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Train from sparse datasets

Merge simulations, physical laws, and experimental data

Reduce the need for expensive experimental development

Accelerate materials and drugs discovery

Generic with proven applications in materials discovery and drug 
design

Alchemite™ for materials design



Black box machine learning for materials design
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Two sources of information
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Merge information with machine learning
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Nickel-Cobalt-Manganese (NCM) battery materials



  

Design variables and target properties
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Design variables and target properties with DFT
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Approach: exhaustive exploration of unit cells



  

Approach: exhaustive exploration of unit cells



  

Approach: exhaustive exploration of unit cells



  

Approach: exhaustive exploration of unit cells

153153000 
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=42000 years

Only examine
order that fits

into the unit cell



  

Train on initial results
En

er
gy

Design space



  

Guided calculation for recursive learning
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How many calculations are required

Machine learning guidance requires 5-times fewer calculations
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Predicting the lattice constant from DFT

Structure a (Å) c (Å)

LiNi0.4Co0.2Mn0.4O2 prediction 2.863 14.257
LiNi0.4Co0.2Mn0.4O2 experiment 2.866 14.254
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Tracking Li migration

Original structure Remove Li Relax atoms Reinsert Li Relax atoms

+ Li + Li + Li



  

Li migration optimal structures

Ground state

82% robust



  

Li migration optimal structures displacing 4xLi

Ground state Configuration 1 Configuration 2 Configuration 3 Configuration 4

82% robust 100% robust 100% robust 100% robust 100% robust



  

Merge computational and experimental data
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Merge computational and experimental data
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Battery management system

Juxtapose physics-based modeling with machine 
learning

In-service data from a particular battery and others 
deployed to make bespoke predictions of remaining 
useful life

Model that spans time-scales to permit 
simultaneous state-of-health and state-of-charge 
predictions

Data from testing in first few cycles to predict long-
term battery performance

 Predicting the State of Charge and Health of Batteries using Data-Driven Machine Learning
Nature Machine Intelligence 2, 161 (2020)



  

Battery component specification

Improved understanding of battery properties

Empowers specification of the optimal components

Bespoke battery design for each customer

 Predicting the State of Charge and Health of Batteries using Data-Driven Machine Learning
Nature Machine Intelligence 2, 161 (2020)



  

Other materials designed

Steel welding consumables

Titanium additive manufacturing

High temperature alloys

Lubricants

Journal of Chemical Physics 153, 014102 (2020) Physical Review Applied 12, 034024 (2019)
Fluid Phase Equilibria 501, 112259 (2019) Matter 1, 219 (2019)
Materials & Design 168, 107644 (2019) Scripta Materialia 146, 82 (2018)
Computational Materials Science 147, 176 (2018) Materials & Design 131, 358 (2017)



  

Delivery

API for integration Within the browser



  

Prospects for the future

Merge computational simulations and experimental data

Design battery materials

Guided simulations and experiments leads to 5x speedup

Embedded battery management software
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