

Modern-day blacksmith

Gareth Conduit

Machine learning for engineering faces the challenge that

not everything has been measured so data is Sparse

Actively pursue two approaches to empower machine learning

not everything has been measured so data is Sparse

Exploit property-property relationships to merge data, simulations, and physical laws

Adaptive design of experiments to accelerate discovery

Black box machine learning for materials design

Machine learning predicts material properties

Jet engine schematic

Combustor in a jet engine

Direct laser deposition

Data available to model defect density

Composition and heat treatment space **30** dimensions

Requires **31** points to fit a hyperplane

Just **10** data entries available to model defect density

Ability for printing and welding are strongly correlated

Laser

First predict weldability

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

10 defects entries capture the simple weldability \rightarrow defect relationship

Two interpolations aid composition → defects extrapolation

Elemental cost	< 25 \$kg⁻¹		
Density	< 8500 kgm⁻³		
γ' content	< 25 wt%		
Oxidation resistance	< 0.3 mgcm ⁻²		
Defects	< 0.15% defects		
Phase stability	> 99.0 wt%		
γ' solvus	> 1000°C		
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³		
Yield stress at 900°C	> 200 MPa		
Tensile strength at 900°C	> 300 MPa		
Tensile elongation at 700°C	> 8%		
1000hr stress rupture at 800°C	> 100 MPa		
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles		

Composition and processing variables

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

Elemental cost	< 25 \$kg⁻¹	
Density	< 8500 kgm⁻³	
γ' content	< 25 wt%	
Oxidation resistance	< 0.3 mgcm ⁻²	
Defects	< 0.15% defects	
Phase stability	> 99.0 wt%	
γ' solvus	> 1000°C	
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³	
Yield stress at 900°C	> 200 MPa	
Tensile strength at 900°C	> 300 MPa	
Tensile elongation at 700°C	> 8%	
1000hr stress rupture at 800°C	> 100 MPa	
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles	

Testing the defect density

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019) Commissioning an additive manufacturing machine is time consuming

Propose process parameters for the 400W M2 from GE Additive with the new additive-specific Aheadd® CP1 powder from Constellium

GE Additive

How do you solve a problem like materials design?

How do you solve a problem like materials design?

How do you solve a problem like materials design?

Machine learning approach

Machine learning-driven adaptive experimental design

Target-driven: actively search for successful materials

Natively handle 100s or 1000s of variables

Takes advantage of accumulated knowledge

Train machine learning on initial data set

Train machine learning on initial data set

Machine learning proposes additional data to collect

Train machine learning on initial data set

Machine learning proposes additional data to collect

Uncertainty estimated with machine learning

Interrogate machine learning of where to collect data

Train machine learning on larger data set

Train machine learning on initial data set

Machine learning proposes additional data to collect

Train machine learning on larger data set

Structured experimental design

Adaptive experimental design

Adaptive experimental design accelerates ×10

Project MEDAL proposed samples

Project MEDAL model performance

Project MEDAL outcome

1000

750

Johnson Matthey Technology Review **66**, 130 (2022)

1000

0

()

250

NASA Technical Memorandum 20220008637

Alloy	Source	ANN	Δ_{σ}	Actual
Steel AISI 301L	193	269	5	238[23]
$\operatorname{Steel}\operatorname{AISI}301$	193	267	5	221[23]
Al1080 H18	51	124	5	120[23]
${ m Al}5083{ m wrought}$	117	191	14	$300,190[4,\ 23]$
${ m Al}5086{ m wrought}$	110	172	11	$269,131[4,\ 23]$
${ m Al}5454{ m wrought}$	102	149	14	124[23]
${ m Al}5456{ m wrought}$	130	201	11	165[23]
INCONEL600	223	278	10	$\geq 550[23]$

Materials & Design 131, 358 (2017) Scripta Materialia 146, 82 (2018) Data Centric Engineering 3, e30 (2022)

500

Temperature / °C

Computational Materials Science 147, 176 (2018)

Exploit property-property relationships to improve predictions

Adaptive design of experiments accelerates discovery

Designed and experimentally verified alloys for direct laser deposition

Generic approach applied to alloys, batteries, pharmaceuticals, and beyond

intellegens

