

Learning to commercialize deep learning

Gareth Conduit

Merge simulations, physical laws, and experimental data

Reduce the need for expensive experimental development

Accelerate materials and drugs discovery

Generic with proven applications in materials discovery and drug design

Design new materials that fulfil **multiple target** criteria in yield, hardness, melting, oxidation, cost, density, fatigue, toughness, creep, and processibility

Design new materials that fulfil **multiple target** criteria in yield, hardness, melting, oxidation, cost, density, fatigue, toughness, creep, and processibility

Use a standard neural network to predict each property, **Combine results** by multiplying likelihoods

Ltot=Lyield Lhardness Lmelting Loxidation Lcost Ldensity Lfatigue Ltoughness Lcreep Lprocessibility

Ti: 3.0

Co: 20.0

Fe: 3.9

Mn: 0.2

Mo: 0.5

W: 0.5

Si: 0.2

Ta: 4.9

C: 0.02

B: 0.06

Nb: 1.1

AI: 2.4

Zr: 0.18

Ni: 47.2

900°C

2012: Microstructure

2012: Predict the yield stress

2012: Test the yield stress

2012: Test the yield stress

2012: Alloys designed

Cr-Cr₂Ta alloys Intermetallics, 48, 62

Combustor alloy GB1408536

Discovery algorithm EP14153898 US 2014/177578

Mo-Hf forging alloy EP14161255 US 2014/223465

Mo-Nb forging alloy EP14161529 US 2014/224885

RR1000 grain growth

Acta Materialia, 61, 3378

Ni disc alloy EP14157622 US 2013/0052077 A2

2013: Property-property correlations

::: Materials

Solutions

2013: Alloy for 3D printing: property-property correlations

Extrapolate ten results for processibility with weldability

CompositionCompositionImage: Sector Sector

:: Materials

 \equiv Solutions

2013: Alloy for 3D printing: property-property correlations

Extrapolate ten results for processibility with weldability

2014: Further materials design

Battery design with DFT and experimental data

2014: Further materials design

Battery design with DFT and experimental data

Designing lubricants with DFT and experimental data

2014: Further materials design

Battery design with DFT and experimental data

SAMSUNG

Designing lubricants with DFT and experimental data

Identified and corrected errors in materials database

2015: Further capabilities

Extract information out of noise

2015: Further capabilities

Extract information out of noise

Merge two datasets together

2015: Further capabilities

Extract information out of noise

Merge two datasets together

Train on encrypted data

2016: Understanding of business models

2016: Understanding of business models

2016: Drug discovery

Protein activity dataset from 0.1% complete

Enhance protein activity dataset from 0.1% to 20% complete

2017: Startup Intellegens

Dr Gareth Conduit

Ben Pellegrini

2017: Startup Intellegens

Dr Gareth Conduit

Ben Pellegrini

Graham Snudden

Dr Elaine Loukes

2017: Startup Intellegens

Dr Gareth Conduit

Ben Pellegrini

Graham Snudden

Dr Elaine Loukes

Dr Thomas Whitehead

2017: Startup: initial contracts

Drug discovery

2017: Startup: initial contracts

Drug discovery

BenevolentAl

2017: Startup: initial contracts

Drug discovery

Materials design

e-therapeutics

BenevolentAl

Drug discovery

2018: Startup: plan to productize

ut composition				\bigcirc	Output properties - predicted
Iron	52.93	 •	remain %	BREDICT	
Carbon	0.2		0 to 0.43 %	PACEDIOT	Ultimate t
Manganese	1		0 to 3.0 %		2021
Silicon	2		0 to 4.75 %		
Chromium	9		0 to 17.5 %		
Nickel	10		0 to 21.0 %		
Molybdenum	4.5	•	0 to 9.67 %		
Vanadium	2.1		0 to 4.32 %		
Nitrogen	0.07		0 to 0.15 %		
Niobium	1.2		0 to 2.5 %		toon monit
Cobalt	10		0 to 20.1 %		C (Ca) Cr (C) Mm
Tungsten	4	•	0 to 9.18 %	Cr (ch	(carbon)
Aluminium	1	۲	0 to 1.8 %	Mn (mai	nganese)
Titanium	2	•	0 to 2.5 %	Mo (moly	bdenum)
Heat treatment	1000	 	800-1150 C	N	i (nickel)
				Si	(silicon)
				Young's	modulus

Yield stress	1320	± 322 MPa
Ultimate tensile strength	1951	± 209 MPa
Elongation	9	+ 3 %

2018: Exploring other verticals

Autonomous vehicles

2018: Exploring other verticals

Autonomous vehicles

Healthcare

2018: Exploring other verticals

Autonomous vehicles

Healthcare

Infrastructure

SKANSKA

Develop technology motivated by problems

Develop technology motivated by problems

Flexibility to adapt to market need

Develop technology motivated by problems

Flexibility to adapt to market need

Willingness to take risks to enable greater returns