

Probabilistic neural network design of an alloy for direct laser deposition

Gareth Conduit

Theory of Condensed Matter group

Direct laser deposition requires new alloys

Merging properties with the neural network

Schematic of a jet engine

Composition

Co: 4%

W: 1.2%

Zr: 0.05%

Nb: 3%

AI: 2.9%

C: 0.04%

B: 0.01%

Ni

Expose 0.8

Microstructure

Testing the processability: horizontal printing

Testing the oxidation resistance

Printing components for an engine

Materials designed

Nickel and molybdenum

Experiment and DFT for batteries

Merge different experimental quantities and computer simulations into a holistic design tool

Designed and experimentally verified alloy for direct laser deposition

Further experimentally **Proven** materials, founded startup intellegens.ai