

Data validation and imputation with artificial intelligence

Gareth Conduit

TCM Group, Department of Physics

Experiment

Simulation

Experiment

Schematic of a jet engine

Artificial intelligence

Artificial intelligence

Artificial intelligence

Testing the yield stress

Testing the yield stress

Testing the yield stress

Alloys discovered

Cr-Cr₂Ta alloys Intermetallics, 48, 62

Combustor alloy GB1408536

Discovery algorithm EP14153898 US 2014/177578

Mo-Hf forging alloy EP14161255 US 2014/223465

Mo-Nb forging alloy EP14161529 US 2014/224885

Ni disc alloy EP14157622 US 2013/0052077 A2

RR1000 grain growth Acta Materialia, 61, 3378

Experiment

Experiment

Simulation

Merging simulation and experiment

Experiment

Merging simulation and experiment

Experiment

Simulation

Merging simulation and experiment

Experiment

Simulation

Experiment

Simulation

Fragmented databases

Composition	Computed YS	YS	Hardness	UTS	Charpy	Compressive
\checkmark	\checkmark	\checkmark	\checkmark	×	×	×
\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark
\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	×
\checkmark	\checkmark	×	×	\checkmark	×	×
\checkmark	\checkmark	×	\checkmark	×	\checkmark	×
×	×	\checkmark	×	\checkmark	\checkmark	×
\checkmark	\checkmark	×	\checkmark	×	×	\checkmark
\checkmark	\checkmark	\checkmark	×	×	\checkmark	×

Database verification

10,000,000 entries, 20% filled

Erroneous points: 1D example

Erroneous points: density & yield stress

	Alloy		S	Source NN		IN #Sigma		Correct density /gcc ⁻¹				
				d	densit/gcc ⁻¹ d		nsity/gcc ⁻¹					
	Stain	ainless steel, duplex, llium P, cast			7.60		7.9060	11.6	7.75-8.0			
	Tool M43	ool steel, molybdenum alloy, AISI A43 (high speed)			8.44		8.0345	-11.5 7.7-8.03		7.7-8.03		
	Copp wrou nicke	Copper-nickel alloy, C70400, wrought, half hard (95/5 copper- nickel)		,	8.53		8.9254	10.7	0.7 8.94			
	Tool	ol steel, AISI A3			8.00		7.7211	-20.2	7.86			
	Tool steel. AISI A4		#Sig	J 7.91 #Sigma Actua		7.80 /alue/K	8.8 8.03		8.03			
		Melting Point/K	Point /K					11.4		7.70-8.03		
Wrought iron		1973.0	Material			i	UTS Yield s		tress	Neural Networ	k # Sigma	
Nickel-Fe-Cr alloy, INCOLOY 840, 1- annealed		1419.0				/Mpa	/Mpa		prediction			
Titanium, alpha-beta alloy, Ti-4.5Al- 3V-2Ee-2Mo, annealed		1593.2	Low alloy steel, AISI 4150, annealed			726.64	377.89		520	26.6861		
Carbon steel, AISI 1095		1650.2	Low alloy steel, AISI 4150, normalized		alized	1149.26	731.16		918	21.5008		
		·	Low alloy steel, AISI 4150, tempered at 650°C & oil quenched		v alloy steel, AISI 4150, tempered at)°C & oil quenched		952.52	835	835.69 729		-15.1901	_

Found 156 erroneous points confirmed against primary sources

How many erroneous points remain?

Number of standard deviations

Polymers

Name	Property	Value	Comment	
4PROP®25C21120	Flexural Modulus	2300	out by factor 10^3	
	(MPa)			
AZDEL [™] U400-B01N	Flexural Modulus	8000	out by factor 10^3	
(Longitudinal)	(MPa)			
Hyundai EP PPF	Flexural Strength	46.9	out by factor 10	
HT340	(MPa)			
Borealis PP	Filler	Mineral: 20%	prediction: 19.9 \pm	
NJ201AI			5.6%	
Daplen [™] EE168AIB	Filler	Mineral: 10%	prediction	
			$11.3\pm3.0\%$	
Hostacom M2 $R03/2$	Filler	Mineral: 20%	prediction	
105558			$14.8\pm4.2\%$	
Maxxam [™] NM-	Filler	Glass Fibre:	prediction	
818.H001-1049		20%	$17.8\pm4.4\%$	
Beetle®PPC120M	Filler	Mineral: 20%	prediction $9.9\pm6.2\%$	
9250				
EMOPLEN®CP	Filler	Mineral: 20%	prediction	
GFR 20			$10.3\pm2.7\%$	
FORMULA P	Filler	Mineral: 20%	prediction	
COMP 5220			$15.5\pm3.2\%$	
4PROP®9C13100	Filler	ler Mineral: 10% prediction		
			$13.5\pm3.0\%$	

Graphical data

С

100

1050

Graphical data

Exploiting experiment and simulations

Lithium cathode materials

Protein activity data

ChEMBL database has protein activity for 0.1% of compounds

Protein activity data

Filled in 32% of the data points with 99.3% accuracy

Drug

Used artificial intelligence to handle fragmented data

Merge simulations and experiments into a holistic tool

Data validation and imputation