 equiv) was added and the reaction stirred
at rt overnight. The solvent was removed and the residue directly
purified by automated flash chromatography on silica (1−10% MeOH
in CH2Cl2) to give a yellow film (23.5 mg). Repurified by automated
reversed-phase flash chromatography on silica (5−100% MeOH in
H2O) to give Exscientia 2 as a white powder (11.4 mg, 69%). Mp
80−84°C; 1H NMR (500 MHz, CD3OD) δ: 8.93 (s, 1H), 7.61 (d, J =
8.6 Hz, 2H), 7.52 (s, 1H), 7.46 (d, J = 8.6 Hz, 2H), 6.94 (t, J = 7.8
Hz, 1H), 6.55 (d, J = 9.3 Hz, 1H), 6.37 (s, 1H), 6.26 (d, J = 7.5 Hz,
1H), 4.51 (t, J = 6.4 Hz, 2H), and 2.84 (t, J = 6.4 Hz, 2H) (amine
NH2 signal not seen);

13C NMR (126 MHz, CDCl3) δ: 149.0, 149.0,
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147.8, 145.9, 139.2, 137.5, 136.0, 133.5, 130.2, 129.1, 127.4, 119.5,
116.4, 114.9, 110.0, 72.8, and 35.3; m/z (ESI+) 366 ([M + H]+,
100%); HRMS (ESI+) found 366.1122 [M + H]+; C19H16ClN5OH

+

requires 366.1122.
1-((3-(4-(Difluoromethoxy)phenyl)-[1,2,4]triazolo[4,3-a]-

pyrazin-5-yl)oxy)propan-2-ol (Molomics 1). To a mixture of
lactic acid (0.83 mL, 11.1 mmol, 1.0 equiv), 3,4-dihydro-2H-pyran
(3.04 mL, 33.3 mmol, 3.0 equiv) and CH2Cl2 (2.98 mL, 3.73 M) in
an ice bath was added pyridinium p-toluenesulfonate (279 mg, 1.11
mmol, 0.1 equiv) and pyridine (1 drop). The reaction was stirred at rt
overnight. CH2Cl2 was added and the solution washed with 5%
NaHCO3, H2O (2×), dried (MgSO4), filtered, and concentrated
under reduced pressure to give a mixture of 17a and 17b as a clear
colorless oil (1.09 g, 38%). Used without further purification. m/z
(ESI+) 209 (17b, [M + Na]+, 100%); m/z (ESI+) 281 (17a, [M +
Na]+, 100%). The mixture of 17a and 17b (700 mg, 2.71 mmol) was
subjected to General Procedure 3 and purified by automated flash
chromatography on silica (12−100% EtOAc to hexanes) to give a
∼1:2 mixture of 18a and 18b as a clear colorless oil (96.3 mg, 17%).
1H NMR (500 MHz, CDCl3) δ: 4.72 (dd, J = 5.1, 2.8 Hz, 1H), 4.56
(dd, J = 4.3, 2.8 Hz, 2H), 3.96−3.90 (m, 1H), 3.86 (dtd, J = 11.2, 7.6,
7.1, 3.5 Hz, 3H), 3.74 (dt, J = 9.6, 6.7 Hz, 2H), 3.64 (t, J = 6.5 Hz,
4H), 3.58 (dd, J = 11.6, 3.5 Hz, 1H), 3.54−3.43 (m, 4H), 3.39 (dt, J =
9.6, 6.5 Hz, 2H), 1.92−1.33 (m, 33H), and 1.21 (d, J = 6.4 Hz, 3H);
13C NMR (126 MHz, CDCl3) δ: 99.2, 99.1, 75.1, 67.6, 66.3, 63.4,
63.0, 62.6, 32.7, 31.2, 30.9, 29.6, 25.6, 25.5, 22.6, 20.2, 19.8, and 17.8;
m/z (ESI+) 183 (18a, [M + Na]+, 100%); m/z (ESI+) 211 (18b, [M
+ Na]+, 100%). The mixture of 18a and 18b (70.0 mg, 0.44 mmol)
was subjected to General Procedure 4 with compound 9 (130 mg,
0.44 mmol) and purified by automated flash chromatography on silica
(25−100% EtOAc in hexanes) to give a ∼1:1 mixture of 23a and 23b
as a brown powder (87.0 mg, 47%). 1H NMR (500 MHz, CDCl3) δ:
9.05 (s, 1H), 9.03 (s, 1H), 7.73 (t, J = 9.0 Hz, 4H), 7.33 (s, 1H), 7.29
(s, 1H), 7.29−7.20 (m, 4H), 6.64 (t, J = 73.3 Hz, 1H), 6.63 (t, J =
73.3 Hz, 1H), 4.52 (t, J = 3.7 Hz, 1H), 4.24−4.14 (m, 3H), 4.16−4.09
(m, 2H), 3.97−3.88 (m, 1H), 3.82 (dtd, J = 11.7, 8.8, 8.2, 3.8 Hz,
2H), 3.66 (dt, J = 9.7, 6.6 Hz, 1H), 3.54−3.40 (m, 2H), 3.29 (dt, J =
9.5, 6.2 Hz, 1H), 1.85−1.30 (m, 18H), and 1.07 (d, J = 6.5 Hz, 3H);
13C NMR (126 MHz, CDCl3) δ: 152.7, 152.5, 147.91, 147.88, 146.3,
144.3, 144.2, 136.6, 136.3, 132.6, 132.5, 125.0, 124.9, 118.9, 118.5,
115.9 (t, J = 260.7 Hz), 115.7 (t, J = 261.1 Hz), 108.5, 108.2, 99.2,
98.7, 74.0, 71.0, 70.8, 67.2, 62.7, 62.4, 53.6, 30.85, 30.82, 29.2, 28.4,
25.5, 25.4, 22.8, 19.9, 19.3, and 18.2; m/z (ESI+) 421 (23a, [M +
H]+, 100%); m/z (ESI+) 449 (23b, [M + H]+, 100%). The mixture of
23a and 23b (56.0 mg, 0.13 mmol, 1 equiv) was dissolved in EtOH
(1.62 mL, 82 mM). CuCl2·2H2O (1.14 mg, 6.66 μmol, 5 mol %) was
added and the reaction heated at reflux. The solvent was removed and
EtOAc was added. The mixture was washed with H2O (3×), then
brine, and the organic layer was dried (MgSO4), filtered, and
concentrated under reduced pressure to give the crude product, which
was purified by automated flash chromatography on silica (1−15%
MeOH in CH2Cl2) to give a brown oil (39.8 mg). Repurified by
automated reversed-phase flash chromatography on silica (5−100%
MeOH in H2O) to give Molomics 1 as a white powder (10.3 mg,
23%). Mp 137−140 °C; 1H NMR (400 MHz, CDCl3) δ: 9.07 (s,
1H), 7.75 (d, J = 8.7 Hz, 2H), 7.32 (s, 1H), 7.29 (d, J = 8.6 Hz, 2H),
6.62 (t, J = 73.0 Hz, 1H), 4.18−4.12 (m, 1H), 4.04−3.90 (m, 2H),
and 1.06 (d, J = 6.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ: 152.5,
147.9, 146.1, 144.0, 136.9, 132.5, 125.3, 119.1, 115.6 (t, J = 262.1
Hz), 108.5, 75.6, 65.5, and 18.7; m/z (ESI+) 337 ([M + H]+, 100%);
HRMS (ESI+) found 337.1107 [M + H]+; C15H14F2N4O3H

+ requires
337.1112.
5-((3-(4-(Difluoromethoxy)phenyl)-[1,2,4]triazolo[4,3-a]-

pyrazin-5-yl)oxy)pentan-1-ol (Molomics 1′). Isolated from the
same reaction as for Molomics 1 to give Molomics 1′ as a white
powder (16.1 mg, 36%). Mp 104−108 °C; 1H NMR (500 MHz,
CDCl3) δ: 9.01 (s, 1H), 7.70 (d, J = 8.7 Hz, 2H), 7.28 (s, 1H), 7.24
(d, J = 8.6 Hz, 2H), 6.65 (t, J = 73.2 Hz, 1H), 4.20 (t, J = 6.0 Hz, 2H),
3.54 (t, J = 6.3 Hz, 2H), 1.79−1.54 (m, 2H), 1.53−1.30 (m, 2H), and
1.14 (ddd, J = 11.7, 4.6, 2.5 Hz, 2H); 13C NMR (126 MHz, CDCl3)

δ: 152.5, 147.9, 146.3, 144.3, 136.3, 132.6, 125.1, 118.6, 115.7 (t, J =
261.3 Hz), 108.2, 71.0, 62.5, 32.0, 28.5, and 22.3; m/z (ESI+) 365
([M + H]+, 100%); HRMS (ESI+) found 365.1424 [M + H]+;
C17H18F2N4O3H

+ requires 365.1425.
3-(4-(Difluoromethoxy)phenyl)-5-(2-(furan-2-yl)ethoxy)-

[1,2,4]triazolo[4,3-a]pyrazine (Molomics 2). Prepared according
to General Procedure 4 from: compound 19 (100 mg, 0.89 mmol)
and compound 9 (265 mg, 0.89 mmol); purified by automated flash
chromatography on silica (25−100% EtOAc in hexanes) to give
Molomics 2 as a brown powder (213 mg, 64%). Mp 120−123°C; 1H
NMR (500 MHz, CDCl3) δ: 9.03 (s, 1H), 7.65 (d, J = 8.7 Hz, 2H),
7.33 (s, 1H), 7.31−7.27 (m, 1H), 7.17 (d, J = 8.7 Hz, 2H), 6.59 (t, J =
73.3 Hz, 1H), 6.26 (dd, J = 3.1, 1.9 Hz, 1H), 5.82 (d, J = 3.1 Hz, 1H),
4.47 (t, J = 6.3 Hz, 2H), and 2.98 (t, J = 6.3 Hz, 2H); 13C NMR (126
MHz, CDCl3) δ: 152.5 (t, J = 2.7 Hz), 150.1, 147.9, 146.5, 143.9,
142.0, 136.8, 132.5, 124.9, 118.7, 115.7 (t, J = 261.1 Hz), 110.6,
108.4, 107.1, 68.6, and 27.5; m/z (ESI+) 373 ([M + H]+, 100%);
HRMS (ESI+) found 373.1118 [M + H]+; C18H14F2N4O3H

+ requires
373.1112.

In Vitro Antiplasmodial Activity (Drug Discovery Unit,
University of Dundee).55 Cultures of the widely used malaria
reference strain of chloroquine-sensitive P. falciparum strain 3D7 were
maintained in a 5% suspension of human red blood cells cultured in
RPMI 1640 medium supplemented with 0.5% Albumax II (available
from Gibco Life Technologies, San Diego, CA, cat. no. 11021-037),
12 mM sodium bicarbonate, 0.2 mM hypoxanthine, (pH 7.3), and 20
mg/L gentamicin at 37 °C, in a humified atmosphere of 1% O2, 3%
CO2 with a gas balance of nitrogen. Growth inhibition of P. falciparum
cultures was quantified in a 10-point dose−response curve with a one
in three dilution series. Top concentrations of either 10 or 25 μM
were used, indicating the upper limit of detection of the assay in each
instance. This 384 well plate-based fluorescence assay utilizes the
binding of SYBRgreen I (Thermo Fisher Scientific/Invitrogen cat. no.
S7585) to double-stranded DNA, which greatly increases the
fluorescent signal at 528 nm after excitation at 485 nm. Mefloquine
was used as a drug control to monitor the quality of the assay (Z′ =
0.6−0.8, where Z′ is a measure of the discrimination between the
positive and negative controls on a screen plate). Dose−response
curves were determined from a minimum of three independent
experiments. Compound bioactivity was expressed as IC50, the
concentration of compound causing 50% inhibition. IC50 values
were determined from a minimum of three independent experiments.
All data was processed using IDBS ActivityBase; raw data was
converted into percent inhibition through linear regression by setting
the high inhibition control as 100% and the no inhibition control as
0%. Quality control criteria for passing plates were as follows: Z′ >
0.5, S:B > 3, %CV (no inhibition control) < 15. The formula used to

calculate was Z 1
3 (StDev StDev )

ABS(Mean Mean )
high low

high low
′ = −

× +

− . All IC50 curve fitting

was undertaken using XLFit version 4.2 using Model 205 with the
following four parametric equation: y A B A

Cx1 ( )D= + −
+ , where A =

% inhibition at bottom, B = % inhibition at top, C = IC50, D = slope, x
= inhibitor concentration, and y = % inhibition. If the curve did not
reach 100% of inhibition, B was fixed to 100 only when at least 50% of
inhibition was reached.

P. falciparum ATP4 Assay (Lehane and Kirk Labs, Australian
National University). To measure ion concentrations inside the
parasite, P. falciparum trophozoites were isolated from their host
erythrocytes by brief exposure to saponin (0.05% w/v final
concentration), then loaded with either the Na+-sensitive dye SBFI
(for measurements of cytosolic Na+ concentration)17 or the pH-
sensitive dye BCECF (for measurements of cytosolic pH).56

Fluorescence measurements and calibrations were performed at 37
°C essentially as described previously, either in 96 well plates using a
Tecan Infinite M1000 PRO plate reader or in individual 1 mL
suspensions using a PerkinElmer LS 50B fluorescence spectrom-
eter.17,21,22
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