

Concurrent materials design

Gareth Conduit

TCM Group, Department of Physics

Concurrent materials design

Designing a new material – what is required ?

Collect data for yield stress from 2248 alloys

Properties: Yield stress and hardness

Properties: Yield stress and hardness

Properties: Yield stress and hardness

Phase equilibrium

Calculate grid of $F_{(\gamma,\gamma')}(n_{ni}, n_{AI}, n_{Cr}, n_{Co}, n_{Mo}, n_{Ti})$

Designing a new material – what is required ?

Concurrent materials design

Case study: RR1000

Case study: improved disc alloy

Case study: improved disc alloy

Cost Density Resistivity γ' precipitate

Phase stability Solvus Yield stress UTS Stress rupture Low cycle fatigue Elongation Weldability Oxidation

						000			
	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6
	8.0 %								
	15.2								
le		10							
		595 Hi							
		502 br							
		1/37 MPa							
		1049 MPa							
	1095°C								
		99 %							
			40 %	, D					
			8.9 μΩ	cm					
			8.3 gc	m⁻³					
			11.7 \$	lb⁻¹					

Electron micrograph

Yield stress

Yield stress

Yield stress

Oxidation

Oxidation

Oxidation

Case study: improved disc alloy

Cost Density Resistivity γ' precipitate

Phase stability Solvus Yield stress UTS Stress rupture Low cycle fatigue Elongation Weldability Oxidation

Concurrent materials design

Concurrent materials design

Discovery algorithm Patent GB1302743.8 (2013)

RR1000 grain growth Acta Materialia, 61, 3378 (2013)

Mo-Hf forging alloy Patent GB1307533.8 (2013)

Ni disc alloy Rolls-Royce invention NC12261 (2012)

Mo-Nb forging alloy Patent GB1307535.3 (2013)

Ni combustor liner Rolls-Royce invention NC13006 (2013)

