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The design of catalyst products to reduce harmful 
emissions is currently an intensive process of 
expert-driven discovery, taking several years to 
develop a product. Machine learning can accelerate 
this timescale, leveraging historic experimental 
data from related products to guide which new 
formulations and experiments will enable a project 
to most directly reach its targets. We used machine 
learning to accurately model 16 key performance 
targets for catalyst products, enabling detailed 
understanding of the factors governing catalyst 
performance and realistic suggestions of future 
experiments to rapidly develop more effective 
products. The proposed formulations are currently 
undergoing experimental validation.

Accelerating the Design of Automotive 
Catalyst Products Using Machine Learning
Leveraging experimental data to guide new formulations 

Introduction
Domestic and commercial vehicles are leading 
sources of global pollution, with vehicle emissions 
risking the health of communities near roads (1). 
Fine and ultrafine particulate matter, oxides of 
nitrogen, hydrocarbons and carbon monoxide are 
key road traffic pollutants that are associated with 
adverse health effects (2). Catalytic converters 
have been used since the 1970s to reduce the 
emission of these pollutants by catalysing their 
reaction into less-toxic substances, typically carbon 
dioxide, nitrogen and water (3). However, current 
catalytic converters are not 100% efficient in their 
reactions of pollutants and moreover have variable 
efficiency at different operating temperatures. 
This work uses machine learning modelling to 

analyse current catalytic converter performance 
and identify which future experimental tests 
would add most value to the ongoing development 
of improved catalytic converters. Previous work 
using machine learning in the catalysis domain 
has tended to focus on either augmenting 
quantum mechanical models of catalyst function 
(4–8), screening potential new catalysts (7–
11), or predicting properties from carefully-
selected chemical descriptors of catalysts (6, 
8, 12–14). In contrast, in this work we focus 
on modelling catalyst properties from the 
formulation ingredients and processing variables 
of the catalyst. The ingredients and processing 
conditions of samples are easily accessible during 
the development process, lowering the barrier 
to application of machine learning in active 
development projects. In the following section we 
discuss the project objectives, detail the machine 
learning methodology used and the results it 
delivers, before looking forward to potential future 
applications of machine learning for materials 
science in the automotive field and beyond.
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Objectives

We collated data on 612 catalytic converter 
test sets that have been manufactured and 
experimentally tested by Johnson Matthey as part 
of an ongoing catalyst development project. The 
data contained information on the formulation 
used for the catalysts, including amounts and 
properties of 34 ingredients; 10 test parameters 
describing the testing process for each catalyst; 
and 16 experimentally measured properties for 
each catalyst including target gas conversions and 
selectivities. These output properties consisted 
of eight sets of tests, with each test run at both 
a high (approx. 500°C) and low (approx. 225°C) 
temperature on different samples of the same 
catalyst formulation. Each experimental property 
was reported as a steady-state average over 
50–100 s of gas stream.
Using this data, we aimed to build understanding 

of the performance of this class of catalyst, using 
a machine learning model trained on the data to 
extract information on which input features of the 
formulation and processing parameters have most 
impact on the performance. Using this model, 
we then designed catalysts that offer both high 
performance and also add value to the machine 
learning model, which once made and measured 
can be added to the training dataset to enable more 
accurate modelling of high performance catalysts.

Methods

To model the catalyst data we used the AlchemiteTM 
multi-target machine learning platform. This method 
is described in detail in the literature (15–17), but 
in brief consists of iteratively generating predictions 
for all data series, both input and output, and using 
these predictions to impute missing data on the 
input side, before the final iteration of predictions 
are reported as the predictions for the output 
series. This method is designed to handle sparse 
input data, as was found in this work where up 
to 10% of the catalysts were missing information 
on each of the input properties. As the method is 
multi-target, generating predictions for all output 
properties simultaneously, we trained a model to 
predict all 16 experimentally measured properties 
at once. AlchemiteTM also generates estimates of 
the uncertainty in each prediction, which is vital 
to prioritise suggestions for future experiments 
that are most likely to achieve specified objectives. 
To test the performance of the model, data on 
61 catalysts (10% of the data) was randomly 

held back; the model was trained on data for 
the remaining 551 catalysts. Hyperparameters of 
the model were optimised using Bayesian Tree of 
Parzen Estimators via five-fold cross-validation 
within the training set only (17, 18). 
To test the performance of the model we 

simultaneously predicted all 16 output properties 
for each of the 61 held-back catalysts and measured 
the coefficient of determination R2, for each output 
property. The coefficient of determination is defined 
as Equation (i):

R2 = 1 –  (i)
Si(yi – fi)2

Si(yi – y)2

where i indexes each catalyst in the validation set; 
yi are the true experimental values, with mean ̄y; and 
fi are the model predictions. A value of 1 indicates 
a perfect fit between model and experimental 
values; a value of 0 indicates a fit that is no better 
than random chance; and negative values indicate 
predictions that are worse than random. The 
performance of the model is shown in light blue 
in Figure 1. The median R2 across all the output 
properties is 0.71, indicating highly successful 
predictive accuracy. In Figure 1 we also compare to 
two robust standard machine learning approaches: 
support vector regression with radial basis function 
kernel and K nearest neighbours with 20 neighbours, 
implemented in scikit-learn (19), which were trained 
on a mean-imputed version of the ingredient and 
test parameter data and achieve baseline median R2 
values of 0.52 and 0.49 respectively. 
We observed that the predictions for Property 6, 

at both high and low temperatures, were poor: 
we identified that although changes in Property 6 
are observable, a key physical mechanism directly 
influencing the value of Property 6 is driven by a 
chemical species not easily measurable by any 
analytical method and so is not fully captured in the 
dataset used to train the models. This explains the 
poor performance of the models in this aspect. The 
addition of (perhaps heuristic) descriptors to capture 
the physical mechanism may improve the modelling 
performance (14), but at the cost of increasing the 
barrier to usage of the method compared to taking 
only ingredients and processes as input.
Because the experimental tests on the catalysts 

are each repeated, run first at high temperature 
and then at low temperature, these results can be 
correlated so there is the possibility of increasing 
the efficiency of the testing process by using 
machine learning to replace one of the rounds 
of testing. To validate this, we trained a machine 
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learning model that took as inputs the formulation 
ingredients and test parameters as well as the 
experimentally measured results on all eight tests 
at high temperature, and predicted the results 
of the eight tests at low temperature. This order 
(using high temperature results as input to predict 
low temperature results) was selected to align with 
the current testing methodology.
The improved performance by using the high 

temperature measurements to help predict the low 
temperature performance is exemplified in dark 
blue in Figure 1. For five of the eight experimental 
properties the accuracy significantly increased 
(increase in R2 of more than 0.1), and for Properties 
1, 2 and 3 the resulting accuracy, with R2>0.95, 
is effectively equivalent to the experimental 
uncertainty in the measurement. For these three 
properties in particular, machine learning predictions 
could reliably replace experimental measurements, 
offering a saving in the time and effort required to run 
the experimental tests on new catalysts. The three 
experimental properties that were not improved by 
using the high temperature measurements are all 
related to the same target gas’ conversion rates, 

although it is not clear why these properties are 
not improved by access to increased experimental 
data. These three experimental properties are less 
commercially important than Property 1, which is 
the property with most commercial relevance.

Machine Learning Results

Now that we have confirmed the accuracy of 
the model we are well-positioned to extract 
actionable insights. Therefore, we first analyse the 
relationships that the model identified between 
inputs and outputs. To do so we examined which 
input features are used by the model when making 
predictions for each of the output properties, by 
evaluating the overall relative weights assigned to 
each input feature by the trained model, i.e. what 
fraction of the model prediction for each output 
is attributable to each input feature, on average 
across the whole model. This is calculated using the 
information gain attributable to each input feature 
(20). The results are summarised in Figure 2, 
separately for the model trained to predict both 
high and low temperature properties and the model 

Support vector regression
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Fig. 1. The coefficient of determination in prediction of each output property against the holdout test set, 
showing predictions of both high and low temperature tests in light blue and predictions using the high 
temperature experimental results to help predict the low temperature results in dark blue. Results from 
support vector regression and K nearest neighbours models are shown in grey for comparison
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trained to predict low temperature properties only. 
Averaging across each of the output properties, we 
find that for the high and low temperature model 
the test parameters and formulation ingredients 
are utilised in the proportion 0.59:1, and for the 
low temperature only model the test parameters, 
formulation ingredients and experimental high 
temperature measurements are utilised in the 
proportion 0.60:1:1.19. The consistent ratio of 
0.6:1 in utilisation of the test parameters and 
formulation ingredients between the two models 
indicates that the high temperature experimental 
measurements (especially Properties 1, 2 and 3) 
are adding distinct information to the model that it 
was not capable of identifying from either the test 
parameters or formulation ingredients. 
The key operational insight derived from this 

analysis was that although the formulation 
ingredients provide important information for 
the simultaneous modelling of the high and low 
temperature results, the variation in the test 
parameters also provides a key contribution. 
Historically the test parameters have been 
controlled within specification ranges but the 
impact of variation within these ranges has not 
been considered. These results show that the 

test parameters have an impact on the resulting 
properties and that control and understanding of 
these parameters improves the value of the data.

Machine Learning Formulation 
Design

With increased understanding of the importance 
of the test parameters for measured catalyst 
performance, we used the machine learning model 
to design catalyst formulations. For performance 
targets, we focussed on the most commercially 
important property (Property 1), aiming to maximise 
its value at both high and low temperatures, and for 
that value to be stable with temperature. Although 
Property 1 is the most commercially important 
property, the values of the other properties are 
also required for product success.
As well as looking for the formulations that 

would be most likely to succeed against these 
performance targets (‘exploitation’ of the 
model) we also searched for formulations that, 
when measured, would increase the model’s 
understanding of the formulation landscape and so 
improve future rounds of predictive modelling and 
formulation design (‘exploration’ of the model), as 
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Fig. 2. Importance of each input factor (horizontal axis) for making predictions of each output property 
(vertical axis). The upper plot shows the model trained to predict both high and low temperature results, 
whilst the lower plot shows the model trained to use the high temperature results to help predict the low 
temperature results. Higher values (darker colours) indicate more importance given to a variable. The 
importance values sum to one for each output property
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well as a balanced mix of the two objectives. We 
used a Bayesian search of the formulation space 
using Tree of Parzen Estimators (18) built into the 
AlchemiteTM platform, taking as the cost function 
the probability of simultaneously achieving all the 
performance targets, including a contribution from 
the uncertainty in each formulation’s predicted 
performance calculated as standard errors across 
the AlchemiteTM platform’s internal ensemble of sub-
models (21). This cost function is the commercially 
relevant metric to aim to propose successful 
and useful new formulations. Exploitation-
focused suggestions prioritise formulations with 
high probability of success, while exploration-
focused suggestions prioritise formulations whose 
predictions are currently uncertain and will also 
help improve predictions over a wide range of 
formulation space. 
A two-dimensional Uniform Manifold 

Approximation and Projection (UMAP) embedding 
(22) of the formulations is shown in Figure 3. The 
dark blue points show the historic experimental 
results, with more opaque points having higher 
performance against Property 1 and more 
transparent points having lower performance. We 
observe that there are several clusters of dissimilar 
formulations that had previously been measured, 
but that most of the formulations were relatively 
similar and are clustered in the centre of the plot 
(this clustering analysis being a key strength of 
the UMAP approach). Figure 3 also shows the 
formulations proposed by the machine learning 
approach, labelled by whether they are focused 
on exploration, exploitation or a balanced mixture. 
We observe that, as expected, the exploitation-

focused suggestions are clustered more tightly at 
the centre of the plot, demonstrating that they are 
attempting to exploit a class of formulations with 
a high probability (up to 60%) of achieving all of 
the design targets simultaneously. In contrast, 
the exploration-focused suggestions are more 
varied, focusing particularly on gaps in the existing 
coverage of the formulation space where additional 
information will improve the model. The balanced 
suggestions show aspects of both behaviours. 
A subset of the formulations suggested by the 
machine learning, including samples from the 
exploration, exploitation and balanced suggestions, 
are currently undergoing experimental validation.

Conclusions

In this work we have shown how machine 
learning analysis of catalyst formulations enables 
new insights into the factors that affect catalyst 
performance, including particularly that the test 
parameters more strongly impact the eventual 
performance than was initially anticipated: this 
will have operational significance for the future of 
this product development. We have also shown 
how the use of a machine learning platform, rather 
than a single predictive tool, can enable full design 
workflows, including prioritising exploration of the 
formulation space or exploitation of a model to 
achieve high product performance, accelerating 
the design process by enabling a holistic view of 
the formulation opportunities. Future progress 
in this project could focus on achieving multiple 
target properties simultaneously, beyond only 
Property 1, or utilising the accurate predictions 

Training set
Suggested experiments (exploration)
Suggested experiments (balanced)
Suggested experiments (exploitation)

Fig. 3. Two-dimensional UMAP 
embedding of the training data 
(blue points), with darker points 
those with higher performance on 
Property 1. Also shown are the 
experiments suggested by the 
machine learning approach, in 
light blue (exploration focused), 
purple (balanced search) and 
orange (exploitation focused)
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of low temperature measurements based on 
experimental high temperature measurements to 
halve the amount of experimental effort required 
when screening new formulations.
The machine learning approach here is applicable 

beyond catalytic converters, including the design 
of metal alloys (15, 23), batteries (24), and 
pharmaceutical drugs (21). A machine learning 
platform that can carry out the full cycle of 
formulation development, handling sparse real-
world experimental data, building predictive models 
and proposing and interpreting new formulation 
designs adds value in each of these areas, with 
reduced barrier to entry by working directly on the 
composition and processing variables immediately 
accessible to project scientists.
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