

Pseudizing the Hamiltonian

Gareth Conduit Pascal Bugnion Jonathan Lloyd-Williams Pablo López Ríos Richard Needs Tom Whitehead

TCM Group, Department of Physics

Hamiltonian

 $H = KE + V_{e-i} + V_{e-e}$

$$E = \frac{\int \bar{\psi} H \psi d\mathbf{r}}{\int \bar{\psi} \psi d\mathbf{r}}$$

Electron-ion pseudopotential

Electron-ion pseudopotential

Fewer electrons

Smooth background

Electron-electron pseudopotential

$$H = KE + V_{e-i} + V_{e-e}$$

Smooth potential

Scattering in ultracold atom gases

Scattering in ultracold atom gases

Underlying attractive

Effective attractive

V(r)

Underlying attractive

Effective repulsive

Pseudopotential: scattering properties

Pseudopotential: scattering properties

Pseudopotentials summary

Repulsive & attractive state: 100 times more accurate, 1000 times faster

Bound state: 1000 times more accurate, 1000 times faster

Stoner Hamiltonian

$$H = -\frac{\nabla^2}{2} + 4\pi a \delta(\mathbf{r}_{\uparrow} - \mathbf{r}_{\downarrow})$$

Stoner Hamiltonian

Stoner Hamiltonian

Theories of ferromagnetism

Stoner mean-field theory	Second order	k⊧a=1.57
Fluctuations beyond Hertz-Millis	First order	-
Polaron theory	First order	-
Field theory	First order	k _F a=1.054
Tan relations	No magnetism	-
DMC hard sphere	First order	k⊧a=0.81(2)
Hartree Fock MC	First / second order	k⊧a=0.83(2)

Emergence of ferromagnetism

Theories of ferromagnetism

Stoner mean-field theory	Second order	k⊧a=1.57
Fluctuations beyond Hertz-Millis	First order	-
Polaron theory	First order	-
Field theory	First order	k⊧a=1.054
Tan relations	No magnetism	-
DMC hard sphere	First order	k⊧a=0.81(2)
Hartree Fock MC	First / second order	k⊧a=0.83(2)
DMC pseudopotential	Second order	k⊧a=0.683(1)

Fluctuation contributions

Fluctuation contributions

Emergence of p-wave superconductivity

Other pseudopotentials

Contact	Dipolar (Whitehead)	Coulomb
1000 times faster	450 times faster	30 times faster

Kinetic energy pseudization

 $H = KE + V_{e-i} + V_{e-e}$

Smooth integrand

Developed a pseudopotential for the contact, dipolar, and Coulomb interactions

Proposed a scheme to smooth the kinetic energy

Stoner Hamiltonian displays second order ferromagnetic phase transition and p-wave ordering

$$V_{PP}(r) = \begin{cases} \frac{1}{c} + \left(1 - \frac{r}{c}\right)^2 \left[v_1\left(\frac{1}{2} + \frac{r}{c}\right) + \sum_{i=2}^{N_v} v_i\left(\frac{r}{c}\right)^i\right] & r < c\\ \frac{1}{r} & r > c \end{cases}$$

$$\sum_{I=0}^{l_{\max}} \int_{0}^{k_{F}} \left[\frac{d \ln \psi_{PP}(k, I)}{d r} \bigg|_{c} - \frac{d \ln \psi_{cont}(k, I)}{d r} \bigg|_{c} \right]^{2} d k$$