



# Machine learning for battery discovery

Gareth Conduit



- Train from sparse datasets
- Merge simulations, physical laws, and experimental data
- Reduce the need for expensive experimental development
- Accelerate materials and drugs discovery
- Generic with proven applications in materials discovery and drug design



## Training machine learning





## Machine learning for materials design



#### Two sources of information





#### Experiment

Accurate Quantities of interest Lack of data Expensive



#### Computational

Less accurate Atom level insights Perform on demand Cheap to perform Merge information with machine learning



#### Experiment

Accurate Quantities of interest Lack of data Expensive

#### Computational

Less accurate Atom level insights Perform on demand Cheap to perform

## Nickel-Cobalt-Manganese (NCM) battery materials





## Design variables and target properties



Concentration of Ni, Mn, Co Location of atoms



Charge cycles Voltage Total charge Volume change Li migration Ground state Charge rate

Design variables and target properties with DFT



153153000 permutations =42000 years

Only examine order that fits into the unit cell







### Train on initial results



## Guided calculation for recursive learning



#### Lattice constants





### How many calculations are required





Machine learning guidance requires 5-times fewer calculations

## Predicting the lattice constant from DFT





| Structure                                                                         | a (Å) | c (Å)  |
|-----------------------------------------------------------------------------------|-------|--------|
| LiNi <sub>0.4</sub> Co <sub>0.2</sub> Mn <sub>0.4</sub> O <sub>2</sub> prediction | 2.863 | 14.257 |
| LiNi <sub>0.4</sub> Co <sub>0.2</sub> Mn <sub>0.4</sub> O <sub>2</sub> experiment | 2.866 | 14.254 |

## Tracking Li migration







+ Li 🌔







Original structure

Remove Li

Relax atoms

+ Li

Reinsert Li



Relax atoms

### Li migration optimal structures





Ground state





## Li migration optimal structures displacing 4xLi













Ground stateConfiguration 1Configuration 2Configuration 3Configuration 482% robust100% robust100% robust100% robust100% robust

### Merge computational and experimental data

Composition

Local order



Experiment

Cost

### Merge computational and experimental data





### Battery management system

Juxtapose physics-based modeling with machine learning

In-service data from a particular battery and others deployed to make bespoke predictions of remaining useful life

Model that spans time-scales to permit simultaneous state-of-health and state-of-charge predictions

Data from testing in first few cycles to predict longterm battery performance machine intelligence

REVIEW ARTICLE https://doi.org/10.1038/s42256-020-0156-7

Check for updates

### Predicting the state of charge and health of batteries using data-driven machine learning

Man-Fai Ng¹, Jin Zhao², Qingyu Yan²⊠, Gareth J. Conduit³⊠ and Zhi Wei Seh<sup>©</sup>4⊠

Machine learning is a specific application of artificial intelligence that allows computers to learn and improve from data an experience via sets of algorithms, without the need for reprogramming. In the field of energy storage, machine learning ha recently emerged as a promising modelling approach to determine the state of charge, state of health and remaining useful life of batteries. First, we review the two most studied types of battery models in the literature for battery state prediction: th equivalent circuit and physics-based models. Based on the current limitations of these models, we showcase the promise o various machine learning techniques for fast and accurate battery state prediction. Finally, we highlight the major challenge involved, especially in accurate modelling over length and time, performing in situ calculations and high-throughput data gen eration. Overall, this work provides insights into real-time, explainable machine learning for battery production, managemen and optimization in the future.

where the second second

where  $C_{\text{curr}}$  is the capacity of the battery in its current state,  $C_{\text{full}}$  is the capacity of the battery in its fully charged state,  $C_{\text{nom}}$  is the nomina capacity of the brand-new battery<sup>2</sup>.

In essence, SOC denotes the capacity of the battery in its curren state compared to the capacity in its fully charged state (equivalen of a fuel gauge), while SOH describes the capacity of the batter

Predicting the State of Charge and Health of Batteries using Data-Driven Machine Learning Nature Machine Intelligence 2, 161 (2020)

#### Battery component specification

Improved understanding of battery properties

Empowers specification of the optimal components

Bespoke battery design for each customer

machine intelligence

REVIEW ARTICL

Check for updates

#### Predicting the state of charge and health of batteries using data-driven machine learning

Man-Fai Ng<sup>1</sup>, Jin Zhao<sup>2</sup>, Qingyu Yan<sup>2</sup> <sup>∞</sup>, Gareth J. Conduit<sup>3</sup> <sup>∞</sup> and Zhi Wei Seh <sup>©4</sup> <sup>∞</sup>

Machine learning is a specific application of artificial intelligence that allows computers to learn and improve from data an experience via sets of algorithms, without the need for reprogramming. In the field of energy storage, machine learning ha recently emerged as a promising modelling approach to determine the state of charge, state of health and remaining useful life of batteries. First, we review the two most studied types of battery models in the literature for battery state prediction: th equivalent circuit and physics-based models. Based on the current limitations of these models, we showcase the promise o various machine learning techniques for fast and accurate battery state prediction. Finally, we highlight the major challenge involved, especially in accurate modelling over length and time, performing in situ calculations and high-throughput data gen eration. Overall, this work provides insights into real-time, explainable machine learning for battery production, managemen and optimization in the future.

which is the state of the state

where  $C_{\text{curr}}$  is the capacity of the battery in its current state,  $C_{\text{full}}$  is the capacity of the battery in its fully charged state,  $C_{\text{nom}}$  is the nomina capacity of the brand-new battery<sup>2</sup>.

In essence, SOC denotes the capacity of the battery in its curren state compared to the capacity in its fully charged state (equivalen of a fuel gauge), while SOH describes the capacity of the batter

Predicting the State of Charge and Health of Batteries using Data-Driven Machine Learning Nature Machine Intelligence 2, 161 (2020)

## Other materials designed

Steel welding consumables

Titanium additive manufacturing

High temperature alloys

Lubricants

Journal of Chemical Physics 153, 014102 (2020) Fluid Phase Equilibria 501, 112259 (2019) Materials & Design 168, 107644 (2019) Computational Materials Science 147, 176 (2018)

Physical Review Applied 12, 034024 (2019) Matter 1, 219 (2019) Scripta Materialia 146, 82 (2018) Materials & Design 131, 358 (2017)











### Delivery



#### API for integration

#### Within the browser







Merge computational simulations and experimental data Design battery materials

Guided simulations and experiments leads to 5x speedup

Embedded battery management software