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Abstract

Three-dimensional non-periodic woven composite preforms have sufficient design flexibility that tows 

can be aligned along principal loading paths even in shaped structural  components with detailed local 

features. While this promises competitive performance, the feasible design space is combinatorically large, 

far beyond exhaustive search. Inspired by multi-agent game theory, here we propose a generative design 

method  called  the  Background  Vector  Method  (BVM) which  treats  weaving  tows  as  different  agents  

finding their best matching background vectors derived from different design requirements. The BVM can  

generate  designs  that  are  tunable  to  a  specific  balance  of  requirements  by  adjusting  scalar  weights, 

concurrently accounts for local and global architecture, utilizes a manufacturing-based parameterization 

that  assures  fabricability,  and  is  highly  computationally  efficient.  The  scope  of  possible  designs  is 

illustrated  by  re-creating  common  periodic  3D  weaving  patterns  and  novel  complex  non-periodic 

architectures. The BVM also offers a simple design pathway to creating preforms with cavities, ducts, and 

other open volumes.
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1. Introduction

3D woven  composites  have  several  potential  advantages  over  conventional  2D woven  preforms. 

Interlocking  woven  tow structures  ensure  good  damage  tolerance  [1-16],  which  reduces  delamination 

failure in impact events such as bird strikes. Non-periodic integrally woven designs [17-20] can achieve 

near-net-shape structures, making it possible to fabricate 3D composite structures with complex geometries 

without  requiring  subsequent  machining  to  conform to  the  external  shape  or form internal  holes  and 

cavities [21]. Finally, a tailored 3D tow structure can reinforce against local load variations without adding 

weight [7,17].

However, the combinatorial optimization of an unrestricted 3D tow architecture, where tow topology 

is characterized by typically 103 -106 distinct candidate tow orderings per mm2 of fabric, poses formidable 

computational  challenges.  Shying away from such complexity,  current  design methodologies  are  often 

limited to assembling small unit cells of simplified architecture or applying other restrictions that negate 

generality in design outcomes. One proposed strategy is to evaluate and choose from standard periodic 

designs  based  on  generalized  requirements  [22].  Another  is  to  use  heuristic  algorithms,  e.g.,  genetic 

algorithms,  to  optimize  one periodic  unit  cell  [23-27],  but  without  optimizing  the  overall  structure. 

Geometry design modelling [21, 28-32] or topology optimization techniques [33] have been used with  

restrictions that reduce the design difficulty but tend to limit applicability. 

Some approaches couple fully periodic or other simplified local structures with homogenization for  

use  in  a  multiscale  model  [34,  35].  But  homogenization  makes  it  difficult  to  design  manufacturable 

structures, as the local weave design in two-scale designs is not explicit. Some of the most complex textile  

designs have been derived by experience, intuition, and a combination of elementary analysis and testing of  

local stress conditions in tow-scale sub-elements [17-20, 36]. However, none of these designs was formally 

optimized, nor can the intuitive methods  that were used be easily replicated for other complex design 

challenges.

Using concepts similar to multi-agent game theory, we propose a generative methodology called the 

Background Vector Method (BVM) that designs non-periodic 3D weave architectures concurrently at all 

scales. The method treats different weaving tows as  different agents, with a  design parameterization that 

ensures the designs are manufacturable (e.g., Cox et al. [18,31]). The BVM introduces a set of background 
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vector  fields  that  are  defined  by  the  local  mechanical  requirements  of  various  component-scale 

performance goals. A deterministic but tuneable algorithm generates different tow configurations based on 

the weighting of the background vector fields: tow designs thus balance competing requirements. 

 The BVM echoes prior design approaches for composites that seek to match local fibre orientation to 

local load paths, both in human designs [37] and in evolution (e.g., the structure of trabecular bone [38] and 

other bio-structures suggestive of Wolff’s law [39]) but does so while respecting the unique topological  

constraints of 3D weaving. By concurrently accounting for part-scale and tow-scale design requirements, 

the BVM enables the design of parts with generally complex geometry, which might substantially broaden 

the applicability of 3D integral woven composites.

2. A manufacturing-based design parameterization of non-periodic woven tow architecture

This study focuses on non-periodic woven tow architectures that can be fabricated on an “orthogonal  

loom” in the paradigm of Fig. 1. In the fabrication process, there are two sets of orthogonal tows: the weft  

tows and the warp tows. The warp tows are organized into “warp stacks” aligned parallel to the x-axis and 

spaced out along the y-direction with a gap of δwarp, while the weft tows are organized into “weft stacks” 

aligned parallel to the y-axis and spaced out along the x-direction with a gap of δweft. Tows within a warp 

or weft stack are distributed vertically in the orientation of Fig. 1, warp stacks occupying z-x  planes and 

weft stacks z- y planes.
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Figure 1. Schematic of the manufacture of a 3D woven composite preform using a Dobby or Jacquard-

head loom [18]. 

The coordinate system {x , y , z } of Fig. 1 will be associated throughout this article with the indices 

{i , j , k }.  Since different warp tows are distinguished by their discretized y-coordinates, warp stacks will 

be tagged by the index j; and weft stacks, being distinguished by their discretized x-coordinates, will be 

tagged by the index i.  The index k  or sometimes  will be used to label the z-coordinates of points on a 3D 

grid.

During the weaving process, weft tows are sequentially woven through the warp stacks. The structure 

is determined by the locations at which the weft tow enters a particular warp stack (how many warp tows  

are above or below that location) through re-positioning of heddles holding the warp tows. Any weave 

architecture can be uniquely distinguished by topological  ordering rules that specify the arrangement of 

warp and weft within any intersection of warp and weft stacks (e.g., Cox et al. [18]).

Using this parameterization, the structure of 3D non-periodic woven composites can be described in a  

way  that  can be  translated  easily  to  machine  operations  for  manufacturing.  Topological-ordering 

parameterization mirrors the manufacturing process: an assignment of the ordering integer 

  ζ i , p
( j ) =q (1)

specifies that, at the intersection of the j th warp stack and the ith weft stack, the p th weft tow is to be passed 
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by the loom above a number q of the warp tows in the warp stack. The design of a single weft stack i is 

described by the array of elements ζ i , p
( j )  for all j and p (Table 1). If there are no limits placed on ζ i , p

( j ) , then 

more  than  one  weft  tow  from  the  same  stack  might  be  assigned  the  same  ordering  position  at  an  

intersection, in which case “secondary ordering rules” specified in [18] resolve ambiguity.

Warp tows within any stack are often assumed to be fixed in their mutual ordering in applying Eq. (1). 

But this restriction can be relaxed by allowing “warp switching” in the actions of the weaving loom [18]. 

Table 1 The locations of the weft tows p in weft stack i at intersections with different warp stacks j as 
specified by topological ordering rules.

Weft tow (i, p)
Weft tow location

… i ,1 i ,2 i ,3 i ,4 i ,5 …

W
ar

p 
st

ac
k 

j

1 … ζ i ,1
(1 ) ζ i ,2

(1 ) ζ i ,3
(1 ) ζ i ,4

(1 ) ζ i ,5
(1 ) …

2 … ζ i ,1
(2 ) ζ i ,2

(2 ) ζ i ,3
(2 ) ζ i ,4

(2 ) ζ i ,5
(2 ) …

3 … ζ i ,1
(3 ) ζ i ,2

(3 ) ζ i ,3
(3 ) ζ i ,4

(3 ) ζ i ,5
(3 ) …

4 … ζ i ,1
(4) ζ i ,2

(4) ζ i ,3
(4) ζ i ,4

(4) ζ i ,5
(4) …

… … … … … … … …

Table 1 formally links the present work to that of [18].  In [18], the set of all  ζ i , p
( j )  

served as initial conditions: they were translated into pair-wise topological ordering rules via 

which a 3D model of a pre-conceived textile defined by the ζ i , p
( j )  could be expediently generated. 

In [18], the table of all ζ i , p
( j )  was built by hand, a tedious process that requires high expertise, since 

the builder must already have the 3D textile in mind and must foresee the path from the ζ i , p
( j )  to 

that textile.  The present work generates information equivalent to the ζ i , p
( j )  automatically, guided 

not by a pre-conception of the 3D textile but by functional design objectives, and the BVM may  

therefore be operated by someone with modest textile expertise.  The present work proceeds by a  

different path to generate 3D models of textiles, demonstrating many but not yet all the features  

that can be supported by the very flexible design algorithm of [18].

3. Challenges in the design of woven composites
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3.1 Design Considerations

Designing 3D integral  woven composites  requires  balancing competing structural  requirements  in 

selecting tow orientations and positions. Objectives include: 

 Providing an acceptable compromise between in-plane properties, for which tows should be oriented in 

the plane of the fabric, and delamination resistance and interlaminar shear strength, for which tows 

should traverse through the fabric.

 Varying the selected architecture from one region to another of a component to match the generally  

complex loading configuration that the component must support. Typically, the optimal architecture 

may exhibit periodicity in some regions and be non-periodic elsewhere; and must transition between 

periodic  and  non-periodic  regions  in  such  a  way  that  no  manufacturing  difficulty  or  mechanical  

weakness is associated with the transition.

 Enabling the possibility of vacant volumes in a structure (cavities, ducts, etc.).

3.2 The 2D and 3D design problems for arbitrary, non-periodic tow architecture

Any 3D woven fabric created by a loom of the type of Fig. 1 can be regarded as an orthogonal array of  

2D warp and weft sections (z-x  and y-z planes, respectively, in Fig. 1), each section comprising a single 

stack of warp or weft tows. The 2D sections intersect one another at a rectangular grid of points in the x- y 

plane. The intersection o i , j of warp stack j with weft stack i contains nwarp
( j ) +nweft

(i )  tows in total, stacked 

vertically in the orientation of Fig. 1. Throughout this paper, all warp and weft tows are assumed to have  

equal thickness h in the z-direction (this assumption is easily relaxed in a developed code), so that the warp 

and weft tows at any intersection occupy sites with z-coordinates

zij
(k )=kh, k=1 ,… ,nwarp

( j ) +nweft
(i ) . (1a)

The mix of nwarp
( j ) +nweft

(i )  tows fall into one of the sets O of all possible orderings of the warp and weft 

tows  in  the  z-direction,  i.e.,  all  possible  assignments  of  specific  warp  and  weft  tows  to  z-positions 

h ,2h ,3 h,… . A single design of the architecture is the set of chosen orderings

Od={Oi , j|i=1 ,…, N weft ; j=1 ,…, N warp } (1b)

for all intersections o i , j. Choosing Od is the fundamental topological design problem. The total number of 

distinct orderings Oi , j possible for intersection o i , j for distinguishable warp and weft tows is
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nO
(ij )=(nwarp

( j ) +nweft
( i) ) ! . (2a)

Since orderings at all intersections can legally be made independently of each other (in terms of the laws of 

operation of a weaving loom in which warp switches are permitted [18]), the number of distinct orderings, 

i.e., the size of the design space Od, in a textile with N=NwarpN weft intersections is

N max
(design)=(nO

(ij ))N. (2b)

Design  optimization  by  exhaustive  search  will  always  remain  infeasible.  However,  if  a  design 

methodology can be formulated that addresses the environment of each intersection independently of the 

design problem for all other intersections, then the size of the design space to be considered at any step is  

capped by the number of different orderings at a single intersection, which is relatively modest.
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Figure 2. (a) Two examples of orderings Oi , j of indistinguishable warp and indistinguishable weft tows at 

intersection o i , j. (b) The specific ordering Oi , j
(alt ) in which indistinguishable weft alternate with 

indistinguishable warp. (c) Instantiations of the restricted orderings Oi , j
(alt ) and Oi , j+1

(alt )  at successive 

intersections within a weft section, with now distinguishable weft tows numbered and arrows indicating 

tow locus vectors originating at the locations ρ j ,k (black circles) that are allowed for weft tows. The tow 

locus vectors are instantiations of the tow-path vector field. (d) A background vector (thick arrow), its 

reference point r j , k
(b)  (gray circle), and its distance d  from a tow-path reference point r j , k

(t )  (small open 

circle). With nwarp=6 and nweft=7.
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3.3 Designs with restricted orderings

Fortunately, it is possible to reduce the allowed design space to a manageable size while retaining  

sufficient generality to support desirable outcomes.

 Consider the set  O of orderings  available to any intersection  o i , j that are defined by whether sites 

k=1 ,… ,nwarp
( j ) +nweft

(i )  are occupied by warp or weft tows, without distinguishing warp tows from each 

other or weft tows from each other (Fig. 2a). Restricting allowed choices from Oi , j to those consistent 

with a single choice Oij of O for intersection o i , j, there are

nO
(ij )=

(nwarp
( j ) +nweft

(i) ) !
nwarp

( j) ! nweft
(i ) !

(2c)

possible remaining orderings, still large but much less than nO
(ij ).

 Given a fixed  Oi , j at  intersection  o i , j,  the design spaces for warp and weft become separated: the 

restriction of orderings enforces the warp tows to be assigned to a fixed subset {zij( k ) , k=1 ,… ,nweft
(i) } of 

the z-positions of Eq. (1a) and the weft tows to the complementary subset. Re-arranging the warp tows 

has no effect  on the positional assignments available to weft  tows, and vice versa.  The number of  

distinct  ways  of  ordering  the  nwarp
( j )  warp  tows and  nweft

(i )  weft  tows  in  their  allowed positions  are, 

respectively, 

nO
(ij , weft )=nweft

(i ) !;  nO
(ij , warp )=nwarp

( j) ! (2d)

 Last, consider the entire 2D section defined by the single weft stack i (a  y-z plane in Fig. 1). If the 

orderings at all intersections in this 2D section are fixed to some instantiation of  O, then the design 

space of the weft tows in section  i becomes independent of the design space for any other section, 

whether warp (z-x  plane orthogonal to weft stack i) or weft ( y-z plane parallel to weft stack i). This is 

equally true if one considers the 2D section defined by a single warp stack.

Given the preceding, the special case to be studied in this article is chosen, wherein the ordering at 

each intersection o i , j appearing in the entire structure is restricted to a single common instantiation Oi , j of 

O and the design spaces of all 2D sections in the entire structure, whether warp or weft, are independent of  

each other. That is, the design space for an entire 3D structure devolves into a set of mutually independent 
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design spaces for the 2D sections.

In the BVM, this independence of the design spaces for different sections is exploited by an algorithm 

applicable  to  one 2D section at  a  time.  The manner  in  which this  design constraint  might  be relaxed 

advantageously  (mutual  dependence  admitted  among  designs  of  different  2D  sections)  without  undue 

design space expansion is specified in Sect. 6.

Finally, acting within the design space of a single section, the BVM reduces the problem size as far as  

is  physically permissible by presenting an algorithm that can be executed sequentially through the 2D 

section, one intersection at a time.  

4. Background Vector Method

4.1 Method Overview

The physical  concept  of  the  BVM is  to  let  the  tows (game agents)  in  any 2D section pair  with  

“background vectors”,  which present  a  variety of  local  architectural  options that  are  likely to  support  

different possible local stress states in an efficient manner. Any background vector represents a local target 

direction for a segment of a tow locus during design, with the strength of its influence proportional to the 

vector’s magnitude. Two classes of  background vectors, termed bespoke background vectors and genetic 

background vectors, respectively, are introduced. 

4.2 Exemplification for a 2D weft section

The number of intersections in a 2D weft section equals the total number of warp stacks, set in all  

examples to N warp=36. The number of warp tows in any warp stack is set to be uniformly nwarp=6. The 

number of weft tows in any weft stack is set to be uniformly either nweft=7 or nweft=12.

A single weft section is taken as the study case.  The notational simplification is used in this section 

that the weft index i can therefore be omitted. The restricted set of orderings O j allowed at any intersection 

o j with  warp  stack  j is  set  to  either  the  “alternating”  pattern 

O(alt )={weft ,warp ,weft ,… ,weft ,warp ,weft } if  nweft=7 (Fig.  2b)  or  the  “{1,2}”  pattern 

O(1 ,2 )={weft ,warp ,weft ,weft ,warp ,…,warp ,weft ,weft ,warp ,weft } if  nweft=12.  The 

design task for the weft tows in a 2D weft section is to allocate the 7 or 12 weft tows to the z-coordinates 

allowed  for  the  centers  of  mass  of  weft  tows  at  intersection  o j (Fig.  2c).  Given  O(alt ) or  O(1 ,2) at 
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intersection o j and tows of uniform thickness h, the allowed z-coordinates are z=kh where k ∈ Ω, an 

integer set of allowed location indices:

Ω≡ { {1 ,3 ,5 ,7 ,9 ,11 ,13 } (nweft=7 ;O=O(alt ) )
{1 ,3 ,4 ,6 ,7 ,9 ,10 ,12 ,13 ,15 ,16 ,18 } (nweft=12;O=O(1 ,2) )

  (3a)

The total number of available locations for weft tows at any intersection is nweft . The total thickness of 

the textile fabric, measured in terms of the centers of mass of tows, is represented by

H={12h (nweft=7 ;O=O (alt ) )
17h (nweft=12;O=O (1,2) )

. (3b)

In addition to the location indices Ω, the complementary location indices

Ώ={ {2 ,4 ,6 ,8 ,10 ,12 } (nweft=7 ;O=O(alt ) )
{2 ,5 ,8 ,11 ,14 ,17 } (nweft=12;O=O(1 ,2) )

(3c)

will be used in defining background vectors.

4.3 Bespoke background vectors

Bespoke background vectors (denoted b) represent load-paths arising in the subject component when 

it  experiences  the  specific  boundary  or  body  forces  expected  in  service.  Multiple  sets  of  bespoke 

background vectors might be included for multiple service loading cases. Load paths can be derived from 

fields of principal stresses found via a Finite Element  Method (FEM) simulation. The simulation can be 

executed using a homogenized material model. In iterative design, it may be advantageous to re-determine  

load paths by analysing a heterogeneous material model built from the current generated textile architecture 

(Sect. 6).
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Figure 3. Upper: von Mises stress in a simply supported beam in plane strain. Lower: derived principal 

stresses evaluated at reference points.

Fig. 3 illustrates the derivation of bespoke background vectors for a component loaded in three-point 

bending. In this figure, circles are the locations of warp tows, between which weft tows (which are not 

shown) must pass. The principal components of the 2D stress field (in an anisotropic 3D case, the principal 

components of the 2D stress field found in the plane of the 2D section by rotational transformation of a 3D  

stress  field)  are  recorded as  the pair  σ j , k≡ {σ j ,k
(1) , σ j , k

(2) } at  each of  an array of  “background reference 

points” r j , k
(b)  (Fig. 2). The reference points lie mid-way between successive intersections o j and o j+1 and 

are distributed through the thickness of the design domain ( y , z ):

r j , k
(b) =[( j−1+ 12 )δwarp , kh ]

T

,( j=1 ,…, Nwarp−1¿          (4a)

with k ∈ Ω and δ wwarp the intersection spacing (Fig. 2).

The principal stress vectors for all reference points constitute a bespoke background vector set

BL={b j ,k| j=1 ,…, Nwarp−1 ;k ∈ Ω }         (4b)

where  b j ,k=
1

σmax

σ j ,k , with  σmax=max
r , j ,k

σ j , k
(r ) . The normalization  1/σmax ensures that the background 

vectors are dimensionless quantities whose magnitude is bounded by unity. 

4.4 Generic background vectors

Generic  background  vectors  (denoted  g)  represent  load-paths  that  would  arise  if  the  component 

experienced a simple generic loading condition: uniform in-plane tension/compression, uniform through-

thickness tension/compression, pure bending, uniform shear, etc. Background vectors for generic loads are 

defined by simple formulae indicative of load paths obtained by closed-form analysis. They are exemplified 

here by four instances, defined by the following formulae and illustrated in Fig. 4. 
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Figure 4. Generic background vectors suggested by (a) in-plane tension/compression; (b) through-thickness 

tension/compression; (c) pure bending; (d) interlaminar shear.

Uniform in-plane tension/compression:

b j ,k
( t ) = [1 ,0 ]T (5a)

Through-thickness loading:

b j ,k
( z ) =[0 ,cos3(−π

2
+

(k−1 )hπ
t−h )]

T

(5b)

Bending:

b j ,k
(b) =[cos2( (φk−1 )hπ

t−h ) ,0]
T

(5c)

Uniform through-thickness shear:

b j ,k
( s1 )= [√2 / 2 ,√2 / 2 ]T; b j ,k

( s 2)= [√2 / 2 ,−√2 / 2 ]T (5d)

where the reference point in each case is r j , k
(b)  of Eq. (4a), with k ∈ Ω (Eqs. (5a-5c)) or k ∈ Ώ (Eqs. (5d)).

The examples of Eq. (5) are all invariant in the y-direction (along the subject 2D weft section), but 

some vary in the  z-direction (through the thickness). Notwithstanding the invariance in the  y-direction, 

including an intersection label j in notation allows compactness in writing certain expressions below. Each 

of the background vectors of Eq. (5) can be gathered into a generic background vector array:

Bg={b j , k
(g ) | j=1 ,… ,N warp−1 ; k∈ Ω∪ Ώ }, g∈ {t , z , b , s } (6)

with s≡ {s1 , s2 }.
4.5 Total background vector field

All bespoke and generic background vector fields are collected into a single total background vector  

12



field: B=BL⋃ Bg=BL∪ Bt∪ Bz∪ Bb∪ Bs , or, in a simplified form, 

B={Bm∀ m∈ {L, t , z , b , s }}. (7)

The total background vector field may be regarded as a (non-orthonormal) basis function set for the 

expression  of  candidate  local  weave  architectures.  Candidate  tow  paths  are  formed  not  as  linear  

combinations  of  the  basis  functions,  but  via  a  nonlinear  sorting  algorithm (see  below);  and  tow path 

segments are defined not on a continuous space but on the integer space that defines the allowed topology 

of  the  woven  structure.  Nevertheless,  as  with  any  basis  function  set,  the  background  vector  field  is  

amenable to expansion to higher orders (finer details enabled in local architectures by expansion of the total 

background vector field to include further bespoke or generic cases) and such expansion can be tested for 

convergence of its influence on the objective functions of an optimization procedure.

4.6 Candidate and selected tow-path vectors

Candidate tow-path segments between successive intersections in a 2D section also constitute a set of  

vectors, denoted t  (e.g., Fig. 2c). In the paradigm of a 2D weft section, a candidate segment passes from z-

coordinate kh at intersection o j to z-coordinate k h at intersection o j+1. A normalized candidate tow-path 

vector is written

t j , k ,k=
1

|[δ wwarp , k h−kh ]| [δ wwarp , k h−kh ]
T

 (k∈ Ω,k ∈ Ω ) (8a)

The tow-path vector originates at location ρ j ,k=¿¿ (k ∈ Ω) within intersection o j and is associated 

with a “tow-path reference point” r j , k
(t ) =ρ j ,k+

1
2
t j , k , k( j=1 ,…, Nwarp−1¿ (Fig. 2), which is the centre 

point of the tow segment. The candidate tow-path vectors form a vector array:

T={t j , k , k∨k ∈ Ω;k∈ Ω; j=1 ,…, Nwarp−1} (8b)

Candidate  tow-path  vectors  that  are  selected  form a  concatenated  continuous  tow path,  which  is 

recorded as  a  vector  τw comprising the  z-coordinate  indices  that  weft  tow  w passes  through at  each 

intersection

τw={τ j
(w )| j=1 ,…, Nwarp } (8c)

with τ j
(w )∈ Ω.
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4.7 Reinforcing Performance Index

The potential utility of candidate tow-path vectors is evaluated in terms of the degree to which they  

match the different  members of the total  load-path background vector set.  A “reinforcing performance 

index” P [ j ;m ,; k , k ] measures how well a candidate tow-path segment aligns with any one background 

vector:

P [ j ;m ,; k , k ]=cm f [H−d ]|t j ,k , k ∙b j ,
(m )|+ϵ [ j ,k ], with d≡|r j , k

(t ) −r j , k
(b ) | (9a)

where  t j , k ,k is  a candidate tow-path segment originating at  ρ j ,k in  o j with k ∈ Ω,k∈ Ω; b j ,
(m ) is  a 

background vector of type m∈ {L ,t , z ,b , s } associated with reference point r j ,
(b) between intersections o j 

and o j+1 with ∈ Ω if m∈ {L ,t , z ,b } and ∈ Ώ if m∈ {s }; cm is an undetermined weighting factor (see 

Sect. 4.8); H  is the total thickness of the textile at intersection o j; d  is the distance between the tow-path 

and  background  reference  points  (Fig.  2d);  and  ϵ [ j , k ]is  a  history  term.  The  weight  cm for 

m∈ s≡ {s1 , s2 } is defined to be the same for s1 and s2.

The functions f [H−d ] and ϵ [ j , k ] are available for choice. Choosing f [H−d ]=H−d
H

 allocates 

higher influence if d  is small. Choosing

ϵ [ j , k ]=α|t j , k , k ∙ t j−1 , τ j−1(w ) , k||j>1+ β|t j−1 , τ j−1
(w ) ,k ∙ t j−2 ,τ j−1

(w ) , k||j>2  (9b)

where  τ j−1
(w )  and  τ j−2

(w )  are elements of the already-determined tow-path record  τw for weft tow  w up to 

intersection  o j, with  w the tow occupying location  k  and  α ,β≪ 1 two constants, helps disambiguate 

cases where the same P [ j ;m ,; k , k ] arises for different combinations of candidate tow-path vectors and 

background vectors.

4.8 Sequential parametric design strategy 

All weft tows  w are assigned locations in the first intersection  o1,  thus establishing  τ1
(w ),  the first 

element of the tow-path record τw for each tow. Selection of tow-path segments between intersections o j 

and o j+1 ensues as follows. 

a. All background vectors tagged to reference points r j ,
(b) are collected into a set

B ( j)={b j ,
(m )|m∈ {L ,t , z ,b , s } ,∈ Ω∨∈ Ώ }.
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b. All candidate tow-path vectors tagged to origin points o j , k are collected into a set 

T ( j )={t j ,k , k|k ∈ Ω,k∈ Ω } .

c. The set  of  performance indices  P ( j ) is  assembled consisting of  P [ j ;m ,; k , k ] evaluated for all 

b j ,
(m )∈ B ( j) and t j , k ,k∈ T ( j ).

d. The first tow-path segment t j , k ,k∈ T ( j ) selected is that for which P [ j ;m ,; k , k ] for some {m, } has 

the largest magnitude among all the elements of P ( j ). In subsequent iteration, which is continued until 

all nweft  tow paths have been determined, the next segment selected is that for which P [ j ;m ,; k , k ] 

for some {m, } is the next largest in P ( j ), subject to the restrictions that:

 no candidate tow-path segment t j , k ,k can be selected for which either k  or k  already appears in a 

selected tow-path segment; and

 no  candidate  tow-path  segment  can  be  selected  if  the  background  vector  b j ,
(m ) referenced  in 

evaluating  P [ j ;m ,; k , k ] has already been referenced in evaluating  P [ j ;m ,; k , k ] for some 

already-selected tow-path segment.

Since the length of  Ω is  nweft , there are  nweft
2  candidate tow-path segments to be assessed between 

intersections o j and o j+1 in the procedure described above. As for the total number of background vectors  

to be matched against each candidate tow-path vector: there are five instances of m∈ {L ,t , z ,b , s } for 

which  ∈ Ω and  two  for  which  ∈ Ώ,  and  the  length  of  Ώ is  nweft+1;  and  thus  there  are 

5nweft+2 (nweft+1 ) background vectors. Hence, the length of  P ( j ) is  nweft
2 (5nweft+2 (nweft+1 ))=2499 

for the exemplar with  nweft=7. Searching  P ( j ) for the seven elements of largest magnitude is a modest 

computational task.

Selected tow-path  segments are added to the tow-path records  τw. When design of a 2D section is 

complete,  the  set  of  tow  path  records  T weft
(i ) ={τw|w=1 ,… , nweft } for  the  ith 2D  weft  section  or 

T warp
( j ) ={τw|w=1 ,…, nwarp } for the j th 2D warp section is added to the 3D architecture set

T 3D={T weft
(i ) |i=1 ,… , Nweft }∪ {Twarp

( j ) | j=1 ,…, N warp } (10)

which constitutes the entire topological definition of the 3D weave design.
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Alongside the record τw of Eq. (8c), a record of the values of the performance index associated with  

each selected tow segment has potential value:

P3D={Pweft
(i) |i=1 ,… , Nweft }∪ {Pwarp

( j ) |j=1 ,…, Nwarp } (11a)

Pweft
(i ) ={pw|w=1 ,… , nweft } (for the ith 2D weft section) (11b)

Pwarp
(i ) ={pw|w=1 ,…, nwarp } (for the j th 2D warp section) (11c)

where  pw for  the  paradigm  for  a  2D  weft  section  is  defined  by 

pw={P [ j ;m ,; τ j
(w ) , τ j+1

(w ) ]|j=1 ,…, Nwarp−1},  with  {τ j
(w ) , τ j+1

(w ) } the  selected  {k , k } and  {m, } the 

indices for the background vector involved in the selection.  

5. Sampling the scope of the BVM design space

The paradigm of the BVM exhibited in Sec. 3 has reduced the design space for the architecture of a  

3D weave to the five scalar weights {cm ,m∈ {L ,t , z ,b , s }}. Yet the aptness of the background fields and 

the diversity of the architectural targets they represent allows the BVM, even in this minimal form, to  

generate periodic and non-periodic designs that respond plausibly to various loading scenarios.

In  the  examples  of  this  section,  the  parameters  {cm } are  selected by hand to  tune  designs  and a 

threshold parameter is introduced that allows the creation of cavities or voids. The examples consider the  

design of one or several 2D weft sections.

5.1 Periodic patterns from generic background vectors

The generic background vectors defined in Sect. 4, being invariant along the 2D weft section (i.e.,  

along the y-direction), tend to generate periodic designs when they act alone. In the following illustrations, 

the weights {ct , c z , cb , cs } are available for tuning, while cL=0.

Prioritizing  in-plane  and  through-thickness  reinforcement  can  lead  to  a  non-woven  orthogonal  

laminate or an orthogonal interlock weave, while prioritizing shear reinforcement can generate a through-

thickness angle interlock weave (Fig. 5(a-c)). A hybrid design that combines orthogonal interlock and layer-

to-layer angle interlock reinforcement in the through-thickness direction is found by tuning a combination 

of through-thickness and bending reinforcement priorities (Fig. 5(d)). Note that in this last case, the centre  

region has  fewer  straight  tows than the  orthogonal  interlock weave of  Fig.  5(b),  the  centre  region in  

bending having low in-plane loading.
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Figure 5. Familiar designs re-created by the listed combinations of weights, with cL=0 in all cases. 

(a) orthogonal non-woven laminate (c t=1.0, c z≤1.0, cb=0.1 c s=0.1); (b) orthogonal interlock weave 

(c t=0.9, c z=1.0, cb=0.1, c s=0.1); (c) through-thickness angle interlock weave (c t=0.1, c z=0.1, 

cb=0.1, c s=1.0); (d) hybrid orthogonal interlock and layer-to-layer angle interlock (c t=0.1, c z=1.0, 

cb=0.9, c s=0.1). In (c), the history parameters α  and β  of Eq. (9b) also take small non-zero values, 

α=β=0.001. Ordering restriction O=O(alt ) in cases (a), (b), and (d) and O=O(1 ,2 ) in case (c).

5.2 Bespoke background vectors lead to non-periodic patterns

Bespoke background vectors, commonly being spatially heterogeneous, generate non-periodic designs 

that tend to match patterns of load paths in the structure, but with useful variability when balanced against 

different generic background vectors. In the following illustrations, the weights {cL , ct , c z , cb , c s } are all 

available for tuning.

Three common plane problems in topology optimization research are studied here:  a  cantilevered  

beam subject to a point load at the unclamped end; a beam subject to a central point load with simple end 

supports; and a beam subject to a central point load with one simple end support and one free roller support 

17



located at   
4
5

 of  its  length (Fig.  6).  Principal  stress  components  were determined by executing a  2D 

isogeometric analysis with a mesh of 50×10 covering an elastically isotropic beam of dimensions 120 ×

20 mm, with Young’s modulus 70 GPa, Poisson’s ratio 0.3, and a point load of magnitude 500 N. Contour  

plots of the von Mises stress appear in Fig. 6. Principal stresses evaluated at the grid of reference points  

r j , k
(b)  (Fig. 6) are converted to bespoke background vectors, which, by  the normalization of Eq. (4), are 

dimensionless quantities of magnitude bounded by unity.

Figure 6. The Von Mises stress distributions in (a) a cantilevered beam; (b) a beam in symmetric three-

point bending; and (c) a beam in asymmetric three-point bending. Load and supports as indicated. Black 

circles indicate the positions of warp tows for textile design, aligned vertically at each intersection o j. 

Crosses indicate the positions of the reference points r j , k
(b)  at which bespoke background vectors are defined.

A sequence of designs controlled by bespoke background vectors was generated for 2D weft sections  

containing seven or 12 weft tows (available weft tow locations Ω given by Eq. (3b)) by assigning cL=1 

with all of {ct , c z , cb , cs } taking near-zero values (10-3 to order of magnitude). The resulting designs are 

characterized by tows following load paths (the bespoke background vector of greater magnitude at every 

reference point) and resemble known topology optimization solutions for these standard problems (Figs. 7 

and 8).
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With more weft tows available in the 2D section for design, the diversity of the allocation of tows to 

in-plane and through-thickness orientations increases as later-assigned tows match bespoke vectors of 

lesser magnitude (Fig. 8 vs. Fig. 7).  Even though the generative algorithm acts sequentially in one 

direction, for the cases with  
Oi , j

(alt ), the directional bias of the designs for the symmetric three-point 

bending case may not be obvious, with symmetric design output illustrated in Fig. 7(b). However, for  

the cases with 
Oi , j

(1 ,2), the symmetry of the design output cannot be guaranteed. This is because at the  

same weft tow location, there are two candidate tows. At each local stack interval, the two candidates 

have equal chance (may have the same P value) to select the same location in the next warp stack 

location. This also means that performing the algorithm inversely in the same interval, the designs 

could be different. The extra history term added in Eq. (9a) may change the P values slightly, but the  

next step design is still highly dependent on the previous steps. This can be seen from the results  

shown in Fig. 8(b) with an asymmetric design output. 

Figure 7. Weave designs for seven weft tows dominated by bespoke background vectors (cL=1; 

c z=0; c t=cb¿c s=0.001): (a) cantilevered beam. (b): symmetric three-point bending; (c) 

asymmetric three-point bending. Ordering restriction O=O(alt ) in all cases.
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Figure 8. Weave designs for seven weft tows dominated by bespoke background vectors (cL=1; 

c z=0; c t=cb¿c s=0.001). (a): cantilevered beam. (b): symmetric three-point bending. (c): 

asymmetric three-point bending. Ordering restriction O=O(1 ,2 ) in all cases.

5.3 Multiple design objectives: tuning bespoke and generic background vectors

The bespoke background vectors, being based on elastic stress field calculations, carry no information 

about potential failure mechanisms for the component. One common failure mechanism is delamination. 

The BVM can generate designs that have the potential of balancing the matching of elastic stress fields (for  

global stiffness) and protecting against delamination by tuning bespoke and generic background vectors. In 

the  next  sequence  of  designs,  bespoke  background  vectors  and  through-thickness  generic  background 

vectors are tuned by manipulating {cL , c z } while {ct , cb , cs } remain very small.

Figs.  9 – 12 show how the relative content of through-thickness tows increases as the weight  c z 

increases  while  cL=1 (and compare  with  the  case  c z=0 in  Figs.  7  and 8).  With  increasing  c z,  the 

through-thickness  content  rises  first  where  the  bespoke  background  vectors  have  smaller magnitude 

(regions of low von Mises stress in Fig. 6), then extends progressively over the entire component.
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Figure 9. Weave designs for twelve weft tows influenced by bespoke background vectors only (cL=1; 

c z=0.5; c t=cb¿c s=0.001). (a): cantilevered beam. (b): symmetric three-point bending. (c): 

asymmetric three-point bending. Ordering restriction O=O(alt ) in all cases.

Figure 10. Same as Fig. 9 (cL=1 ; c z=0.5; c t=cb¿c s=0.001), but with 12 weft tows. Ordering 

restriction O=O(1 ,2 ) in all cases.
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Figure 11. Weave designs for seven weft tows influenced by bespoke and generic through-thickness 

background vectors (cL=1 ; c z=1.5; c t=cb¿c s=0.001). (a): cantilevered beam. (b): symmetric 

three-point bending. (c): asymmetric three-point bending. Ordering restriction O=O(alt ) in all cases.

Figure 12. Same as Fig. 11 (cL=1 ; c z=1.5; c t=cb¿c s=0.001), but with but with 12 weft tows. 

Ordering restriction O=O(1 ,2 ) in all cases. 

5.4 Tow deletion: the formation of void spaces

The reinforcing performance index P of Eq. (9) carries information that can potentially be exploited 

in  generating  designs  with  advanced  functionality.  Consider  further  the  design  of  Fig.  12(b),  which 

22



balanced the influence of  expected load paths  and enhanced delamination resistance.  In  the generated  

designs, some tows contribute relatively strongly to at least one of the nominal design preferences, others 

less so. Following completion of the design,  the weaker contributors can be identified by the criterion 

mean [ pw ]<Pdel where  pw is the record of  P values of Eq. (11) and  Pdel<1 is a threshold parameter, 

which, in applications, can be made available to an optimizing algorithm.

 By selecting the value of  Pdel,  first  the  two weakest  contributing weft  tows in  Fig.  12(b)  were 

identified and deleted from the final design, all other tows remaining as they were; and then, by increasing 

Pdel,  the next two weakest contributors were also deleted (Fig.  13).  The resulting designs are tending 

towards a rudimentary sandwich structure, which might perform well in bending while still having through-

thickness  integrity.  The  deletions  lower  the  total  mass,  favouring  mass-normalized  performance.  The 

deletion step mimics the use of sacrificial tows in processing, which are woven into the weave and then 

removed from the final product, e.g., by chemical etching or heat, often after the fibre preform has been 

consolidated with a matrix, which fixes the geometry of all other tows (e.g., [19]).

Figure 13. Tow deletion applied to Fig. 12 (b) with (a) two and (b) four tows deleted. The deleted tows are 

plotted with dashline style. 

5.5 Different 2D sections in a 3D structure

As an elementary illustration of the design of multiple 2D sections within a 3D structure, consider a 

3D cantilevered beam with a point load applied at one corner of the free end (Fig. 14). Three weft sections (

y-z planes) are analyzed, namely the two side surfaces and the mid-plane. Since the loading is asymmetric,  

the stresses on the three sections differ. Principal stress fields are extracted for each section from a 3D FEM 
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analysis, using the same model characteristics used for the plane beam problems described above extended 

to a third dimension of length 20 mm.  The FEM analysis is performed using isogeometric analysis with 

Non-Uniform Rational B-Splines (NURBS) bases as shape functions. There are 8×8×40 brick elements 

with quadratic shape functions. Bespoke background vectors are built from the principal stresses according  

to Eq. (4), but now with distinct fields resulting for each 2D section.

Designs dominated by the bespoke background vectors (cL=1 ; {ct , c z , cb , cs } very small) differ for 

the three sections in a manner reflective of the different proportions of bending and shear loads expected in  

the 3D structure (Fig. 15). When the bespoke and generic through-thickness background vectors are both 

given influence (cL=1 ; c z=4.56; {ct , cb , cs } remaining very small), the three sections continue to differ 

from one another, but all three now contain increased proportions of through-thickness reinforcement (Fig.  

16).

With the section-by-section design approach, it is possible to generate 3D woven structures tailored  

for heterogeneous loading conditions. The examples of this section have displayed an encouraging variety 

of  designs,  obtained by manipulating only  the  five  degrees  of  freedom offered by the  set  of  weights  

{cm|m∈ {L, t , z , b , s } } plus  a  single  deletion  threshold.  The  basis  functions  represented  by  the 

combination of bespoke and generic background vector fields form an efficient design space.

Figure 14. A 3D cantilever beam with built-in left end and a point load applied at one corner of the free end. 

Designs are generated for the marked 2D sections 1, 2, and 3, with the point load acting on Section 3.
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Figure 15. Weave designs for the sections of Fig. 14 using 12 weft tows influenced by bespoke background 

vectors only (cL=1; {ct , c z , cb , cs } very small): (a) for Section 1, (b) for Section 2, and (c) for Section 3 

(loaded section). Ordering restriction O=O(1 ,2 ) in all cases.

Figure 16. Same as Fig. 15 but with weft tow designs influenced by a balance of bespoke and generic 

through-thickness background vectors (cL=1 ; c z=4.56; {ct , cb , cs } very small).

6 Generalizations
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6.1 Possible use of the BVM within an optimization engine

Consider  the BVM embedded in some optimization engine (Fig.  17).  The BVM design space as 

defined above offers three types of parameters to the optimizer:

I. The weights {cm|m∈ {L, t , z , b , s } } associated with the total background vector set, with cm≥ 0.

II. The threshold for tow deletion Pdel of Eq. (9a).

III. The ordering restrictions {Oi , j|i=1 ,…, N weft ; j=1 ,…, N warpweft }.

Objective functions, such as the total mass of the component, its stiffness, and its critical loads, will be  

evaluated by analysis of a 3D model built from T 3D of Eq. (10) for the current optimization iteration. The 

3D model will be heterogeneous, the reinforcement architecture being represented explicitly. Since bespoke  

background vectors were defined initially using a homogeneous-material model, re-computation using the 

more accurate heterogeneous-material model may be beneficial during optimization iteration.

Figure 17. The BVM within an optimization scheme.

6.2 Expanding the design space

The designs found in Sect.  5 using just the five degrees of freedom available among the weights  

{cm|m∈ {L, t , z , b , s } } plus the single threshold Pdel are encouragingly varied, but general applications 

will require design spaces with many more degrees of freedom. The structure of the BVM  said below 

allows systematic design space expansion, effectively without limit, while always exploiting the aptness of 

the BVM paradigm.

6.2.1The weights cm

The weights {cm|m∈ {L, t , z , b , s } } can be generalized by allowing each cm to be a function of 2D-
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section type and spatial position: cm=cm [q, i , j ] where q∈ {warp ,weft } and {i , j } tags an intersection 

o i , j. For example:

 Dependence  on  q opens  the  possibility  of  warp  and  weft  tows  being  assigned  different  primary 

responsibilities, e.g.,  warp remaining primarily straight to maximize in-plane properties while weft 

traverse through-thickness to inhibit delamination.

 Dependence on {i , j } opens the possibility of generating weave types not exemplified in Sect. 5. For 

example, an architecture featuring long intervals of straight in-plane weft tows punctuated by brief 

intervals where the weft tows move through the thickness (e.g., a satin weave) can be generated by 

building that spatial pattern into the parameters c t and c z, the weights for the “in-plane” and “through-

thickness” generic background vectors, Eqs. (5a) and (5b).

One might also allow each cm to be a function of the index k  in the background reference point r j , k
(b) , 

but dependence on  k  (or  z) is already available via the definition of the background vectors; separate  

dependence of cm on k  is likely to be superfluous.

Implementing  dependence  of  {cm [q ]|q∈ {warp ,weft } } on  {i , j } amounts  to  a  search  during 

optimization  for  advantageous  spatial  patterns  in  the  individual  cm.  The  BVM  has  transformed  the 

relatively  cumbersome  problem of  probing  a  design  space  defined  in  terms  of  all  possible  orderings 

{O(i , j)⌊ i=1 ,…, N weft ; j=1 ,…, N warp¿¿ that comply with the restrictions  O(i , j )∈ O, which is still 

practically unbounded even given the restrictions, into a relatively convenient search for patterns in the 

{cm } defined on a discrete rectangular grid (the pixel array {i , j } of dimensions N warp×N weft).

Experience in 3D weave design suggests that both non-periodic and periodic patterns will be useful.  

Note,  however,  that  periodic  patterns  in  {cm [q ]|q∈ {warp ,weft } } do  not  imply  that  the  resulting 

architecture is necessarily periodic, because the background vector field is not periodic. A blend of periodic 

and non-periodic  candidates  defined on  {i , j } may be amenable  to  compact  representation by discrete 

Fourier transforms. While dependence of cm [q, i , j ] on {i , j } may be chosen differently for different tow 

type q, the patterns cm [weft , i , j ] and cm [warp ,i , j ] must generally be correlated.
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6.2.2 Thresholds

The threshold condition Eq. (12) is readily amenable to generalization. The parameter  Pdel can be 

made spatially heterogeneous (applied only to subsets of tows); and other threshold conditions might be 

introduced, e.g., one that seeks conditions where it may be advantageous to augment the size of a tow that 

is well aligned with tow paths, with an associated parameter Paug.

6.2.3Varying tow numbers within stacks

Given any array of ordering restrictions {O(i , j )|i=1 ,… , Nweft ; j=1 ,… ,N warp } for nweft  and nwarp 

tows per intersection, the paradigm of the BVM exhibited in Sect.  4 can be generalized to permit the  

number of weft or warp tows in any 2D weft or warp section to be any number nweft  or  nwarp satisfying 

1≤nweft≤nweft  or 1≤nwarp≤nwarp, respectively, with nweft  and nwarp now denoting upper bounds imposed 

by a given choice O(i , j ) (Fig. 2). Which is to say, available weft or warp positions in the ordering O(i , j ) can 

be left unoccupied. The BVM would be executed with trivial modification; and a consolidation step in the 

building of the 3D model used for objective evaluation would close gaps.6.2.4  De-restricting orderings

Many existing 3D weave designs are consistent with the restriction of the ordering of warp and weft  

tows at intersections designated by O(alt ) and O(1 ,2 ), provided the number of tows per stack is generalized 

as  in  the  preceding  paragraph.  However,  the  design  of  multi-functional  structures  with  non-uniform 

geometry might benefit from more varied orderings. For example, sacrificial tows of one type (warp or  

weft) can form internal cavities whose dimensions are multiple tow thicknesses when they are allowed to 

be ordered in multi-tow blocks within intersections [18].

Most generally, the ordering restriction O(i , j ) applied to any intersection o i , j can vary with any desired 

spatial dependence on {i , j }. Any change in an O(i , j ) is effected by changing the integers listed in Ω of Eq. 

(3b). However, varying nwarp or nweft  in any stack and deleting select tows already gives much variability 

in ordering, suggesting that variations in ordering restrictions might be unnecessary or at most should be 

introduced sparingly.

6.3 The viability of designs

When a complex 3D design is optimized, it may yet prove not to be viable, e.g., because tows are too  

tortuous or are too unevenly packed for the design to be realized as a robust fabric on a loom. Constraints 
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will generally be required to assure a design conforms with manufacturing reality. The generalizations of 

the BVM listed above will be required to support application of the required constraints.

Consider, for example, the non-uniform spatial density of tows in the designs of Figs. 7 – 9, a possible 

cause  of  difficulty  in  the  beat-up  operation  during  fabrication  (Fig.  1)  and  post-fabrication  handing.  

Generalizing the number of weft tows in a weft stack allows the multi-tow designs of a single weft section 

(Figs. 7 – 9) to be devolved among multiple successive weft sections, relieving possible entanglement and  

excessive deformation of tows during beat-up.  Spatial variations in cm [q, i , j ] permit the density of weft 

tows averaged over multiple successive weft sections to be constrained to be close to spatially uniform 

(independent of coordinates  y and  z).  Uniform density on  { y , z } when averaged over an appropriate 

gauge length along x  will promote dense packing during beat-up and ease of handling of the fabric when 

removed from the loom.

6.4 Locking the fate of tows during optimization

On every iteration of optimization, the BVM generates a new record of the reinforcement performance  

indices P3D of Eq. (11) covering every tow in the 3D design. The deletion criterion of Eq. (12) exemplified 

the possible use of the information in P3D to minimize mass. 

The  most  accurate  decisions  on  tow  deletion  would  use  the  stress  field  computed  for  the  final 

optimized design. However, it may prove that heuristic algorithms based on P3D sampled during iteration 

towards optimization can be trained to predict in early iterations whether a tow will ultimately be deleted.

It may similarly prove that P3D is an early predictor of whether the locus of one tow will remain in its 

current form in the final optimized design; or whether a tow will be selected for augmentation in the final  

optimized design. Any early prediction of any tow’s fate allows that tow to be fixed, reducing the degrees 

of freedom still in play. Thus, the detailed information in  P3D may support a physics-informed heuristic 

algorithm within  the  overarching optimization that  expedites  optimization while  maintaining sufficient 

accuracy.

6.5 Invariance of the BVM under design space expansion

Whatever spatial pattern is trialed for the {cm }, whatever threshold conditions are specified, whatever 

tow numbers are used in stacks, and whatever set of ordering restrictions {Oi , j } is chosen, the definition of 
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the  BVM  remains  unaltered.  Provided  the  ordering  restrictions  {Oi , j } remain  fixed  within  a  design 

iteration, designs for 2D sections can be generated independently of one another. Any spatial variations in 

{cm } are trivially incorporated in Eq. (9b). And all designs the BVM generates in an expanded design space  

will remain legal in the sense defined by the rules of operation of the 3D weaving loom [18]. 

7. Concluding remarks

The background vector method (BVM) offers a compact yet flexible representation of the design space 

available to integral 3D woven architectures for large-scale structures. By devolving a 3D preform design 

into an ensemble of independent 2D section designs, each of which can be realized by a simple algorithm 

executed sequentially along a section like a multi-agent game, the BVM achieves very high computational 

efficiency: seconds of computational time sufficed for any of the example cases in Sect. 5, using a non-

optimized code on a contemporary laptop computer. The speed of the BVM will support large-scale design 

optimization.

By defining spatial patterns in the weights {cm [q ]|q∈ {warp ,weft } } and in the restricted orderings 

{Oi , j } of increasingly fine granularity on the discrete spatial grid {i , j }, one can in principle regain access 

to the entire design space defined by the unrestricted orderings {Oi , j }, whose (infeasible) size is given by 

Eq. (2b). 

The structure of the BVM is readily integrated into a standard gradient-based or heuristic optimization  

algorithm, using the weights and thresholds as design variables.  The values returned for the performance 

indices associated with selected tow segments P3D during an iteration towards optimization are intuitively 

attractive parameters for exploitation within a physics-informed machine-learning optimization approach.
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