

Cold atoms in a spin

Gareth Conduit¹ & Curt von Keyserlingk²

1. TCM Group, Cambridge; 2. Theoretical Physics, Oxford

Ketterle's experiment

Jo *et al*, Science **325**, 1521 (2009); GJC & Simons PRL **103**, 200403 (2009) Pekker et al, PRL **106**, 050402 (2011); Petrov, PRA **67**, 010703(R) (2003)

Ketterle's experiment

Mysteries about magnetism

- Competing many-body instabilities Pekker *et al*, PRL **106**, 050402 (2011)
- Absence of domains Ho in "Magnetized Gas Points to New Physics", Science (2009)
- Tan relations Barth & Zwerger, Annals of Physics **326**, 2544 (2011)
- Instability of fully polarized state Zhai, PRA 80, 051605 (2009)
- Textured phases
 Uhlarz, Pfleiderer & Hayden, PRL 93, 256404 (2004)
 GJC, Green & Simons, PRL 103, 207201 (2009)

Mass imbalance ferromagnetism

- Two and three-body losses suppressed Keyserlingk & GJC, PRA 83, 053625 (2011)
- Phase separates into just two domains Keyserlingk & GJC, PRA 83, 053625 (2011)
- Experimental procedure used to study polarons Kohstall et al, arXiv:1112.0020; Massignan & Brunn, Eur. Phys. J D 65, 83 (2011); Massignan arXiv:1112.1029

Three-body loss

Two-body loss

Pekker et al, PRL **106**, 050402 (2011)

Magnetization instabilities

• Energy change due to magnetization $\delta m_z^{\omega,\vec{q}}$ and $\delta m_{\perp}^{\omega,\vec{q}}$

$$\delta E = g \sum_{\omega, \vec{q}} \left| \delta m_z^{\omega, \vec{q}} \right|^2 \left[1 - \frac{g}{2} \left(\prod_{\uparrow \downarrow}^{\omega, \vec{q}} + \prod_{\downarrow \uparrow}^{\omega, \vec{q}} \right) \right] + g \sum_{\omega, \vec{q}} \left| \delta m_{\bot}^{\omega, \vec{q}} \right|^2 \left[\frac{1 - g^2 \prod_{\uparrow \uparrow}^{\omega, \vec{q}} \prod_{\downarrow \downarrow}^{\omega, \vec{q}}}{1 - g \left(\prod_{\uparrow \uparrow}^{\omega, \vec{q}} + \prod_{\downarrow \downarrow}^{\omega, \vec{q}} \right) / 2} \right]$$

Stoner instability

• Energy change due to magnetization $\delta m_z^{\omega,\vec{q}}$ and $\delta m_\perp^{\omega,\vec{q}}$

$$\delta E = g \sum_{\omega,\vec{q}} \left| \delta m_{z}^{\omega,\vec{q}} \right|^{2} \left[1 - \frac{g}{2} \left(\Pi_{\uparrow\downarrow}^{\omega,\vec{q}} + \Pi_{\downarrow\uparrow}^{\omega,\vec{q}} \right) \right] + g \sum_{\omega,\vec{q}} \left| \delta m_{\perp}^{\omega,\vec{q}} \right|^{2} \left[\frac{1 - g^{2} \Pi_{\uparrow\uparrow}^{\omega,\vec{q}} \Pi_{\downarrow\downarrow}^{\omega,\vec{q}}}{1 - g \left(\Pi_{\uparrow\uparrow}^{\omega,\vec{q}} + \Pi_{\downarrow\downarrow}^{\omega,\vec{q}} \right) / 2} \right]$$

• Instability to phase separation

 $g(\mathbf{v}_{\uparrow}\mathbf{v}_{\downarrow})^{1/2}=1$

Magnetization texture

• Energy change due to magnetization $\delta m_z^{\omega,\vec{q}}$ and $\delta m_{\perp}^{\overline{\omega,\vec{q}}}$

$$\delta E = g \sum_{\omega, \vec{q}} \left| \delta m_{z}^{\omega, \vec{q}} \right|^{2} \left[1 - \frac{g}{2} \left(\Pi_{\uparrow\downarrow}^{\omega, \vec{q}} + \Pi_{\downarrow\uparrow}^{\omega, \vec{q}} \right) \right] + g \sum_{\omega, \vec{q}} \left| \delta m_{\perp}^{\omega, \vec{q}} \right|^{2} \left[\frac{1 - g^{2} \Pi_{\uparrow\uparrow\uparrow}^{\omega, \vec{q}} \Pi_{\downarrow\downarrow}^{\omega, \vec{q}}}{1 - g \left(\Pi_{\uparrow\uparrow\uparrow}^{\omega, \vec{q}} + \Pi_{\downarrow\downarrow}^{\omega, \vec{q}} \right) / 2} \right]$$

Instability to textured phase

$$g(v_{\uparrow}v_{\downarrow})^{1/2} = 1 + \frac{q^2}{24p_{F\uparrow}^2} + \frac{q^2}{24p_{F\downarrow}^2}$$

Orientation of magnetization

• Instability to magnetization in x-y plane

$$\chi_{\perp}^{-1} > \chi_{0}^{-1} \left(\frac{36 r^{2}}{175} - \frac{8 |r^{3}|}{2625} \right) > 0 \qquad r = \frac{m_{1} - m_{2}}{m_{1} + m_{2}} \qquad 0 \le |r| \le 1$$

Trapped behavior

 At zero interaction strength atoms spread all over trap, at high interaction strength light atoms forced to outside

Cloud size maximum

Kinetic energy plots

Trapped behavior

Heavier molecules reside at trap center

Are losses responsible for phase separation?

Is Li-K repulsion responsible for phase separation?

- Temperature is $T_{\rm K} \approx 0.3 T_{\rm F, Li}$
- Density of atoms is $n_{\rm K} \approx 0.5 n_{\rm Li}$.

$$\frac{P_{\rm K}}{P_{\rm Li}} = \frac{5}{2} \frac{n_{\rm K}}{n_{\rm Li}} \frac{T_{\rm K}}{T_{\rm F,Li}} \approx 0.4$$

Are the molecules responsible for phase separation?

 The Li-molecule *T*-matrix is similar to the Li-K *T*-matrix so the molecules also drive phase separation

 $\frac{P_{\rm M}}{P_{\rm Li}} \approx 0.4$

Is heating responsible for phase separation?

- Inner classical gas, in thermal equilibrium with central K atoms with temperature $T_{\rm K} \approx 0.3 T_{\rm F, Li}$ demands $n \approx 1.3 n_{\rm Li}$
- Reactivation of losses also precludes heating mechanism

What drives phase separation?

- Repulsion from the inner K atom combined with molecules is sufficient to support phase separation
- Continual losses and heating appear negligible

Pairing rate reduces with temperature

Pekker et al, PRL **106**, 050402 (2011)

Magnetism at finite temperature

$$F = \frac{1}{V} \sum_{\vec{k},\sigma} \epsilon_{\vec{k},\sigma} n(\epsilon_{\vec{k},\sigma}) + \frac{2k_{\rm F}a}{\pi \nu V^2} N_{\uparrow} N_{\downarrow}$$

GJC & Simons, PRA 79, 053606 (2009)

Magnetism at finite temperature

$$F = \frac{1}{V} \sum_{\vec{k},\sigma} \epsilon_{\vec{k},\sigma} n(\epsilon_{\vec{k},\sigma}) + \frac{2k_{F}a}{\pi v V^{2}} N_{\uparrow} N_{\downarrow} - \frac{2}{V^{3}} \left(\frac{2k_{F}a}{\pi v}\right)^{2} \frac{\sum_{\vec{k}_{1},\vec{k}_{2},\vec{k}_{3},\vec{k}_{4}} n(\epsilon_{\vec{k}_{1},\uparrow}) n(\epsilon_{\vec{k}_{2},\downarrow}) [n(\epsilon_{\vec{k}_{3},\uparrow}) + n(\epsilon_{\vec{k}_{4},\downarrow})]}{\epsilon_{\vec{k}_{1},\uparrow} + \epsilon_{\vec{k}_{2},\downarrow} - \epsilon_{\vec{k}_{3},\uparrow} - \epsilon_{\vec{k}_{4},\downarrow}}$$

GJC & Simons, PRA 79, 053606 (2009)

• Thermally averaged scattering cross-section Bruun & Smith, PRA 72, 043605 (2005)

$$\langle \sigma \rangle = \frac{\int d^3 p_1 d^3 p_2 f(p_1^2/2m_1) f(p_2^2/2m_2) \sigma(\vec{p}_r)}{\int d^3 p_1 d^3 p_2 f(p_1^2/2m_1) f(p_2^2/2m_2)}$$

with

$$\sigma(\vec{p}_{\rm r}) = \frac{4\pi a^2}{(1 - r_{\rm eff} a p_{\rm r}^2/2)^2 + a^2 p_{\rm r}^2} \qquad \vec{p}_{\rm r} = \left(\frac{\vec{p}_1 m_2}{m_1 + m_2} - \frac{\vec{p}_2 m_1}{m_1 + m_2}\right)$$

• In the high temperature unitarity limit

$$\langle \sigma \rangle = \frac{4\pi}{T} \frac{m_1 + m_2}{m_1 m_2} \frac{1}{\sqrt{1 + \frac{T r_{\text{eff}}^2}{2} \frac{m_1 m_2}{m_1 + m_2}}}$$

Conclusions

- The behavior of repulsively interacting gases of Fermions remains an important unanswered question
- Mass imbalance suppresses competing many-body instabilities and gives explicit domain formation
- Feshbach molecules and K atoms together drive phase separation
- High temperature further reduces pairing losses

