

Who needs science to design materials?

Gareth Conduit

Merge simulations, physical laws, and experimental data

Reduce the need for expensive experimental development

Accelerate materials and drugs discovery

Generic with proven applications in materials discovery and drug design

Black box for materials design

Training the neural network

Neural network for materials design

Neural network to exploit all available correlations

Neural network is top down

Neural network is top down and bottom up

Neural network must handle fragmented data

Schematic of an engine

Target properties

Cost Density γ' content Phase stability Fatigue life Yield stress Ultimate tensile strength 300hr stress rupture Cr activity γ' solvus **Tensile elongation**

- < 33.7 \$kg⁻¹
- < 8281 kgm⁻³
- < 50.4 vol%
- > 99.0 vol%
- > 10^{3.9} cycles
- > 752.2 MPa
- > 960.0 MPa
- > 674.5 MPa
 - > 0.14
 - > 983°C
 - > 11.6%

Maximize the likelihood of success

Proposed alloy

Ti: 3.0

Co: 20.0

Fe: 3.9

Mn: 0.2

Mo: 0.5

Si: 0.2

W: 0.5

Ta: 4.9

C: 0.02

B: 0.06

Nb: 1.1

AI: 2.4

Zr: 0.18

900°C

A STATISTICS

30 hours

Microstructure

Precipitates strengthen the alloy

Predict the yield stress

Test the yield stress

Test the yield stress

Test the oxidation resistance

Microstructure strengthens the alloy

Precipitates

Aggregate

Microstructure defined by the heat treatment

Correct heat treatment

Incorrect heat treatment

Microstructure distribution links to the heat treatment

Correct heat treatment

Incorrect heat treatment

Microstructure distribution links to the heat treatment

Correct heat treatment

Incorrect heat treatment

Standard neural network

Composition Composition **Heat treatment Heat treatment Phase behavior Phase behavior Properties Properties**

Neural network transmits noise as uncertainty

Incorporate noise into the neural network

Exploit noise in the neural network

Exploit noise in the neural network

Point cloud: noise in the data

Point cloud: benefits of including noise

Recover presence of people to 90% accuracy Also applies to trees and railings

More materials designed

Molybdenum forging alloys

3D printed alloydesigned from7 data entries

Found 192 errors in materials databases

Even more materials designed

Battery design with DFT and experimental data

Designing lubricants with DFT and experimental data

Thermometer with quantum and experimental data

Data available for drug discovery

10,000 proteins with 2,500,000 compounds

Original dataset 0.05% complete

Impute the database used for drug discovery

10,000 proteins with 2,500,000 compounds

Original dataset 0.05% complete

Filled 32% of the entries

Drug discovery with additional descriptors

Improved drug discovery

Include drug structural information to fill to 46%

Saved >\$1billion in experimental costs

Startup intellegens productizing the neural network

Input properties - unknowns			
Yield stress / MPa	1000.0	٢	Maximize 😒
Ultimate Tensile Strength / MPa	1500	٢	Maximize 📀
Elongation	10	٢	Minimize 💿
Input composition			
Iron		٢	remain %
Carbon		٢	0 to 0.43 %
Manganese		٢	0 to 3.0 %
Silicon		٢	0 to 4.75 %
Chromium		٢	0 to 17.5 %
Nickel		0	0 to 21.0 %
Molybdenum		٢	0 to 9.67 %
Vanadium		٢	0 to 4.32 %

Output properties - predicted			
Yield stress	1224	0	± 26 MPa
Ultimate tensile strength	1952	\$	± 84 MPa
Elongation	7	0	± 1 %
Output composition			
Iron	57.25	٢	%
Carbon	0.04	0	%
Manganese	0.02	0	%
Silicon	2.59	0	%
Chromium	11.22	0	%
Nickel	15.05	0	%
Molybdenum	2.45	0	%
Vanadium	0.62	٢	%

Apply deep learning to high-value **fragmented** data

Exploit knowledge of probability distribution of the data

Experimentally **Proven** materials and drugs design with 7 companies, founded startup **intellegens**

Apply deep learning to high-value fragmented data

Exploit knowledge of probability distribution of the data

Experimentally **Proven** materials and drugs design with 7 companies, founded startup **intellegens**

Merge experiments and simulations into **holistic** design tool

Apply deep learning to high-value **fragmented** data

Exploit knowledge of probability distribution of the data

Experimentally **Proven** materials and drugs design with 7 companies, founded startup **intellegens**

Merge experiments and simulations into holistic design tool

Scientists establish all possible **SOUICES** of information