

Unveil the unseen: uncover hidden information with machine learning

Gareth Conduit

Model **Sparse** datasets

Exploit property-property relationships

Merge data, computer simulations, and physical laws

Exploit **uncertainties** to deliver most robust predictions

Model **Sparse** datasets

Exploit property-property relationships

Merge data, computer simulations, and physical laws

Exploit **uncertainties** to deliver most robust predictions

Extract information from **noise** itself

Machine learning architecture that can exploit uncertainty

Bogdan Zviazhynski

Unveil the unseen: exploit information hidden in noise, BZ & GJC, Applied Intelligence (2022)

Black box machine learning for materials design

Train the machine learning

Machine learning predicts material properties

Machine learning estimates uncertainty

Handling uncertainty

Unveil the unseen

Design robust formulations

Outlier detection

Design of experiments

Exploit information hidden in noise

Exemplar information extracted from noise

Renormalization group theory applied to phase transitions 1982 Nobel Prize in Physics

Markowitz model 1990 Nobel Memorial Prize

Machine learning exploits uncertainty

Exploit uncertainty to design concrete

Bogdan Zviazhynski

Jess Forsdyke

Professor Janet Lees

Concrete in construction

Cement & aggregate look like noise

Cement & aggregate look like noise

Mission

Design a concrete that is **robust** and **environmentally friendly**

Mission

Design a concrete that is **robust** and **environmentally friendly**

Experimentally validate the concrete

Carbonation is the probe of noise

Depth and uncertainty in carbonation

Machine learning exploits uncertainty

Original model accuracy

Uncertainty improves the model accuracy

Concrete specification

Concrete design

Concrete manufacture

Experimental validation of the proposed mixes

First mix

Second mix

Experiment Model

Target

Exploit uncertainty to predict cancer

Bogdan Zviazhynski

Adriana Fonseca

Dr Jamie Blundell

Screening for disease

Accurate but expensive

Entire population

Screening

Lateral flow 78%

Prostate-specific antigen 25%

Mammogram 87%

Glucose Screening for diabetes 70%

Cytosine nucleobase

Methylation of cytosine

Methylation of cytosine

Required process in mammals, can repress genes

Associated with **Cancer**

Rogue biology causes chaotic methylation resulting in cancer

Methylation of cytosine

40 cohort tracked patients (20 developed acute myeloid leukaemia cancer, 20 did not)

3,054,815,472 base pairs across all chromosomes

Split into chunks

Train a model for methylation density of the chunks

Model for chunk methylation density has uncertainty

Uncertainty is natural owing to permutations of methylation sites

Many permutations are possible

No uncertainty when either fully or not methylated

For each chunk train model for methylation density and uncertainty

Density follows a binomial distribution so its inherent uncertainty is

$$\sqrt{
ho(1-
ho)}$$

Extract the unexplained chaotic methylation due to rogue biology

Identify the critical chunk driving the emergence of cancer

90% accuracy on 40 patients available during study

Blind test on five more patients

Patient	Probability cancerous	Later outcome
19317_U017	0.946	Case
19316_U007	0.451	Control
19317_U015	0.966	Case
19317_U018	0.449	Control
19316_U012	0.934	Case

Further blind tests with data from US collaborators

Explore SCIENCE behind identified critical nucleobase chromosome 3, positions 31800700-31801700

Develop machine learning formalism that can extract information from noise itself

Design and experimentally verify two concrete mixes

Exploit Uncertainty to predict emergence of cancer

Generic approach applicable across the sciences