

CALPHAD enhances machine learning for alloy design

Gareth Conduit

Cambridge 2022

- Hosted Zi-Kui Liu and his wife at Gonville & Caius College, Cambridge, UK, during summer 2022
- Many discussions of zentropy in the gardens adjacent to Professor Hawking's old office

Cambridge 2022

- Hosted Zi-Kui Liu and his wife at Gonville & Caius College, Cambridge, UK, during summer 2022
- Many discussions of zentropy in the gardens adjacent to Professor Hawking's old office
- Further discussions about CALPHAD at Dinner

Model datasets where the data is **Sparse**

Exploit property-property relationships

Merge data, computer simulations, and physical laws

Reduce costly experiments to accelerate discovery

Black box machine learning for materials design

98344399488109

Machine learning predicts material properties

Jet engine schematic

Combustor in a jet engine

Strength

.

Data available to model strength

Composition and heat treatment space **30** dimensions

Requires **31** points to fit a hyperplane

Just 100 data entries available to model strength

Strength and phase behavior are correlated

Strength

.

Phase behavior

First predict phase behavior

Use 100,000 CALPHAD results to model complex composition \rightarrow phase behavior

Use CALPHAD to predict strength

Use 100,000 CALPHAD results to model complex composition \rightarrow phase behavior

100 strength entries capture the phase behavior \rightarrow strength relationship

Two interpolations aid the composition \rightarrow strength extrapolation

Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

10 defects entries capture the simple weldability \rightarrow defect relationship

Two interpolations aid composition → defects extrapolation

Elemental cost	< 25 \$kg⁻¹		
Density	< 8500 kgm ⁻³		
γ' content	< 25 wt%		
Oxidation resistance	< 0.3 mgcm ⁻²		
Defects	< 0.15% defects		
Phase stability	> 99.0 wt%		
γ' solvus	> 1000°C		
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³		
Yield stress at 900°C	> 200 MPa		
Tensile strength at 900°C	> 300 MPa		
Tensile elongation at 700°C	> 8%		
1000hr stress rupture at 800°C	> 100 MPa		
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles		

Composition and processing variables

Phase behavior targets

Elemental cost	< 25 \$kg⁻¹		
Density	< 8500 kgm ⁻³		
γ' content	< 25 wt%		
Oxidation resistance	< 0.3 mgcm ⁻²		
Defects	< 0.15% defects		
Phase stability	> 99.0 wt%		
γ' solvus	> 1000°C		
Thermal resistance	tance > 0.04 KΩ ⁻¹ m ⁻³		
Yield stress at 900°C	> 200 MPa		
Tensile strength at 900°C	> 300 MPa		
Tensile elongation at 700°C	> 8%		
1000hr stress rupture at 800°C	> 100 MPa		
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles		

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

Elemental cost	< 25 \$kg⁻¹		
Density	< 8500 kgm⁻³		
γ' content	< 25 wt%		
Oxidation resistance	< 0.3 mgcm ⁻²		
Defects	< 0.15% defects		
Phase stability	> 99.0 wt%		
γ' solvus	> 1000°C		
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³		
Yield stress at 900°C	> 200 MPa		
Tensile strength at 900°C	> 300 MPa		
Tensile elongation at 700°C	> 8%		
1000hr stress rupture at 800°C	> 100 MPa		
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles		

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

Elemental cost	< 25 \$kg⁻¹	
Density	< 8500 kgm⁻³	
γ' content	ent < 25 wt%	
Oxidation resistance	< 0.3 mgcm ⁻²	
Defects	< 0.15% defects	
Phase stability	> 99.0 wt%	
γ' solvus	> 1000°C	
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³	
Yield stress at 900°C	> 200 MPa	
Tensile strength at 900°C	> 300 MPa	
Tensile elongation at 700°C	> 8%	
1000hr stress rupture at 800°C	> 100 MPa	
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles	

Test the defect density

Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

1000

750

Johnson Matthey Technology Review **66**, 130 (2022)

1000

0

()

250

NASA Technical Memorandum 20220008637

Alloy	Source	ANN	Δ_{σ}	Actual
Steel AISI 301L	193	269	5	238[23]
$\operatorname{Steel}\operatorname{AISI}301$	193	267	5	221[23]
Al1080 H18	51	124	5	120[23]
${ m Al}5083{ m wrought}$	117	191	14	$300,190[4,\ 23]$
${ m Al}5086{ m wrought}$	110	172	11	269,131[4, 23]
${ m Al}5454{ m wrought}$	102	149	14	124[23]
${ m Al}5456{ m wrought}$	130	201	11	165[23]
INCONEL600	223	278	10	$\geq 550[23]$

Materials & Design 131, 358 (2017) Scripta Materialia 146, 82 (2018) Data Centric Engineering 3, e30 (2022)

500

Temperature / °C

Computational Materials Science 147, 176 (2018)

Merge computer simulations with experimental data and exploit property-property relationships to circumvent missing data

Designed and experimentally verified alloy for direct laser deposition

Generic approach applied to alloys, batteries, pharmaceuticals, and beyond

Taken to market through startup Intellegens

