

The modern day blacksmith

Gareth Conduit

Theory of Condensed Matter group

Reduce the need for expensive experimental development

Accelerate materials and drugs discovery

Merge simulations, physical laws, and experimental data

Generic with proven applications in materials discovery and drug design

A black box

Train with complete data

Predict with complete data

Train with fragmented data

Predict with fragmented data

Schematic of a jet engine

Combustor in a jet engine

Direct laser deposition requires new alloys

Electricity

Insufficient data for processability

Welding is analogous to direct laser deposition

Simple processability-welding relationship

Merging properties with the neural network

Schematic of a jet engine

Target properties

Elemental cost < 25 \$kg⁻¹ Density < 8500 kgm⁻³ y' content < 25 wt% Oxidation resistance $< 0.3 \text{ mgcm}^{-2}$ Processability < 0.15% defects Phase stability > 99.0 wt% y' solvus $> 1000^{\circ}C$ Thermal resistance > 0.04 K Ω^{-1} m⁻³ Yield stress at 900°C > 200 MPa Tensile strength at 900°C > 300 MPa Tensile elongation at $700^{\circ}C > 8\%$ 1000hr stress rupture at 800°C > 100 MPa Fatigue life at 500 MPa, 700°C > 10⁵ cycles

Composition

Co: 4%

W: 1.2%

Zr: 0.05%

Nb: 3%

AI: 2.9%

B: 0.01%

Expose 0.8 THT 1300°C

Microstructure

Microstructure analogous to concrete

Testing the processability: horizontal printing

Testing the processability: horizontal printing

Testing the oxidation resistance

Printing components for an engine

Low temperature physics

Specification for a thermometer

90% of the cost of a thermometer is for **Calibration**

90% of the cost of a thermometer is for **Calibration**

Require a simple resistance-temperature relationship over a wide temperature range

Want **constant sensitivity** *T*/*R* d*R*/d*T* with temperature

Thermometer must be **Stable** with time and temperature

Mechanism: atom in lattice potential

Mechanism: atom hops into second state

Mechanism: analogy to Kondo effect

Atom hopping between sites analogous to Kondo effect

Cochrane *et al.*, PRL **35**, 676 (1975)

Mechanism: integrate over disorder

Atom hopping between sites analogous to Kondo effect

Mechanism: simple logarithmic dependence on T

Atom hopping between sites analogous to Kondo effect

Atom hopping between sites analogous to Kondo effect

1000 DFT simulations probe the energy landscape and 10000 CALPHAD for phase equilibrium

Merge properties together with deep learning

Flowchart to train neural network

Prediction of disorder

Prediction of disorder

Uncertainty in neural network prediction

Material most likely to work

Most useful simulation

Improved neural network model

New material most likely to work

Flowchart with reinforcement learning

Thermometer under the microscope

Experimental verification of the thermometer

Sensitivity and stability of the thermometer

Sensitivity increases by a factor of 2 over the temperature range Measurements **Stable** over 25 cycles and 6 months Thermometer being sold by **Cambridge Cryogenics**

Materials designed

Nickel and molybdenum

Experiment and DFT for batteries

Identified and corrected errors in materials database

Beyond materials

Lubricants with molecular dynamics and experiments

Assay activity

Drug design

Merge different experimental quantities and computer simulations into a holistic design tool

Designed and experimentally verified alloy for direct laser deposition

Thermometer that works over 1000x temperature range

Further experimentally **proven** materials, founded startup intellegens.ai

https://app.intellegens.ai/steel_search