

Machine learning for data-driven design of materials and molecules

Gareth Conduit

Model **sparse** datasets by exploiting **property-property** relationships

Merge data, computer simulations, and physical laws

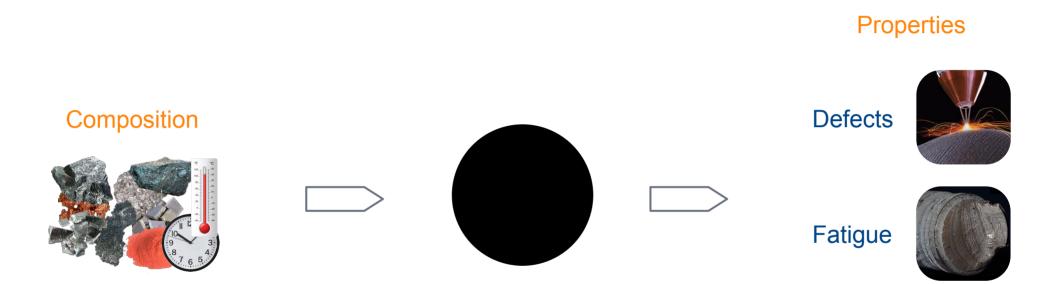
Exploit **uncertainty** to focus on most **robust** designs

Reduce costly experiments to accelerate discovery

Commercialized as Alchemite[™] by Intellegens

Challenge: What other physical information could be extracted from a dataset?

Black box machine learning for materials design



Strength

Machine learning predicts material properties

Properties

Strength

Nickel superalloys with Rolls Royce University Technology Centre

Dr Vadegadde Duggappa

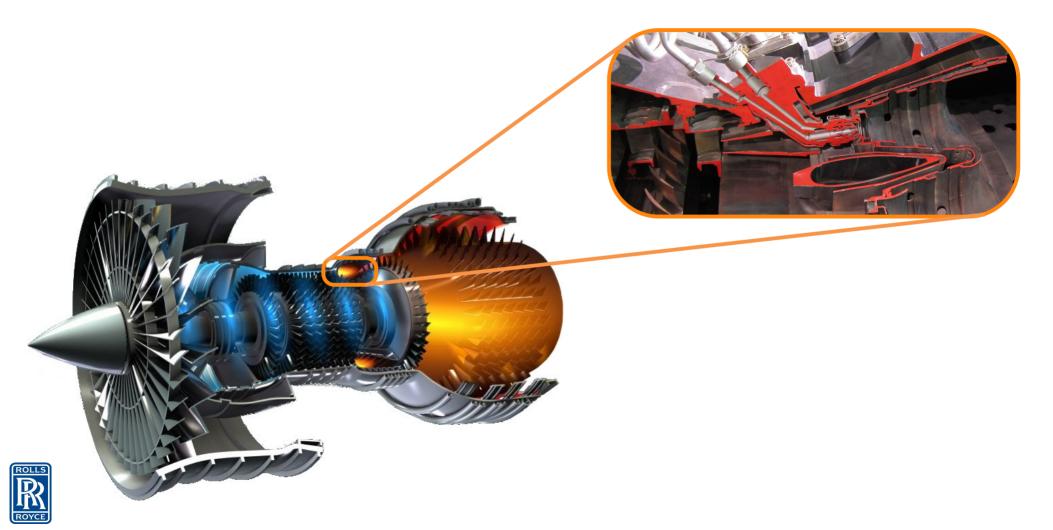
Dr Bryce Conduit

Professor Howard Stone

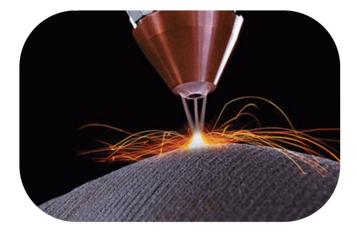
Dr Gareth Conduit

Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

Combustor in a jet engine



Defects form during printing



Laser

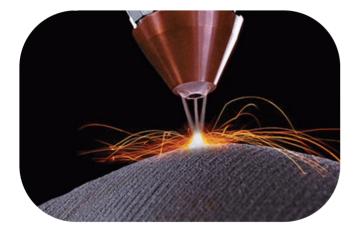
Data available to model defect density

Composition and heat treatment space **30** dimensions

Requires **31** points to fit a hyperplane

Just **10** data entries available to model defect density

Ability for printing and welding are strongly correlated



Laser

First predict weldability

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

Use weldability to predict defects formed

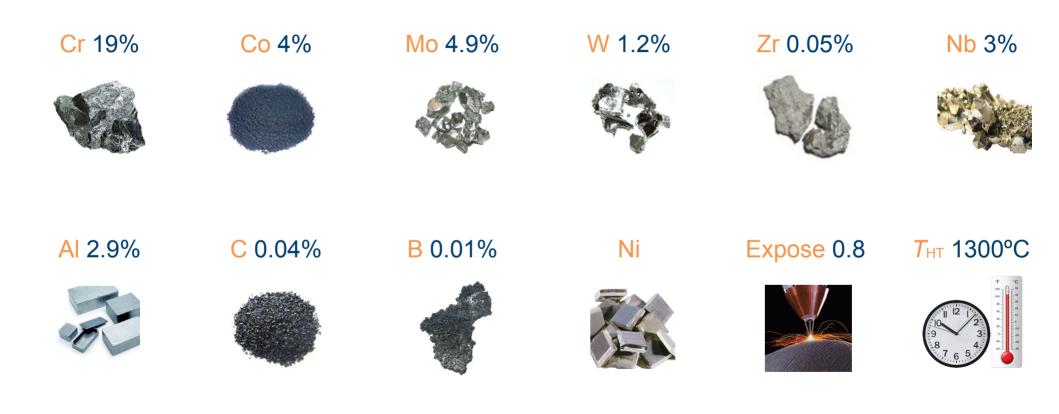
Use 1000 weldability entries to understand complex composition \rightarrow weldability model

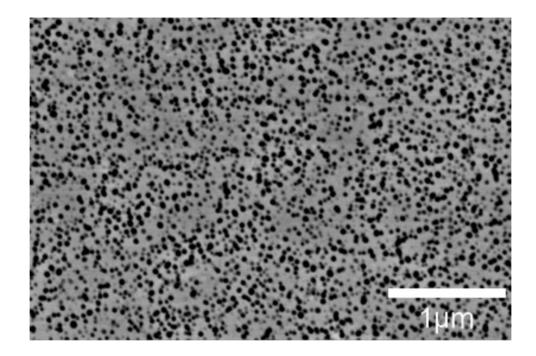
10 defects entries capture the simple weldability \rightarrow defect relationship

Two interpolations give composition → defects extrapolation

Elemental cost	< 25 \$kg⁻¹		
Density	< 8500 kgm ⁻³		
γ' content	< 25 wt%		
Oxidation resistance	< 0.3 mgcm ⁻²		
Defects	< 0.15% defects		
Phase stability	> 99.0 wt%		
γ' solvus	> 1000°C		
Thermal resistance	> 0.04 KΩ⁻¹m⁻³		
Yield stress at 900°C	> 200 MPa		
Tensile strength at 900°C	> 300 MPa		
Tensile elongation at 700°C	> 8%		
1000hr stress rupture at 800°C	> 100 MPa		
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles		

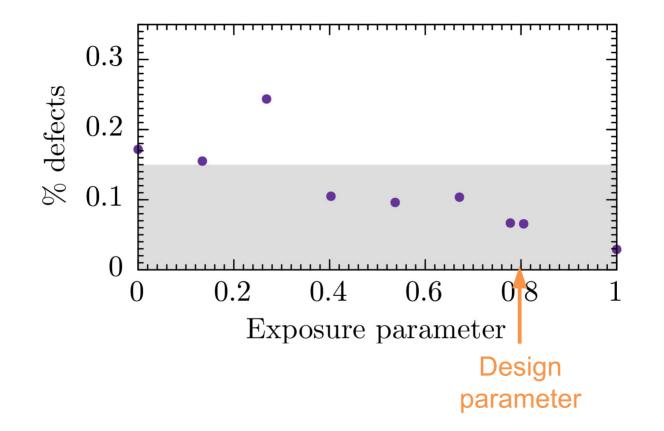
Composition and processing variables





Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

Testing the defect density



Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

2013

Multiple properties for Rolls Royce engines

2013 2014

Multiple properties for Rolls Royce engines Propertyproperty correlations with Rolls Royce and BP

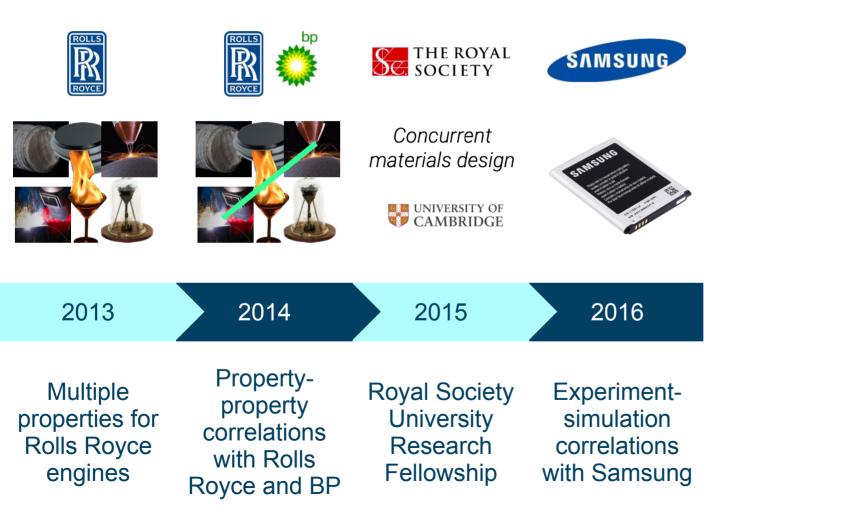
Concurrent materials design

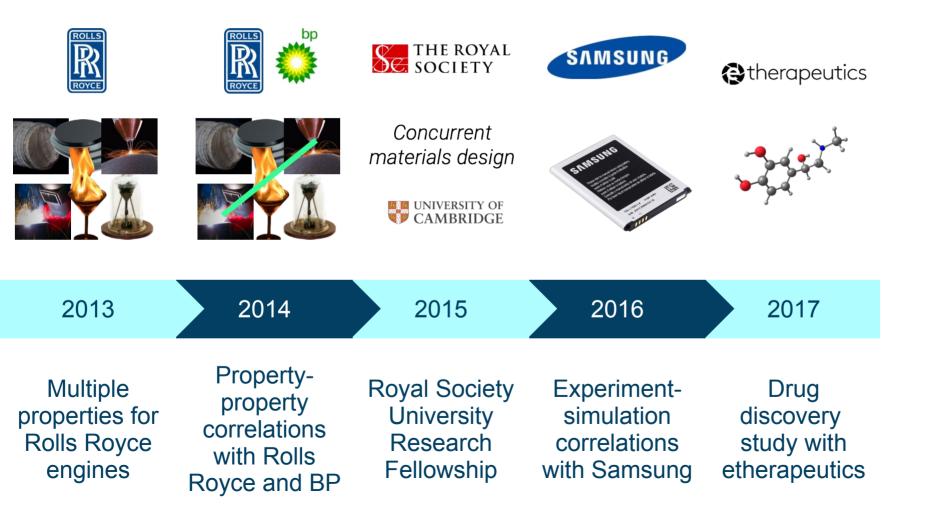
> UNIVERSITY OF CAMBRIDGE

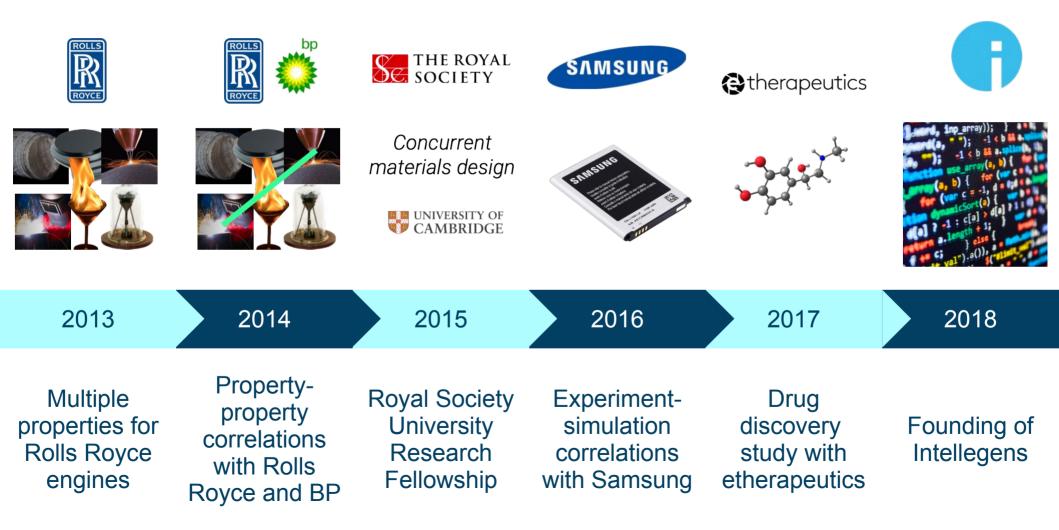
201320142015MultipleProperty-
property-
property-
property-
Royal Society

Multiple properties for Rolls Royce engines Propertyproperty correlations with Rolls Royce and BP

Royal Society University Research Fellowship



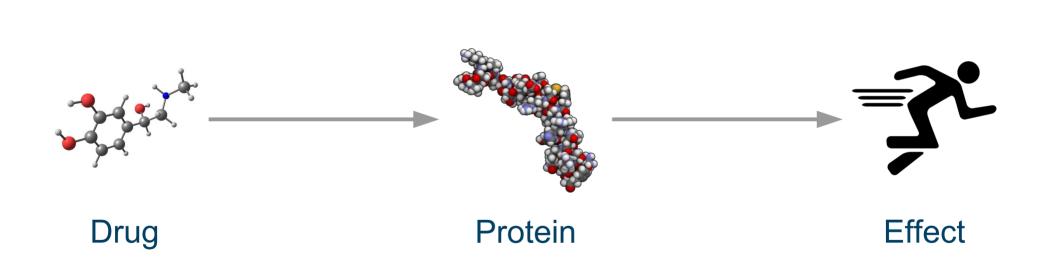


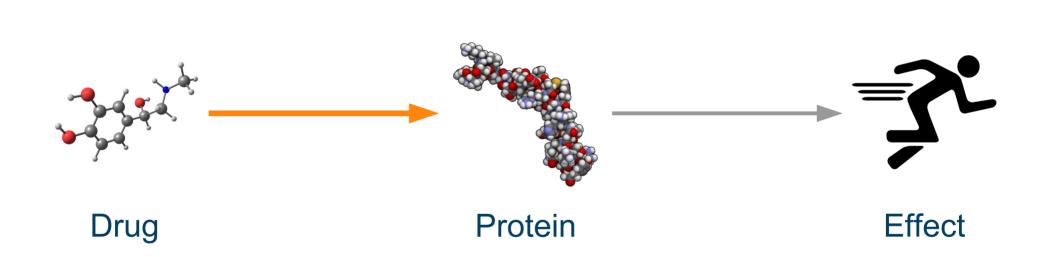


Exploit uncertainty to design a drug with Optibrium

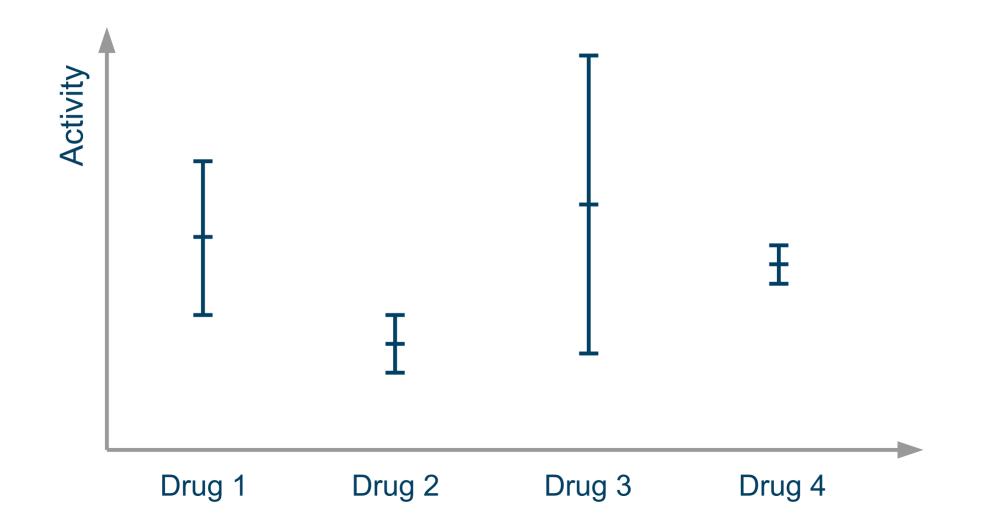
An Open Drug Discovery Competition: Experimental Validation of Predictive Models in a Series of Novel Antimalarials Journal of Medicinal Chemistry 64, 16450 (2021) Imputation of Assay Bioactivity Data using Deep Learning Journal of Chemical Information and Modeling, 59, 1197 (2019)

Open Source Malaria contest

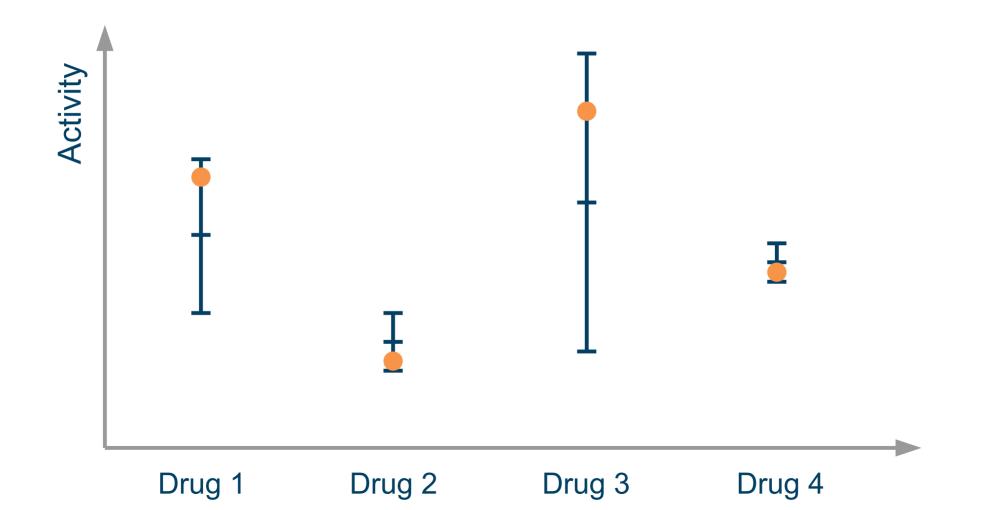




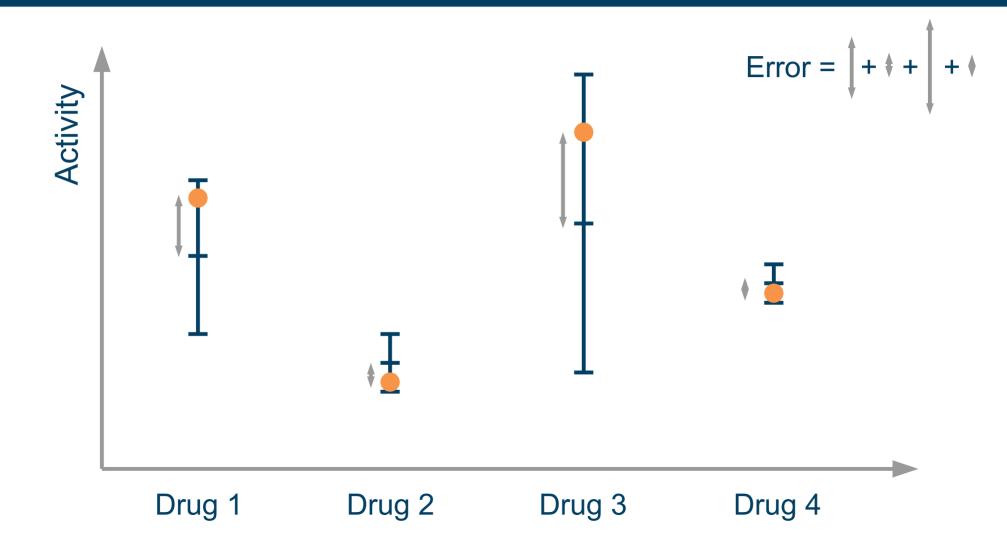
Predictions have an uncertainty



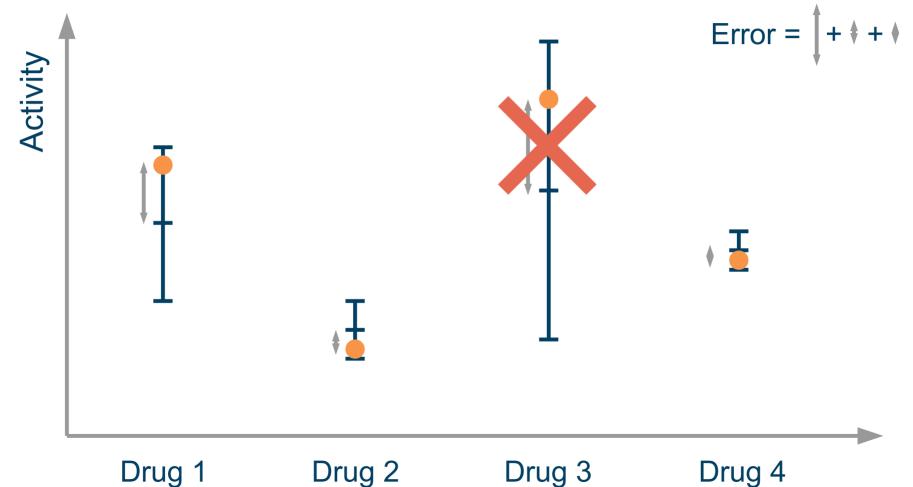
Validation data typically within one standard deviation



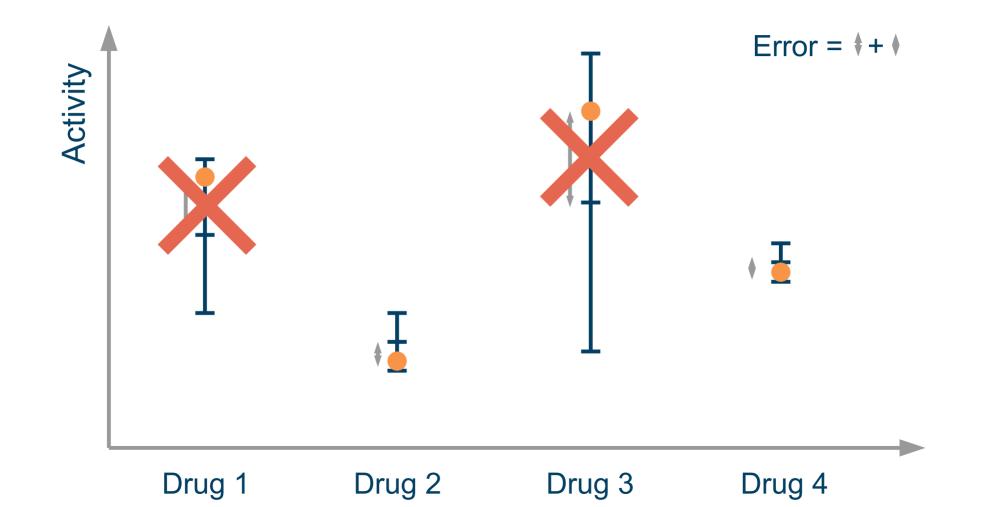
Accuracy R^2 metric calculated with difference from mean



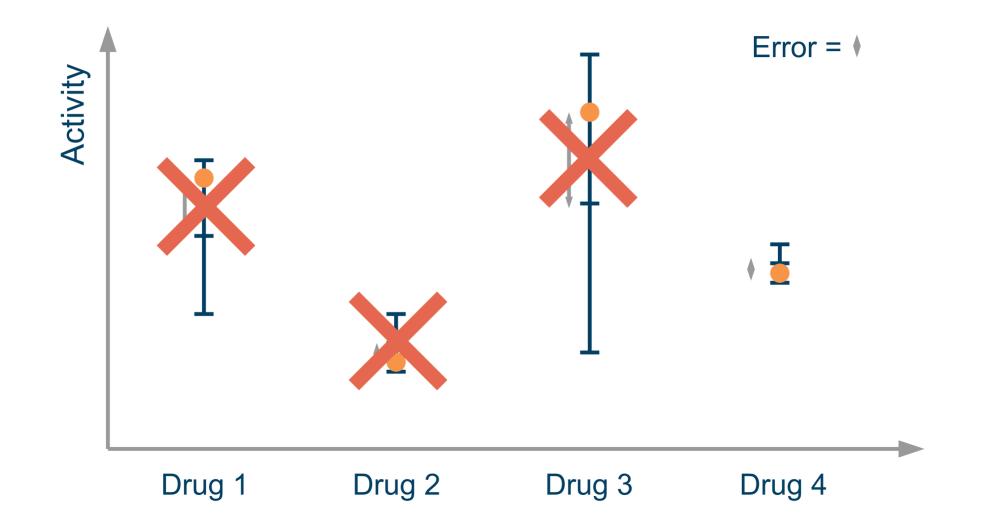
Impute 75% of data with smallest uncertainty



Impute 50% of data with smallest uncertainty



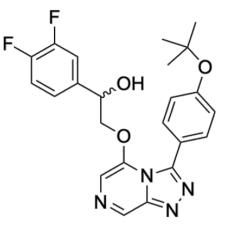
Impute 25% of data with smallest uncertainty



Improved performance by exploiting uncertainty

Focus on compounds with low uncertainty

Open Source Malaria experimental validation

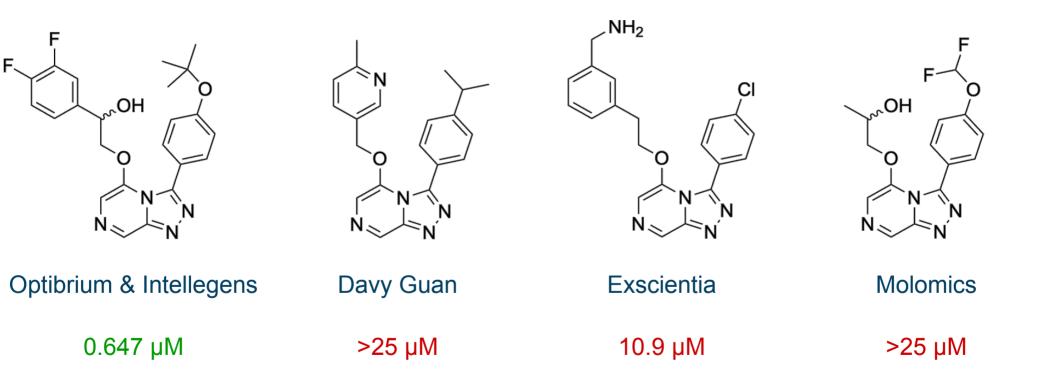


Optibrium & Intellegens

0.647 µM

Journal of Medicinal Chemistry 64, 16450 (2021)

Open Source Malaria other compounds



Journal of Medicinal Chemistry 64, 16450 (2021)

therapeutics

2018

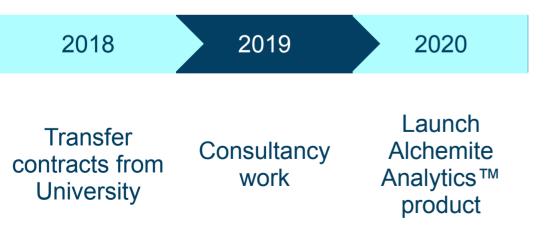
Transfer contracts from University

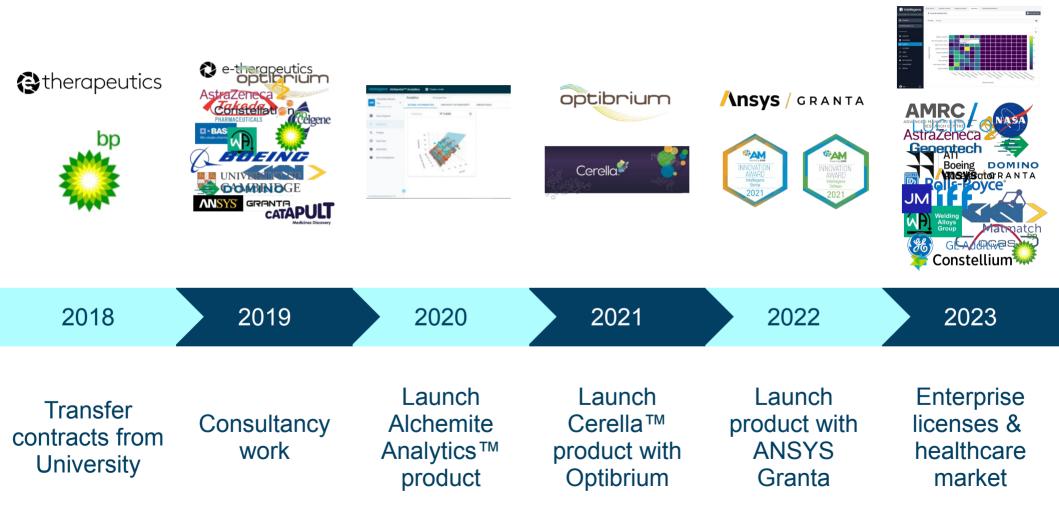
therapeutics

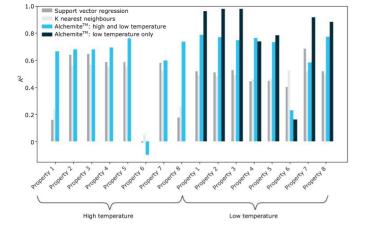
2018 2019

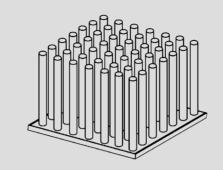
Transfer contracts from University

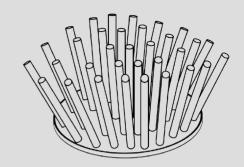
Consultancy work



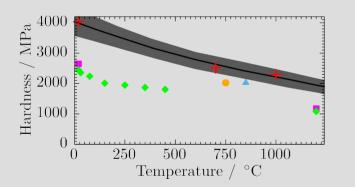


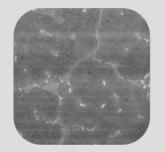






Johnson Matthey Technology Review **66**, 130 (2022)

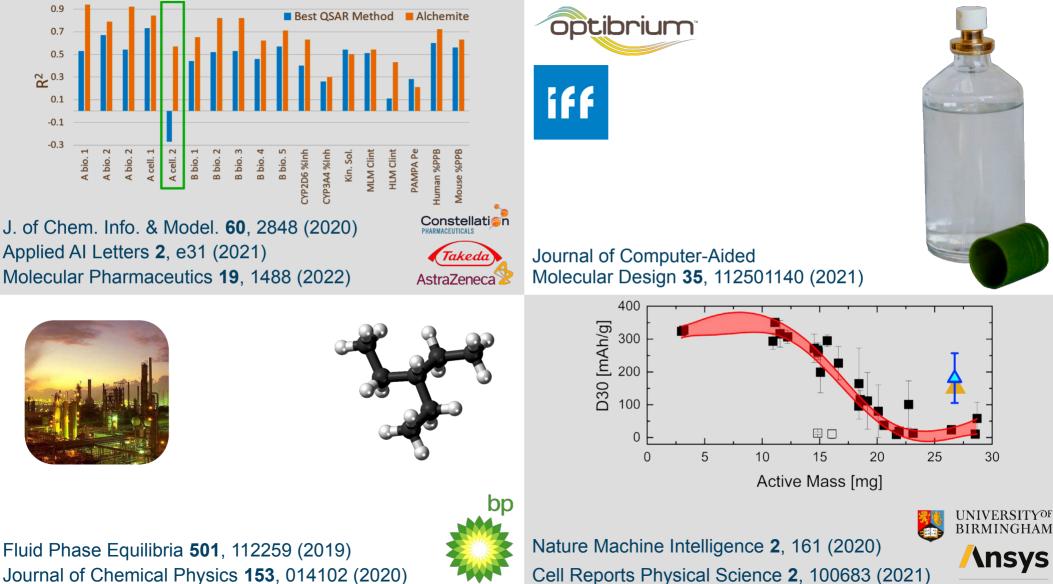




Alloy	Source	ANN	Δ_{σ}	Actual
Steel AISI 301L	193	269	5	238[23]
Steel AISI 301	193	267	5	221[23]
Al 1080 H18	51	124	5	120[23]
${ m Al}5083{ m wrought}$	117	191	14	300,190[4, 23]
${ m Al}5086{ m wrought}$	110	172	11	269,131[4, 23]
${ m Al}5454{ m wrought}$	102	149	14	124[23]
${ m Al}5456{ m wrought}$	130	201	11	165[23]
INCONEL600	223	278	10	$\geq 550[23]$

Materials & Design **131**, 358 (2017) Scripta Materialia **146**, 82 (2018) Data Centric Engineering **3**, e30 (2022)

Computational Materials Science **147**, 176 (2018)



GRANTA

Model **sparse** datasets by exploiting **property-property** relationships

Merge data, computer simulations, and physical laws

Exploit **uncertainty** to focus on most **robust** designs

Reduce costly experiments to accelerate discovery

Commercialized as Alchemite[™] by Intellegens

Challenge: What other physical information could be extracted from a dataset?