

Top Trumps: materials and alloys

Gareth Conduit

Patent GB1302743.8 (2013) Patent GB1307533.8 (2013) Acta Materialia, **61**, 3378 (2013) Rolls-Royce Group plc invention submission NC12261 (2012) Rolls-Royce Group plc invention submission NC13006 (2013) Rolls-Royce Group plc invention submission NC13024 (2013)

TCM Group, Department of Physics

Jet engine

Jet engine: turbine discs

Designing a new alloy – what is required ?

Contemporary alloys

RR1000

N18

Alloy	Firm	Ni	Cr	Со	Мо	Ti	AI	Та	Hf	С	W	Nb
RR1000	Rolls Royce	52.4	15	18.5	5	3.6	3	2	0.5	0.03		
N18	SNECMA	58	11.1	15.4	6.4	4.3	4.3		0.5	0.02		
Rene 88	General Elec.	56.5	16	13	4	3.7	2.1			0.03	4	0.7
Waspaloy	UTC	58	19	13	4	3	1.4					

Precipitate hardening

Precipitate hardening

Contemporary alloys

RR1000

N18

Alloy	Firm	Ni	Cr	Со	Мо	Ti	AI	Та	Hf	С	W	Nb
RR1000	Rolls Royce	52.4	15	18.5	5	3.6	3	2	0.5	0.03		
N18	SNECMA	58	11.1	15.4	6.4	4.3	4.3		0.5	0.02		
Rene 88	General Elec.	56.5	16	13	4	3.7	2.1			0.03	4	0.7
Waspaloy	UTC	58	19	13	4	3	1.4					

Contemporary alloys

RR1000

N18

High entropy alloy

RR1000

Multidimensional design space

Cost \$Ib⁻¹

y' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹

 $Cost[\$/lb]=9.59n_{ni}+0.94n_{Al}+6.77n_{Cr}$ +16.5n_{Co}+19.6n_{Mo}+5.44n_{Ti}

Cost \$Ib⁻¹ γ' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹

Collect data for yield stress from 2248 alloys

Cost \$Ib⁻¹ γ' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹

Collect data for yield stress from 2248 alloys Generate neural network model

 $YS[MPa] = F(n_{ni}, n_{AI}, n_{Cr}, n_{Co}, n_{Mo}, n_{Ti}, T_{HT}, t_{HT})$

Cost \$Ib⁻¹ γ' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹

Calculate uncertainty in neural network model

Cost \$Ib⁻¹ γ' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹

Calculate uncertainty in neural network model

Cost \$Ib⁻¹ γ' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹

Calculate uncertainty in neural network model

Cost \$Ib⁻¹ γ' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹

Calculate uncertainty in neural network model

Cost \$Ib⁻¹ γ' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹ Calculate grid of $F_{(\gamma,\gamma')}(n_{\rm ni},n_{\rm Al},n_{\rm Cr},n_{\rm Co},n_{\rm Mo},n_{\rm Ti})$

Merit factor

Cost \$Ib⁻¹ γ' fraction Stability Density gcm⁻³ Yield stress MPa UTS MPa Oxidation index Stress rupture MPa Resistivity μΩcm Entropy Jmol⁻¹K⁻¹

Scost Sγ' Sstable Sdensity SYS SUTS Soxidize SSR Sresis Sentropy $P_{cost}(C)$ $P_{Y'}(C)$ $P_{stable}(C)$ $P_{density}(C)$ $P_{YS}(C)$ $P_{UTS}(C)$ $P_{oxidize}(C)$ $P_{SR}(C)$ $P_{resis}(C)$ $P_{entropy}(C)$

Optimization – tradeoff diagrams

R.C. Reed, T. Tao, & N. Warnken, Acta Materialia 57, 5898 (2009)

Optimization – tradeoff diagrams

Probability of success $0.5^5 \sim 0.03$

R.C. Reed, T. Tao, & N. Warnken, Acta Materialia 57, 5898 (2009)

Optimization – tradeoff diagrams

Probability of success $0.5^5 \sim 0.03$

Composition resolution $100000^{1/6} \sim 7$

R.C. Reed, T. Tao, & N. Warnken, Acta Materialia 57, 5898 (2009)

Predicted alloys

Predicted alloys

Case study: RR1000

± 0.01
: 0.9
: 1.6
: 0.01
± 30.7
5 ± 24.1
± 0.01
± 18.8
: 0.01
± 0.01
: (± 5 ± ± (±

	Ni	Cr	Со	Мо	Ti	Α	Та	Hf	С	W	Mn	В	Та	Si	Zr	Nb	Fe	Т	t
RR1000	52	15	19	5	3.6	3	2	0.5	0.1									800	8

Case study: improved

At 725°C	RR1000	Optimal
Cost \$lb ⁻¹	13.46 ± 0.01	11.67 ± 0.01
γ' fraction	42.2 ± 0.9	39.7 ± 3.1
Stability	89.1 ± 1.6	93.0 ± 0.7
Density gcm ⁻³	8.32 ± 0.01	8.26 ± 0.01
Yield stress MPa	753.4 ± 30.7	1048.8 ± 50.9
UTS MPa	1054.5 ± 24.1	1436.9 ± 46.9
Oxidation index	16.50 ± 0.01	19.2 ± 0.01
Stress rupture MPa	599.4 ± 18.8	1137.5 ± 208.3
Resistivity μΩcm	9.02 ± 0.01	8.93 ± 0.01
Entropy Jmol ⁻¹ K ⁻¹	11.60 ± 0.01	14.50 ± 0.01

	Ni	Cr	Со	Мо	Ti	ΑΙ	Та	Hf	С	W	Mn	В	Та	Si	Zr	Nb	Fe	Т	t
RR1000	52	15	19	5	3.6	3	2	0.5	0.1									800	8
Optimal	56	17	1.0	4.0	1.5	4.3	0.2	0.1	0.2	6.0	0.1	0.1	0.2	0.1	0.2	5.6	3.4	980	61

Optical micrograph – Ni disc alloy

Optical micrograph – Ni disc alloy

Ni alloy with η phase

Yield stress

Oxidation

Predicted alloys

Optical micrograph – Ni combustor liner

Ni combustor liner

Ni disc alloy

Yield stress

Predicted alloys

Case study: TZM

At 1000°C	TZM
Cost \$lb ⁻¹	13.46 ± 0.01
UTS MPa	1054.5 ± 24.1

Mo Ti C Zr Hf W Nb

TZM 99.4 0.5 0.02 0.08

Case study: improved

At 1000°C	TZM	Optimal
Cost \$lb ⁻¹	13.46 ± 0.01	11.67 ± 0.01
UTS MPa	42.2 ± 0.9	39.7 ± 3.1

Мо	Ti	С	Zr	Hf	W	Nb

TZM 99.4 0.5 0.02 0.08

Optimal 82.7 1.0 0.2 0.9 9.0 0.5 5.7

Optical micrograph – Mo forging alloy

Mo forging alloy

Optical micrograph – Mo forging alloy

Mo forging alloy

Yield stress

Alloys designed

Mo-Hf forging alloy Patent GB1307533.8 (2013)

Ni disc alloy Rolls-Royce invention NC12261 (2012)

Mo-Nb forging alloy Rolls-Royce invention NC13024 (2013)

Ni combustor liner Rolls-Royce invention NC13006 (2013)

RR1000 grain growth Acta Materialia, 61, 3378 (2013)

High entropy alloy

