## intellegens.co.uk

### Neural networks for drug discovery

Gareth Conduit

#### Neural networks for drug design



#### Neural networks for drug design



#### Neural networks for drug design: correlated data



#### Two-dimensional fragmented data

| X            | у            |
|--------------|--------------|
| $\checkmark$ | $\checkmark$ |
| $\checkmark$ | $\checkmark$ |
| $\checkmark$ | ×            |
| $\checkmark$ | ×            |
| ×            | $\checkmark$ |

#### Three-dimensional fragmented data

| X            | У            | Z            |
|--------------|--------------|--------------|
| $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\checkmark$ | $\checkmark$ | ×            |
| $\checkmark$ | ×            | $\checkmark$ |
| $\checkmark$ | ×            | ×            |
| ×            | $\checkmark$ | ×            |

#### Three requirements for the neural network tool

| X            | у            | Z            |
|--------------|--------------|--------------|
| $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $\checkmark$ | $\checkmark$ | ×            |
| $\checkmark$ | ×            | $\checkmark$ |
| $\checkmark$ | ×            | ×            |
| ×            | $\checkmark$ | ×            |

Correlated data Uncorrelated data Uncertainties Correlated fragmented data

z(x) = y(x) + c with  $y = x^2$ 

if we know one of x, y, or z we can recover both missing quantities



#### Uncorrelated fragmented data

z(x) = y(x) + x with y(x) = rand(x)need to know both x and y to recover z



#### Uncertainty



### Industrial applications of neural network tool

#### DFT and experimental





#### DFT and experimental





Quantum mechanics and experimental





### Industrial applications of neural network tool

#### Experimental

Experimental









Structural and experimental





#### Proposed alloy



Cr:15.8

Ti: 3.0





Co: 20.0



Mn: 0.2

Mo: 0.5



Si: 0.2

W: 0.5



Ta: 4.9

C: 0.02



B: 0.06

Nb: 1.1



AI: 2.4

Zr: 0.18











Ni: 47.2



900°C

30 hours



#### Microstructure



#### Testing the yield stress



#### Testing the yield stress



#### Testing the yield stress



#### Alloys discovered

#### **Cr-Cr<sub>2</sub>Ta alloys** Intermetallics, 48, 62



#### Combustor alloy GB1408536



Discovery algorithm EP14153898 US 2014/177578



**Mo-Hf forging alloy** EP14161255 US 2014/223465



**Mo-Nb forging alloy** EP14161529 US 2014/224885

**RR1000 grain growth** 

Acta Materialia, 61, 3378



**Ni disc alloy** EP14157622 US 2013/0052077 A2



#### Database integrity



#### Database integrity



Found 792 erroneous points confirmed against primary sources

#### Protein activity database

Database contains 10,000 proteins and 2,000,000 compounds



#### Protein activity data

#### Database has protein activity for 0.1% of entries



#### Protein activity data

#### Filled in 32% of the data points with 75% accuracy

#### Protein



## Drug

#### **Cross-validation**

Train from first half of the dataset





Test accuracy against second half of the dataset



#### **Statistics**



#### Introducing chemical knowledge of the drug

Exploit SMILES chemical structure to enhance predictions

CCCCN(CC)CCNC(=O)c1cc2c(nn(C)c2s1)-c1ccccc1F

to quantify chemical through 193 descriptors to capture

- Atoms present
- Functional groups
- Properties of the bonds
- Aromatic rings

#### Chemical knowledge in the database



#### Chemical knowledge of the drug improves predictions

#### Filled in 61% of the data points with 75% accuracy

#### Protein



# Drug + structure

#### Predict activity of a new drug

#### Filled in 76% of the data points with 75% accuracy

#### Protein + structure



# Drug + structure

#### Summary of drug discovery

Filled in the 0.1% complete protein activity database to: 32% using activity

61% using activity and drug structure

76% using activity, drug structure, and protein structure

#### Interface – create a network



#### Interface – analyze outputs





- Used artificial intelligence to discover materials and drugs
- Handle fragmented data
- Merge experiments and simulations into holistic design tool
- Worked with six different companies, formed startup intellegens