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METHODS
In our study, a Machine Learning (ML) based imputation method was tested on an open-source data 

set [3] comprising of approximately 2500 ingredients (Figure 3. A) with limited in vitro and in vivo 

data obtained from the OECD QSAR Toolbox [4]. This was then compared to well-established single 

endpoint ML-based QSAR approaches. We have also explored the impact of augmenting the initial 

human health focused data with additional ecotoxicological data, to see if it improves model 

performance (Figure 3. C). Data processing was done using KNIME [5], RDKit [6] and Python (Scikit-

Learn [7], Figure 3. B).

BACKGROUND
At almost every phase of the toxicological risk-assessment process, data gap filling is a recurring challenge. While there are many in silico methods available for the different toxicological endpoints, 

developing, maintaining, and producing predictions using these – such as batteries of Quantitative Structure Activity Relationship (QSAR) models (Figure 1.) – in a reproducible manner can be quite 

challenging and time consuming even for computational experts. Imputation (Figure 2.) offers a viable alternative to use multiple different traditional QSAR models simultaneously, and recent results suggest 

even superior performance compared to using individual structure-based models.

CONCLUSION
On top of the improved performance, the imputation approach also showed its 

resilience to the inclusion of extraneous chemical or experimental data meaning 

it has a reduced need for laborious manual pre-processing tasks such as 

feature selection. Ultimately, this method can make data preparation for ML 

analysis more efficient and easier to manage compared to having multiple 

single endpoint QSAR models. 
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Figure 1: General representation of  the QSAR process using AI generated images [1]

RESULTS
A comparative analysis was done between the traditional QSAR models and imputation models (Figure 4.), focusing on the same dataset to evaluate the additional benefits imputation models offer by learning from 

inter-endpoint relationships. Based on the hypothesis that more pertinent data can enhance the performance of machine learning models – in that case, through the inclusion of data on other ‘Human Health Hazard’ 

endpoints - we explored augmented datasets that contain additional chemical data (Figure 5.). As a last step we added more experimental data to the input data frame (Figure 6.). This data came in the form of 

ecotoxicological measurements from the QSAR Toolbox, and it was hypothesized that its inclusion might improve model performance, if biological information about ecotoxicity correlates with Human Health Hazards 

biological information. Figure 7. shows the variables used as input by the imputation model. 
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Figure 3: Overall workflow for creating the datasets: A) EU list of  flavorings, B) Data sources and processing tools, C) Final datasets created from different combinations of  the available 
feature and endpoint data

Figure 4: Overall performance for regression (A) and 
classification (B) endpoints. Color represent the endpoint, and 
size represents data volume

Figure 7: The variables used as input by the model (columns in the figure) to predict 
each of  the 89 target endpoints (rows in the figure). Darker cells in the figure show 
stronger use of  the input variable

Figure 5: The impact of  providing additional chemistry data on 
regression (A) and classification (B) endpoints. Color 
represent the endpoint, and size represents data volume 

Figure 6: The impact of  providing additional 
experimental data on regression (A) and 
classification (B) endpoints. Color represent the 
endpoint, and size represents data volume
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Figure 2: General concept of the imputation approach using sparse experimental, complete 

phys-chem data to acquire imputed toxicology data [2]
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