Toxicological Data Gap Filling of Ingredients; Comparison of Machine Learning Based Imputation and Traditional QSAR Methods
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BACKGROUND RESULTS

At almost every phase of the toxicological risk-assessment process, data gap filling is a recurring challenge. While there are many in silico methods available for the different toxicological endpoints, A comparative analysis was done between the traditional QSAR models and imputation models (Figure 4.), focusing on the same dataset to evaluate the additional benefits imputation models offer by learning from
developing, maintaining, and producing predictions using these — such as batteries of Quantitative Structure Activity Relationship (QSAR) models (Figure 1.) — in a reproducible manner can be quite inter-endpoint relationships. Based on the hypothesis that more pertinent data can enhance the performance of machine learning models — in that case, through the inclusion of data on other ‘Human Health Hazard’
challenging and time consuming even for computational experts. Imputation (Figure 2.) offers a viable alternative to use multiple different traditional QSAR models simultaneously, and recent results suggest endpoints - we explored augmented datasets that contain additional chemical data (Figure 5.). As a last step we added more experimental data to the input data frame (Figure 6.). This data came in the form of

even superior performance compared to using individual structure-based models. ecotoxicological measurements from the QSAR Toolbox, and it was hypothesized that its inclusion might improve model performance, if biological information about ecotoxicity correlates with Human Health Hazards
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biological information. Figure 7. shows the variables used as input by the imputation model.
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Figure 2: General concept of the imputation approach using sparse experimental, complete
Figure 1: General representation of the QSAR process using Al generated images [1] phys-chem data to acquire imputed toxicology data [2]
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data obtained from the OECD QSAR Toolbox [4]. This was then compared to well-established single
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performance (Figure 3. C). Data processing was done using KNIME [5], RDKit [6] and Python (Scikit-
Learn [7], Figure 3. B).
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feature and endpoint data
it has a reduced need for laborious manual pre-processing tasks such as

feature selection. Ultimately, this method can make data preparation for ML

analysis more efficient and easier to manage compared to having multiple
Figure 7: The variables used as input by the model (columns in the figure) to predict single endpoint QSAR models.
each of the 89 target endpoints (rows in the figure). Darker cells in the figure show
stronger use of the input variable
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