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Two types of ferromagnetism

 Localised ferromagnetism: moments confined in real space

Ferromagnet

Antiferromagnet

 Itinerant ferromagnetism: electrons in Bloch wave states
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Stoner model for itinerant ferromagnetism

 Repulsive interaction energy U=gn↑n↓ 

 A ΔE shift in the Fermi surface causes:

(1) Kinetic energy increase of ½νΔE2

(2) Reduction of repulsion of -½gν2ΔE2

 Total energy shift is ½νΔE2(1-gν) so a 
ferromagnetic transition occurs if gν>1
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Ferromagnetism in iron and nickel

 The Stoner model predicts a second order transition

that is characterised by a divergence of length-scales (peaked heat 
capacity and susceptibility)



  

Breakdown of Stoner criterion — ZrZn2

 At low temperature and high pressure ZrZn2 has a first order transition

Uhlarz et al., PRL 2004
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Breakdown of Stoner criterion — MnSi

Pfleiderer et al., PRB 1997

Pfleiderer et al., PRB 1997
Vojta et al., 1999 Ann. Phys. 1999

 MnSi also displays a first order phase transition
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pressure

High 
pressure



  

Breakdown of Stoner criterion

 Generic phase diagram of the first order transition

 Two explanations of first order behaviour:

(1) Lattice-driven peak in the density of states                                         
     (Pfleiderer et al. PRL 2002, Sandeman et al. PRL 2003)

(2) Transverse quantum fluctuations

interaction 
strength

PM: Partially magnetised
FM: Fully magnetised
TCP: Tricritical point
QCP: Quantum critical point



  

Cold atomic gases — interactions

 A gas of Fermionic atoms is laser and evaporatively cooled to ~10-8K

 Two-body contact collisions are controlled with a Feshbach resonance 
tuned by an external magnetic field

 Can tune from bound BEC molecules to weakly bound BCS regime1

 Repulsive interactions allow us to investigate itinerant ferromagnetism

1Lofus et al. PRL 2002, O'Hara et al. Science 2002, Bourdel et al. PRL 2003

Strong interactions                    Weak interactions
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Feshbach resonance

 Control the relative energy level of the states with a magnetic field

Tuned 
with B

BEC (boson)

BCS (fermions)Repulsive (fermions)

Unitarity

kFa>0 → Repulsive

kFa<0 → Attractive

Tuned 
with B

Tuned 
with B

Van der Waals



  

Cold atomic gases — spin

 Two fermionic atom species have a pseudo-spin:

40K mF=9/2 maps to spin 1/2

40K mF=7/2 maps to spin -1/2

 The up-and down spin particles cannot interchange — population 
imbalance is fixed. Possible spin states are:

S=1, Sz=1 State not possible as Sz has changed

S=1, Sz=-1 State not possible as Sz has changed

 S=1, Sz=0 Magnetic moment in plane

 S=0, Sz=0 Non-magnetic state

 Ferromagnetism, if favourable, must form in plane
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Outline of uniform analysis

 Survey previous analytical work on itinerant ferromagnetism

 Outline how calculation proceeds

 Demonstrate physical origin of first order transition

 Analyse population imbalance in cold atom gas

 Employ phenomenology to study putative textured phase



  

Analytical method

 System free energy F=-kBTlnZ is found via the partition function 

 Decouple using only the average magnetisation

 gives 

i.e. the Stoner criterion

 The coupling of fields1 can drive a transition first order 

1Rice 1954, Garland & Renard 1966, Larkin & Pikin 1969
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1st order

Extension to Hertz-Millis

 Hertz-Millis (spin triplet channel) [Hertz PRB 1976 & Millis PRB 1993]

 Belitz-Kirkpatrick-Vojta (soft particle-hole &
magnetisation) [Belitz et al. Z. Phys. B 1997]

 Chubukov-Pepin-Rech approach [Rech et al. 2006]

 Second order perturbation theory [Abrikosov 1958 &
Duine & MacDonald 2005]
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New approach to fluctuation corrections

 Analytic strategy:

1) Decouple in both the density and spin channels (previous 
approaches employ only spin)

2) Integrate out electrons

3) Expand about uniform magnetisation

4) Expand density and magnetisation fluctuations to second order

5) Integrate out density and magnetisation fluctuations

 Aim to uncover connection to second order perturbation theory

 Unravel origin of logarithmic divergence in energy and relation to 
tricritical point structure

 Examine textured phase

Z=∫D exp−∫∑  −i−−g∫  



  

Integrating out electron fluctuations

 Partition function:

1) Decouple in both the density (ρ) and spin (φ) channels

2) Integrate out electrons

Z=∫D exp−∫∑  −i−
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Integrating out magnetisation fluctuations

3) Expand about uniform magnetisation m

4) Expand density and magnetisation fluctuations to second order

5) Integrate out density and magnetisation fluctuations
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Result

 Final expression for the free energy

is identical to second order perturbation theory [Abrikosov 1958, Lee & 
Yang 1960, Mohling, 1961, Duine & MacDonald, 2005]
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Particle-hole perspective

 The free energy is

with a particle-hole density of states

 Enhanced particle-hole phase space at zero magnetisation drives 
transition first order

 Recover              at T=0

 Links quantum fluctuation to second order perturbation approach
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Ferromagnetic transition

 Considering the soft transverse magnetic fluctuations drives the 
transition first order

 Recover the following phase diagram
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Population imbalanced case

 Phase diagram with population imbalance P in the canonical regime
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M
┴

Mspon=M
┴

P=0

UnM: Unmagnetised
PM: Partially magnetised
FM: Fully magnetised

Conduit & Simons, PRB 2009



  

Summary of uniform work

 Extended Hertz-Millis by considering particle-hole, magnetisation and 
density fluctuations, revealing a first order phase transition

 Motivated by Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) and experiment 
now examine a putative textured ferromagnetic phase

 Lattice-driven mechanism1 could give rise to texture, now consider a 
quantum driven mechanism

1Beridge et al., PRL 2009



  

ZrZn2

 Kink in magnetisation indicative of novel phase behaviour

Uhlarz et al., PRL 2004

Kink

17.1 kbar



  

Sr3Ru2O7

 Resistance anomaly

 Consistent with a new crystalline phase
Grigera et al., Science 2004

Scattering of M fluctuations

Scattering off M 
crystal?



  

Previous analytical work

 Pomeranchuk instability – Grigera et al., Science 2005

 Nanoscale charge instabilities – Honerkamp, PRB 2005

 Electron nematic – Kee & Kim, PRB 2005

 Magnetic mesophase formation – Binz et al., PRL 2006

 Previous spin-spiral state studies:

 Rech et al., PRB 2006, Belitz et al., PRB 1997

 Lattice driven reconstruction – Berridge et al. PRL 2009



  

Approach to textured phase

 Homogeneous strategy:

1) Decouple in both the density 
and spin channels

2) Integrate out electrons

3) Expand about uniform 
magnetisation

4) Expand magnetisation and 
density fluctuations to second 
order

5) Integrate out density and 
magnetisation fluctuations

 Textured strategy:

1) Gauge transform electrons

2) Decouple in both the density 
and spin channels

3) Integrate out electrons

4) Expand about textured 
magnetisation to second order

5) Expand magnetisation and 
density fluctuations to second 
order

6) Integrate out density and 
magnetisation fluctuations



  

Gauge transformation

 Partition function

1) Gauge transform electrons

 Make the mapping of the fermions

 Renders magnetisation mσx uniform with a spin dependent dispersion

 Diagonalisation gives the energies relative to a spiral

which replaces εp±gm in the uniform case

 Analysis then proceeds as before
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Ginzburg-Landau analysis

 Coefficient of m4 has the same form as q2m2

 In analogy to FFLO1 we can look at a Ginzburg-Landau analysis

 Development of the tricritical point is accompanied by sign reversal of 
the gradient term as both contain G4

1Saint-James et al. 1969, Buzdin & Kachkachi 1996
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Results

 Uniform ferromagnetic phase with tricritical point



  

Results

 Textured phase preempted transition with q=0.1kF



  

Quantum Monte Carlo

 Ran ab initio Quantum Monte Carlo calculations on the system using 
the CASINO program

 After a gauge transformation used the non-collinear trial wave function

 Single determinant not exact spin eigenstate
in finite sized system

 Planar spin spiral at θ=π/2

 Optimisable Jastrow factor
J(R) accounts for
electron correlations
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Quantum Monte Carlo: Uniform phase

 First order transition into uniform phase



  

Quantum Monte Carlo: Textured phase

 Textured phase preempted transition with q=0.2kF



  

Summary

 Considering soft particle-hole modes, density & magnetic fluctuations 
revealed a first order transition

 Probed population imbalance in atomic gases

 Quantum fluctuation driven textured ferromagnetic phase 
reconstruction

 Confirmed phases with ab initio QMC calculations

 Further questions: interplay of lattice & quantum fluctuations and 
possible nematic or other phases

 Acknowledge EPSRC funding



  

Grand canonical ensemble

 In the grand canonical ensemble we obtain



  

Trap behaviour

 Trap behaviour corresponds to three trajectories in the phase diagram



  

QMC calculations

 Fluctuation corrections are not exact and higher order terms might 
destroy the first order phase transition

 Exact (except for the fixed node approximation) Quantum Monte Carlo 
calculations confirmed a first order phase transition
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Consequences of fluctuations

 In a similar way we can expand the energy in magnetisation to second 
order to account for fluctuations

 The coupling of fields1 can drive a transition first order 

1Rice 1954, Garland & Renard 1966, Larkin & Pikin 1969
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FFLO

 The Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase has a modulated 
superconducting gap

 A Cooper pair has zero momentum, with unequal Fermi surfaces the 
Cooper pair carries momentum, causing a modulated superconducting 
gap parameter Δ

 The FFLO phase preempts the normal phase-superfluid transition

GJC et al. PRB 2008
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Wohlfarth Rhodes criterion

 Do fluctuations influence the transition through the density of states?

 The first order transition could be caused by a peak in the density of 
states [Sandeman et al. PRL 2003, Pfleiderer et al. PRL 2002]

 If the density of states ν(E) changes rapidly with energy then a 
ferromagnetic transition is favourable when [Binz et al. EPL 2004]

 ' '3 ' 2



  

Improved Wohlfarth Rhodes criterion

 Accounting for changes in the energy spectrum ε gives criterion

 The terms have magnitude

Wohlfarth Rhodes 
criterion

Overall change in 
energy spectrum 
during the transition

How energy spectrum 
changes during transition 
at the Fermi surface

< 0

Transition due to changing energy 
spectrum at the Fermi surface

a ,b
Differentiate energy spectrum 
wrt changing Fermi surface

Differential of energy 
spectrum curve



  

NbFe2

 NbFe2 displays antiferromagnetic order where it is expected to be 
ferromagnetic — could this be a textured ferromagnetic phase? 

Crook & Cywinski, JMMM 1995

H



  

MnSi

 MnSi displays non-Fermi liquid behaviour consistent with a spin state 
(though in a non-centrosymmetric crystal)

Pfleiderer et al., Nature 2004

Tricritical point



  

MnSi

 MnSi displays non-Fermi liquid behaviour consistent with a spin state 
(though in a non-centrosymmetric crystal)

Pfleiderer et al., Nature 2004

Tricritical point
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