

Green materials in less time: accelerate discovery with machine learning

Gareth Conduit

Model **Sparse** datasets

Exploit property-property relationships

Merge data, computer simulations, and physical laws

Exploit **uncertainties** to deliver most robust predictions

Extract information from **noise** itself

Black box machine learning for materials design

Strength

98344399488109

Machine learning predicts material properties

Strength

Jet engine schematic

Combustor in a jet engine

Direct laser deposition

Data available to model defect density

Composition and heat treatment space **30** dimensions

Requires **31** points to fit a hyperplane

Just **10** data entries available to model defect density

Ability for printing and welding are strongly correlated

Laser

First predict weldability

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

10 defects entries capture the simple weldability \rightarrow defect relationship

Two interpolations aid composition → defects extrapolation

Use CALPHAD to predict strength

100,000 CALPHAD results to model complex composition \rightarrow phase behavior

500 strength entries capture the phase behavior \rightarrow strength relationship

Two interpolations aid the composition \rightarrow strength extrapolation

SCM /\nsys

GRANTA

Elemental cost	< 25 \$kg⁻¹
Density	< 8500 kgm⁻³
γ' content	< 25 wt%
Oxidation resistance	< 0.3 mgcm ⁻²
Defects	< 0.15% defects
Phase stability	> 99.0 wt%
γ' solvus	> 1000°C
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³
Yield stress at 900°C	> 200 MPa
Tensile strength at 900°C	> 300 MPa
Tensile elongation at 700°C	> 8%
1000hr stress rupture at 800°C	> 100 MPa
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles

Composition and processing variables

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

Elemental cost	< 25 \$kg⁻¹
Density	< 8500 kgm⁻³
γ' content	< 25 wt%
Oxidation resistance	< 0.3 mgcm ⁻²
Defects	< 0.15% defects
Phase stability	> 99.0 wt%
γ' solvus	> 1000°C
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³
Yield stress at 900°C	> 200 MPa
Tensile strength at 900°C	> 300 MPa
Tensile elongation at 700°C	> 8%
1000hr stress rupture at 800°C	> 100 MPa
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles

Testing the defect density

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

Extract and exploit uncertainty to design concrete

Bogdan Zviazhynski

Jess Forsdyke

Professor Janet Lees

Unveil the unseen: exploit information hidden in noise, BZ & GJC, Applied Intelligence (2022) Probabilistic selection and design of concrete using machine learning JCF, BZ, JML & GJC, Data-Centric Engineering **4**, e9 (2023)

Concrete in construction

Cement & aggregate look like noise

Cement & aggregate look like noise

Strength is related to noise

Mission

Design environmentally friendly concrete

Mission

Design environmentally friendly concrete

Experimentally validate the concrete

Carbonation is the probe of noise

Depth and uncertainty in carbonation

Standard machine learning predicts expectation values

Exploit machine learning uncertainty estimates for robust designs

Machine learning exploits uncertainty

Unveil the unseen: exploit information hidden in noise, BZ & GJC, Applied Intelligence (2022)

Concrete specification

< 2.34 mm day^{-1/2}

S

✓ cost
< 0.028 £ kg⁻¹

< 2350 kg m⁻³

> 20 MPa

Concrete design

10.5% cement

48.4% gravel

32.6% sand

8.5% water

Concrete manufacture

Probabilistic selection and design of concrete using machine learning JCF, BZ, JML & GJC, Data-Centric Engineering **4**, e9 (2023)

Experimental validation of the proposed mixes

Model Experiment Target

Probabilistic selection and design of concrete using machine learning JCF, BZ, JML & GJC, Data-Centric Engineering **4**, e9 (2023)

Johnson Matthey Technology Review **66**, 130 (2022)

NASA Technical Memorandum 202

220	008637				
	Alloy	Source	ANN	Δ_{σ}	
	Steel AISI 301L	193	269	5	
	Steel AISI 301	193	267	5	
	Al1080 H18	51	124	5	

Materials & Design **131**, 358 (2017) Scripta Materialia 146, 82 (2018) Data Centric Engineering **3**, e30 (2022)

Computational Materials Science 147, 176 (2018)

GRANTA

Intellegens offers the Alchemite[™] product family

collaboration

<section-header>

Alchemite™ Analytics

Deep data insights on your desktop Guide experiments, predict, design, optimize

Alchemite[™] Engine

Integrate into your workflow (API, Python) Advanced configuration, enterprise deployment

Alchemite[™] Academic Programme

Access Alchemite[™] for academic research

Merge computer simulations with experimental data and exploit property-property relationships to circumvent missing data

Designed and experimentally verified alloy for direct laser deposition

Exploited information in noise to design experimentally verified concrete

Software product taken to market through startup Intellegens