

Artificial intelligence – a tool for the modern-day blacksmith

Gareth Conduit

Model **Sparse** datasets

Exploit property-property relationships

Merge data, computer simulations, and physical laws

Exploit **uncertainties** to deliver most robust predictions

Black box machine learning for materials design

Strength

98344399488109

Machine learning predicts material properties

Strength

Jet engine schematic

Combustor in a jet engine

Direct laser deposition

Data available to model defect density

Composition and heat treatment space 30 dimensions

Requires **31** points to fit a hyperplane

Just 10 data entries available to model defect density

Ability for printing and welding are strongly correlated

Laser

First predict weldability

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

10 defects entries capture the simple weldability \rightarrow defect relationship

Two interpolations aid composition → defects extrapolation

Elemental cost	< 25 \$kg⁻¹		
Density	< 8500 kgm⁻³		
γ' content	< 25 wt%		
Oxidation resistance	< 0.3 mgcm ⁻²		
Defects	< 0.15% defects		
Phase stability	> 99.0 wt%		
γ' solvus	> 1000°C		
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³		
Yield stress at 900°C	> 200 MPa		
Tensile strength at 900°C	> 300 MPa		
Tensile elongation at 700°C	> 8%		
1000hr stress rupture at 800°C	> 100 MPa		
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles		

Composition and processing variables

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

Elemental cost	< 25 \$kg⁻¹	
Density	< 8500 kgm⁻³	
γ' content	< 25 wt%	
Oxidation resistance	< 0.3 mgcm ⁻²	
Defects	< 0.15% defects	
Phase stability	> 99.0 wt%	
γ' solvus	> 1000°C	
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³	
Yield stress at 900°C	> 200 MPa	
Tensile strength at 900°C	> 300 MPa	
Tensile elongation at 700°C	> 8%	
1000hr stress rupture at 800°C	> 100 MPa	
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles	

Testing the defect density

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

Open Source Malaria contest

Predictions have an uncertainty

Validation data typically within one standard deviation

Accuracy R^2 metric calculated with difference from mean

Impute 75% of data with smallest uncertainty

Impute 50% of data with smallest uncertainty

Impute 25% of data with smallest uncertainty

Open Source Malaria experimental validation

Optibrium & Intellegens

0.647 µM

Journal of Medicinal Chemistry 64, 16450 (2021)

Open Source Malaria other compounds

Journal of Medicinal Chemistry 64, 16450 (2021)

Johnson Matthey Technology Review **66**, 130 (2022)

Alloy	Source	ANN	Δ_{σ}	Actual
Steel AISI 301L	193	269	5	238[23]
Steel AISI 301	193	267	5	221[23]
Al 1080 H18	51	124	5	120[23]
${ m Al}5083{ m wrought}$	117	191	14	$300,190[4,\ 23]$
${ m Al}5086{ m wrought}$	110	172	11	$269,131[4,\ 23]$
${ m Al}5454{ m wrought}$	102	149	14	124[23]
${ m Al}5456{ m wrought}$	130	201	11	165[23]
INCONEL600	223	278	10	$\geq 550[23]$

Materials & Design **131**, 358 (2017) Scripta Materialia **146**, 82 (2018) Data Centric Engineering **3**, e30 (2022)

Computational Materials Science **147**, 176 (2018)

GRANTA

Intellegens offers the Alchemite[™] product family

Alchemite™ Analytics

Deep data insights on your desktop Guide experiments, predict, design, optimize

Alchemite[™] Engine

Integrate into your workflow (API, Python) Advanced configuration, enterprise deployment

Alchemite[™] Academic Programme

Access Alchemite[™] for academic research

Merge computer simulations with experimental data and exploit property-property relationships to circumvent missing data

Designed and experimentally verified alloy for direct laser deposition

Exploited **Uncertainties** to propose anti-malarial drug

Software product taken to market through startup Intellegens