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ABSTRACT: We describe a novel deep learning neural
network method and its application to impute assay pIC50
values. Unlike conventional machine learning approaches, this
method is trained on sparse bioactivity data as input, typical of
that found in public and commercial databases, enabling it to
learn directly from correlations between activities measured in
different assays. In two case studies on public domain data sets
we show that the neural network method outperforms
traditional quantitative structure−activity relationship
(QSAR) models and other leading approaches. Furthermore, by focusing on only the most confident predictions the accuracy
is increased to R2 > 0.9 using our method, as compared to R2 = 0.44 when reporting all predictions.

1. INTRODUCTION

Accurate compound bioactivity and property data are the
foundations of decisions on the selection of hits as the starting
point for discovery projects, or the progression of compounds
through hit to lead and lead optimization to candidate
selection. However, in practice, the experimental data available
on potential compounds of interest are sparse. High-
throughput screens may be run on large screening collections,
but these are costly and, thus, applied infrequently; the
throughput of an assay usually comes with a trade-off against
the quality of the measured data. As discovery projects
progress and new compounds are synthesized, the increasing
cost of generating high-quality data means that only the most
promising compounds are advanced to these late-stage studies.
If one considers all of the compounds in a large

pharmaceutical company’s corporate collection and the assay
end points that have been measured, only a small fraction of
the possible compound-assay combinations have been
measured in practice. Public domain databases are also
sparsely populated; for example, the ChEMBL1,2 data set is
just 0.05% complete.
The implication of this is that a vast trove of information

would be revealed if only a small fraction of these missing data
could be filled in with high-quality results in a cost-effective
way. New hits for projects targeting existing biological targets
of interest and high-quality compounds, overlooked during
optimization projects, could be identified. Furthermore,
compounds with results from early assays could be selected
for progression with greater confidence if downstream results
could be accurately predicted.
A common approach for prediction of compound bio-

activities is the development of quantitative structure−activity
relationship (QSAR) models.3 These are generated using

existing data to identify correlations between easily calculated
characteristics of compound structures, known as descriptors,
and their biological activities or properties. The resulting
models can then be applied to new compounds that have not
yet been experimentally tested, to predict the outcome of the
corresponding assays. A wide range of statistical methods have
been applied to build QSAR models, from simple linear
regression methods such as partial least-squares4 to more
sophisticated machine learning approaches such as random
forests (RF),5−9 support vector machines,10 and Gaussian
processes.11 Another approach is the profile-QSAR (pQSAR)
method proposed by Martin et al.,12,13 which uses a
hierarchical approach to build a model of a bioactivity by
using as inputs the predictions from QSAR models of multiple
bioactivities that may be correlated. Recently, the application
of advances in deep learning have been explored for generation
of QSAR models;14 while small improvements in the accuracy
of predictions have been found, these methods have not
generally resulted in a qualitative step forward for activity
predictions.15−17 One advantage of deep learning methods is
the ability to train models against multiple end points
simultaneously, so-called multitarget prediction. This enables
the model to “learn” where a descriptor correlates with
multiple end points and hence improve the accuracy for all of
the corresponding end points.
However, the sparse experimental data could reveal more

information regarding the correlations between the end points
of interest, if these could be used as inputs to a predictive
model. Conventional machine learning methods cannot use
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this information as inputs because the bioactivity data are often
incomplete, and so cannot be relied on as input. In this paper
we present a novel deep learning framework, previously applied
to materials discovery,18−20 that can learn from and exploit
information that is sometimes missing, unlike other contem-
porary machine learning methods. A further benefit of the
proposed method is that it can estimate the uncertainty in each
individual prediction, allowing it to improve the quality of
predictions by focusing on only the most confident results.
We will compare the performance of our method to impute

bioactivities with a RF, a commonly applied and robust QSAR
machine learning method, a modern multitarget deep learning
method, a leading matrix factorization approach, and the
second-generation pQSAR 2.0 technique.13

In section 2 we present the underlying deep learning
methodology to handle missing data and estimate uncertainty,
along with details of the data sets used in this study, the
accuracy metric, and other machine learning methods applied
for comparison. Then in section 3 we present two examples to
assess the performance of the algorithm against current
methods. Finally, in section 4 we discuss our findings and
potential applications of the results.

2. METHODOLOGY
The goal for the neural network tool is to predict and impute
assay bioactivity values, by learning both the correlations
between chemical descriptors and assay bioactivity values and
also the correlations between the assay bioactivities. In
subsection 2.1 we introduce the data sets used to validate
the approach, before turning in the following subsections to
the description of the neural network method itself.
2.1. Data Sets. Two data sets were used to train and

validate the models: a set containing activities derived from five
adrenergic receptor assays (hereafter described as the
“Adrenergic set”) and a data set comprised of results from
159 kinase assays proposed by Martin et al. as a challenging
benchmark for machine learning methods13 (the “Kinase set”).
These data sets are summarized in Table 1. All of the data were

sourced from binding assays reported in the ChEMBL
database,1,2 and the assay data are represented as pIC50 values
(the negative log of the IC50 in molar units). In the case of the
Adrenergic set, measurements from different assays were
combined for each target activity and, where multiple values
were available for the same compound, the highest pIC50 value
was used, representing a “worst case” scenario for selectivity. In
the case of the Kinase data set, each activity was derived from a
single assay, as defined in ChEMBL.
Here, 320 molecular descriptors were used to characterize

the compounds in the data sets. These comprised whole-
molecule properties, such as the calculated octanol:water
partition coefficient (logP), molecular weight, topological polar
surface area,21 and McGowan volume,22 as well as counts of
substructural fragments represented as SMARTS patterns.23

In the case of the Adrenergic set, we employed a 5-fold
cross-validation approach for building models and assessing
their resulting accuracy. The compounds in the data set were
randomly split into five disjoint subsets of equal size, the
models were trained using four of the subsets, and then their
accuracy evaluated on the remaining subset. We repeated this
process using each of the subsets for testing, so that each
compound was used as a test case for the tool. The Adrenergic
data set is provided with the Supporting Information for this
paper.
The Kinase set was provided in the Supporting Information

of the paper by Martin et al.13 as a challenging benchmark for
machine learning methods. In this case, the data set was split
by Martin et al. into independent training and test sets. The
data were initially clustered for each assay and the members of
the clusters used as the training set, leaving the outliers from
this clustering procedure as the data against which the resulting
models were tested. This procedure means that the test data is
not representative of the data used to train the models, making
this a difficult test of a machine learning method’s ability to
extrapolate outside of the chemical space on which it was
trained. Martin et al. described this as a “realistic” test set,
designed to be more representative of real working practices in
an active chemistry optimization project, where new
compounds are continuously proposed that extend beyond
the chemical space that has previously been explored. Because
the clustering was carried out on a per-assay basis, some
compounds appear in both the train and test sets: but the assay
data for each compound is split between the sets, so that none
of the same assay/compound pairs appear in both the train and
test set and the validation is against a robust, disjoint test case.
The Kinase data set is provided with the Supporting
Information for this paper.

2.2. Performance Metric. To assess the performance of
the models we use the coefficient of determination R2 for each
assay in the test set:
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∑ −

∑ −
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where yi
obs is the ith observed assay value and yi

pred is the
corresponding prediction. This is a more stringent test than the
commonly used squared Pearson correlation coefficient, which
is a measure of the fit to the best fit line between the predicted
and observed values, while the coefficient of determination is a
measue of the fit to the perfect identity line yi

pred = yi
obs. By

definition, the coefficient of determination is less than or equal
to the squared Pearson correlation coefficient.
For each of the methods, we report the mean of the R2

across all of the assays in the test set to give an overall value.
2.3. Neural Network Formalism. We now turn to the

neural network formalism. This algorithm is able to automati-
cally identify the link between assay bioactivity values, and use
the bioactivity data of other compounds to guide the
extrapolation of the model, as well as using molecular
descriptors as design variables. Furthermore, the method can
estimate uncertainties in its predictions. The neural network
builds on the formalism used to design nickel-base superalloys,
molybdenum alloys, and identify erroneous entries in materials
databases.18−20 We describe here the core neural network and
the first novel aspect, the ability to estimate the uncertainty in
the predictions, before section 2.4 details the second novel part

Table 1. Summary of the Data Sets Useda

data set compounds assays filled

adrenergic 1731 5 37.5%
kinase 13998 159 6.3%

aThe table shows the data sets, the number of compounds and assays
each contains, and the proportion of the compound−assay values that
are filled.
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of the algorithm: how to handle missing data necessary to
capture bioactivity−bioactivity correlations.
Each input vector x = (x1, ..., xA+D) to the neural network

contains values for D = 320 molecular descriptors and A = 5
(for the Adrenergic data set) or A = 159 (for the Kinase data
set) bioactivity values. The ordering of the elements of the
input is the same for each compound, but otherwise
unimportant. The output (y1, ..., yA+D) of the neural network
consists of the original descriptors and the predicted
bioactivities: only the elements (y1, ..., yA) corresponding to
predicted bioactivities are used for evaluating the network
accuracy.
The neural network itself is a linear superposition of

hyperbolic tangents

→+ +x x x y y yf: ( , ..., , ..., ) ( , ..., , ..., )i A D j A D1 1

with
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This neural network has a single layer of hidden nodes ηhj with
parameters {Aihj, Bhj, Chj, Dj} as shown in Figure 1. Each
property yj for 1 ≤ j ≤ A is predicted separately. We set Ajhj = 0
so the network will predict yj without knowledge of xj.
Typically around five hidden nodes ηhj per output variable
gives the best-fitting neural network. We use hyperbolic
tangent activation functions to constrain the magnitude of ηhj,
giving the weights Chj sole responsibility for the amplitude of
the output response. Twelve separate networks were trained on
the data with different weights,18−20 and their variance taken to
indicate the uncertainty in the predictions accounting for both
experimental uncertainty in the underlying data and the
uncertainty in the extrapolation of the training data.24,25 This is
conceptually similar to the approach taken to uncertainty
estimation in ensemble models, although here the underlying
model is a deep neural network and the uncertainty estimates
generated accurately represent the observed errors in the
predictions, including uncertainty due to extrapolation that is
poorly captured by random forest (see also section 3.2).
2.4. Handling Incomplete Data. Experimental data are

often incompletebioactivity values are not known for every
compound and assayand moreover, the set of missing
bioactivities is different for each compound. However, there is
information embedded within bioactivity−bioactivity correla-
tions. A typical neural network formalism requires that each
property is either an input or output of the network, and all
inputs must be provided to obtain a valid output. In contrast,
we treat both the molecular descriptors and also the assay
bioactivities as both inputs and outputs of the neural network
and adopt an expectation-maximization algorithm,26 where we
first provide an estimate for the missing data and use the neural
network to iteratively improve that initial estimate.
The algorithm is shown in Figure 2. For any unknown

bioactivities we first set missing values to the average of the
bioactivity values present in the data set for that assay. With
estimates for all values of the neural network we can then
iteratively compute

= ++x
x f x( )

2
n

n n
1

The final predictions (y1, ..., yA) are then the elements of this
converged algorithm corresponding to the assay bioactivity
predictions. The softening of the results by combining them
with the existing predictions serves to prevent oscillations of
the predictions, similar to the use of “shortcut connections” in
ResNet.27 Typically up to 5 iteration cycles were used to
impute missing bioactivity values, using the same function f (as
defined in section 2.3) in every cycle. After 5 cycles the
coefficient of determination R2 in training improved by less
than 0.01, comparable to the accuracy of the approach,
confirming that we had used sufficient iteration cycles to reach
convergence.
The parameters {Aihj, Bhj, Chj, Dj} in the function f are then

trained using simulated annealing28 to minimize the least-
squares error of the predicted bioactivities (y1, ..., yA) against
the training data. At least 105 training rounds were used to
reach convergence.
Hyperparameters, in particular the number of hidden nodes

per output, the number of iteration cycles, and the number of
training rounds, were selected using random holdout validation
on each training data set, without reference to the
corresponding test set.

2.5. Other Machine Learning Methods. We compare
our neural network algorithm with a variety of other popular

Figure 1. Neural network. The graphs show how the outputs for y1
(top) and y2 (bottom) are computed from all the inputs; similar
graphs can be drawn for all other yj to compute all the predicted
properties. A linear combination (gray lines) of the given properties
(red) are taken by the hidden nodes (blue), a nonlinear tanh function,
and a linear combination (gray lines) gives the predicted property
(green).
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machine learning approaches from the literature. RF
methods5−9 are a popular method of QSAR analysis, building
an ensemble of decision trees to predict individual assay
results. Because decision trees require all their input data to be
present when they are trained, it is not possible to build RF
models using sparse bioactivity data as input, and RF must rely
purely on chemical descriptors. We used the scikit-learn29

implementation of the regression RF method.
For a comparison with a modern deep learning approach, we

also built a conventional multitarget deep neural network
(DNN) model30 using TensorFlow.31 The model took linear
combinations of descriptors as inputs, with eight fully
connected hidden layers with 512 hidden nodes, and output
nodes that gave the predicted assay results. The ELU activation
function was used for all layers, and the network was trained
using Adam backpropagation with Nesterov momentum32 and
a masked loss function to handle missing values. A principal
component analysis (PCA) was performed on the descriptors
to select the subset of linear combinations of descriptors that
captured 90% of the variance across the full descriptor set to
avoid overfitting of the DNN through the use of too many
descriptors.
A popular method of analyzing sparse databases is matrix

factorization,33 where the matrix of compound-assay bio-
activity values is approximately factorized into two lower-rank
matrices that are then used to predict bioactivity values for new
compounds. Matrix factorization was popularized through its
inclusion in the winning entry of the 2009 Netflix Prize.34 We
used the modern Collective Matrix Factorization (CMF)35,36

implementation of matrix factorization, which makes effective
use of the available chemical descriptors as well as bioactivity

data, with separate latent features specializing in handling the
descriptors.
We also compare to the profile-QSAR 2.0 method of Martin

et al.,13 which builds a linear partial least-squares (PLS) model
of assay bioactivities from the predictions of random forest
models for each assay individually. In the 2.0 version of the
profile-QSAR method the RF predictions for an assay are not
used as input to the PLS model for that assay.

3. IMPUTING ASSAY BIOACTIVITIES
We present two tests of the performance of the deep learning
formalism to impute assay bioactivity values. In each case we
use disjoint training and validation data to obtain a true
statistical measure, the coefficient of determination, for the
quality of the trained models.

3.1. Adrenergic Receptors. We first present a case study
using the Adrenergic data set described in section 2.1. We train
two classes of model: the first uses complete compound
descriptor information to predict the bioactivity values and the
second class uses both the chemical descriptors and also the
bioactivity-bioactivity correlations.
We first train a neural network to take only chemical

descriptors and predict assay bioactivities. This approach is
similar to traditional QSAR approaches, although it offers the
advantage of being able to indirectly learn the relationships
between assay bioactivities through the iterative cycle
described in Figure 2. We train the neural network providing
as input the N descriptors with the highest average absolute
Pearson correlation against the five targets, with N varying
between 0 and the full set of 320 descriptors. The gray line in
Figure 3 shows that the neural network, predicting based

purely on descriptors, achieves a peak R2 = 0.60 ± 0.03 against
the assays when using 50 descriptors: fewer descriptors do not
provide a sufficient basis set, whereas more descriptors overfit
the data. The neural network not requiring the full set of
chemical descriptors to provide a high-quality fit enables us to
focus attention on the key descriptors, and hence chemical
features, that influence bioactivity against these targets.37 We
compare the neural network result to traditional random forest,
using the same descriptor sets, which achieves a similar value of
R2 = 0.59 ± 0.02 using 100 descriptors.

Figure 2. Data imputation algorithm for the vector x of the molecular
descriptors and bioactivity values that has missing entries. We set x0 =
x, replacing all missing entries by averages across each assay and, then,
iteratively compute xn+1 as a function of xn and f(xn) until we reach
convergence after n iterations.

Figure 3. Coefficient of determination for predicting the activity of
the adrenergic receptors with number of chemical descriptors. The
magenta line is when the neural network is trained with both the
activities and descriptors present, the gray line with just the
descriptors, and the cyan line is for random forest. Error bars
represent the standard error in the mean R2 over 5-fold cross-
validation.
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We next train a fresh neural network but include the
possibility of bioactivity−bioactivity correlations. With a total
of 5 assays, this allows up to 4 additional input values per target
as bioactivity values for every other assay are used as input
when present (although in the majority of cases they are
missing). It is not possible to use this assay bioactivity data as
input to a RF approach, because the data is sparse and RF
methods require complete input information. However, in
Figure 3 we see that the neural network’s peak accuracy
increases to R2 = 0.71 ± 0.03 with 50 descriptors. We now
achieve a significantly better quality of fit than RF (with one-
tailed Welch’s t test p = 3 × 10−4) due to the strong
bioactivity−bioactivity correlations present in the data. The
neural network is able to successfully identify these stronger
bioactivity−bioactivity relations, without them being swamped
by the numerous but weaker descriptor−bioactivity correla-
tions.
We particularly see the value of the bioactivity-bioactivity

correlations with zero descriptors, where the neural network
achieves R2 = 0.35 ± 0.03 due solely to bioactivity−bioactivity
correlations. Random forest is not able to make predictions at
all without any descriptors being present, as it cannot take the
sparse bioactivity data as input, and so R2 = 0. The ability to fit
the data better than a leading QSAR method provides a solid
platform for use of this neural network to impute assay
bioactivity values.
3.2. Kinase Data Set. We now present a case study on the

Kinase data set proposed as an exemplar for benchmarking
predictive imputation methods,13 as described in section 2.1.
In this data set the validation data comprised the outliers

from a clustering procedure, realistically representing the
exploration of new chemical space. The best achieved
coefficient of determination by a method in the literature is
R2 = 0.434 ± 0.009 by the profile-QSAR 2.0 method,13 which
we reimplemented for this comparison. The DNN multitarget
model discussed in section 2.5 achieved R2 = 0.11 ± 0.01, the
CMF method achieved R2 = −0.11 ± 0.01, and a conventional
RF QSAR approach achieved only R2 = −0.19 ± 0.01, a result
which is worse than random due to the extrapolation in
chemical space required to reach the test set points.
Using our deep neural network we predict the assay

bioactivity values and also the uncertainties in the predictions.
With 100% of the predictions accepted, irrespective of the
reported confidence, the neural network attains R2 = 0.445 ±
0.007, a significant improvement over the DNN, CMF, and RF
approaches and similar to the profile-QSAR 2.0 method result.
However, access to the uncertainties in the predictions gives us
more knowledge about the neural network results. In
particular, we can discard predictions carrying large un-
certainty, and trust only those with smaller uncertainty. This
lets us focus on the most confident predictions only, at the
expense of reporting fewer total predictions. When this is done,
the quality of the remaining neural network predictions
increases, as shown in Figure 4, demonstrating that the neural
network is able to accurately and truthfully inform us about the
uncertainties in its predictions; the confidence of predictions is
correlated with their accuracy. The coefficient of determination
reaches values of R2 > 0.9, demonstrating effectively perfect
predictions, when we complete only the most confident 1% of
the data. We note that this focus on the most confident
predictions, and corresponding increase in accuracy, is
postprocessing: only one model is trained, and the desired

level of confidence can be specified and used to return only
sufficiently accurate results.
The neural network is significantly more accurate than the

DNN, CMF, and RF methods even when 100% of the
predictions are accepted (with p-values 3 × 10−66, 2 × 10−102,
and 2 × 10−107, respectively) and is significantly more accurate
than pQSAR 2.0 when only the least confident 3% of
predictions are discarded (p = 3 × 10−4). As shown in Figure
4, the accuracy improvement over the other methods increases
substantially as a smaller fraction of the predictions are
accepted.
The achieved R2 > 0.9 exceeds the level of R2 = 0.7 that is

often taken as indicating accurate, reliable predictions in the
presence of experimental uncertainty. In fact, the most
confident 50% of the neural network’s predictions all have R2

> 0.7, permitting a 9-fold increase in the number of accurate
predictions that can be used for further analysis, relative to the
original sparse experimental measurements.
This high accuracy is achieved after approximately 120 core

hours of training. The time to validate the data set is 0.1 ms per
compound for the neural network, versus 10 ms per
compound, 100 times longer, for the traditional random forest
approach. This acceleration in generating predictions further
enhances the real-world applicability of the neural network
approach.

3.2.1. Analysis. It is informative to analyze the results that
our neural network approach is able to calculate accurately and
compare this to preconceptions of how the algorithm
functions. For example, as a data-driven approach, it might
be assumed that the assays with the most training data would
be most accurately predicted by the neural network. However,
as shown in Figure 5, this is not the case; although the assay
with least training data is that predicted least accurately, there
is in general no correlation between the accuracy of the neural
network’s predictions and the amount of training data available
to the algorithm. In particular, the two assays with most

Figure 4. Coefficient of determination for predicting the activity of
the clustered Kinase data set with percentage of data predicted. The
cyan point is for the random forest approach, the blue point is the
collective matrix factorization (CMF) method, the dark green point is
the deep neural network (DNN) approach, the orange point is the
profile-QSAR 2.0 method, and the purple line is the neural network
proposed in this work. The purple line shows that the accuracy of the
neural network predictions increases when focusing on the most
confident predictions, at the expense of imputing only a proportion of
the missing data. This confirms that the reported confidences in the
predictions correlate strongly with their accuracy. Error bars represent
the standard error in the mean R2 value over all 159 assays and where
not visible are smaller than the size of the points.
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training data are relatively poorly captured by the neural
network, with R2 < 0.2 in both cases.
Likewise, the most confident predictions are not for

compounds “closest” to those in the training set. The degree
of separation can be measured in terms of the Euclidean
distance between the points in the multidimensional space of
descriptors used in the model. A representative example assay’s
data (ChEMBL assay 688660) is shown in Figure 6 where the

training points (gray crosses) and test points (colored points)
are depicted in a 2-dimensional t-distributed stochastic
neighbor embedding (t-SNE) generated using the StarDrop
software package.38 The levels of predictive confidence are
fairly uniform with distance from the training data, confirming
the algorithm’s ability to confidently predict test points that are
relatively far from the clusters of training points. In addition to

this analysis, the Euclidean distance between every test point
and its nearest neighbor training point was taken for all assays.
This measure showed no correlation with the network’s
uncertainty or error, indicating that the neural network is
operating beyond a nearest-neighbor approach in descriptor
space, by exploiting assay−assay correlations that are carried
across into assay−descriptor space.

3.2.2. Summary. We have shown that the neural network
presented delivers similar quality predictions for assay
bioactivity to the profile-QSAR 2.0 method when considering
the full test set and that these methods outperform QSAR
methods, including modern DNNs, and also outperforms
matrix factorization. In addition, a key advantage is that the
neural network gives accurate uncertainties on its output,
allowing us to prioritize only well-predicted assay activities,
enabling an increase in the coefficient of determination for the
predictions of the realistic data set from R2 = 0.445 up to R2 >
0.9 for a subset of the data. The ability to tune accuracy with
amount of data predicted is an invaluable tool for scientists,
fueling confidence in results and permitting a focus on only
high-quality predictions. These most confident predictions are
also not for the most complete assays or the most similar test
points to the training data, showing that the neural network
approach is able to learn more complex and powerful
representations of the assay bioactivity data.

4. CONCLUSIONS
We have presented a new neural network imputation
technique for predicting bioactivity, which can learn from
incomplete bioactivity data to improve the quality of
predictions by using correlations between both different
bioactivity assays, and also between molecular descriptors
and bioactivities. This results in a significant improvement in
the accuracy of prediction over conventional QSAR models,
even those using modern deep learning methods, particularly
for challenging data sets representing an extrapolation to new
compounds that are not well represented by the set used to
train the model. This is representative of many chemistry
optimization projects which, by definition, explore new
chemical space as the project proceeds.
The method presented can also accurately estimate the

confidence in each individual prediction, enabling attention to
be focused on only the most accurate results. It is important to
base decisions in a discovery project on reliable results to avoid
wasted effort pursuing incorrectly selected compounds or
missing opportunities by inappropriately discarding potentially
valuable compounds.39 On the Kinase example data set, we
demonstrated that 50% of the missing data could be filled in
with R2 > 0.7, which is considered to represent a high level of
fidelity between prediction and experiment.
The ability to make simultaneous, accurate predictions

across multiple assays will lend itself well to the problem of
selectivity across multiple targets.40,41 The method is general,
so it can be applied beyond the binding assay data used in this
analysis, for example to direct or downstream functional assays;
and the method can even make accurate predictions beyond
pIC50 values, including physicochemical, absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET) properties.
Therefore, it has a broad application for identification of
additional active compounds within a database, recognition of
the most influential chemical properties, prediction of
selectivity profiles, and the selection of compounds for
progression to downstream ADMET assays.

Figure 5. Coefficient of determination measured for each of the 159
kinase assays, plotted against the percentage of the data for that assay
present in the training set.

Figure 6. Two-dimensional t-SNE embedding of the input descriptor
space for ChEMBL assay 688660. The gray crosses show the training
data and the colored points show the test data with color indicating
the uncertainty estimate of the network in its predictions, where red
indicates zero uncertainty and yellow indicates a high uncertainty of 1
log unit.
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