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Machine learning to

Model datasets where the data is sparse

Exploit property-property relationships

Merge data, computer simulations, and physical laws 

Reduce costly experiments to accelerate discovery



Black box machine learning for materials design
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Machine learning predicts material properties

Composition

Properties

Defects

Fatigue

Strength



Jet engine schematic



Combustor in a jet engine



Strength

Strength



Data available to model strength

Composition and heat treatment space 30 dimensions

Requires 31 points to fit a hyperplane

Just 100 data entries available to model strength

100 entries



Strength and phase behavior are correlated

Strength Phase behavior



First predict phase behavior

Use 100,000 CALPHAD results to model complex composition → phase behavior

100,000 entries



Use CALPHAD to predict strength

Use 100,000 CALPHAD results to model complex composition → phase behavior

100 strength entries capture the phase behavior → strength relationship

Two interpolations aid the composition → strength extrapolation

100,000 entries 100 entries



Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition → weldability model

10 defects entries capture the simple weldability → defect relationship

Two interpolations aid composition → defects extrapolation

10 entries1000 entries



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Target properties



Cr 19% Co 4% Mo 4.9% W 1.2% Zr 0.05% Nb 3%

Al 2.9% C 0.04% B 0.01% Ni Expose 0.8 THT 1300ºC

Composition and processing variables



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Phase behavior targets



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC
Materials & Design 168, 107644 (2019)



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa
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Strength target



Test the high cycle fatigue stress

Probabilistic neural network identification of an alloy for direct laser deposition
B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC
Materials & Design 168, 107644 (2019)

Specification temperature



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Defects target



Test the defect density

Design parameter

Probabilistic neural network identification of an alloy for direct laser deposition
B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC
Materials & Design 168, 107644 (2019)
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Summary

Merge computer simulations with experimental data and exploit property-property 

relationships to circumvent missing data

Designed and experimentally verified alloy for direct laser deposition

Generic approach applied to alloys, batteries, pharmaceuticals, and beyond

Taken to market through startup Intellegens
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