

Materials discovery with artificial intelligence

Gareth Conduit

Merge simulations, physical laws, and experimental data

Reduce the need for expensive experimental development

Accelerate materials and drugs discovery

Generic with proven applications in materials discovery and drug design

Neural network: a black box

Neural network: train on complete data

Neural network: train on complete data

Neural networks: architecture

Neural network trains on fragmented data

Neural network predicts on fragmented data

Training the neural network

Neural network for materials design

Neural network trained on experimental data

Composition

Further information is provided by a simulation

Composition

Schematic of an engine

Target properties

Cost

Density

γ' content

Phase stability

Fatigue life

Yield stress

Ultimate tensile strength

300hr stress rupture

Cr activity

γ' solvus

Tensile elongation

< 33.7 \$kg⁻¹

< 8281 kgm⁻³

< 50.4 vol%

> 99.0 vol%

> 10^{3.9} cycles

> 752.2 MPa

> 960.0 MPa

> 674.5 MPa

> 0.14

> 983°C

> 11.6%

Proposed alloy

Ti: 3.0

Co: 20.0

Fe: 3.9

Mn: 0.2

Mo: 0.5

Si: 0.2

W: 0.5

Ta: 4.9

C: 0.02

B: 0.06

Nb: 1.1

AI: 2.4

Zr: 0.18

900°C

Microstructure

Predict the yield stress

Test the yield stress

Test the yield stress

More materials designed

3D printed alloy designed from 7 data entries

Identified and corrected errors in materials database

Battery design with DFT and experimental data

Even more materials designed

Designing lubricants with DFT and experimental data

Thermometer with quantum and experimental data

Drug design

Steel demo http://app.intellegens.ai/app/network/#/327

CARBON AND LOW-ALLOY STEELS

This network can be used for carbon steels and low-alloy steels containing only the alloying elements listed below, within the specified ranges. The predicted values represent typical properties for the wrought and annealed condition. Composition should be entered in weight %

Name	Input		
C (carbon)		0	(0.0 - 0.965)
Cr (chromium)		0	(0.0 - 1.2)
Mn (manganese)		٢	(0.0 - 1.75)
Mo (molybdenum)		٢	(0.0 - 0.25)
Ni (nickel)		٢	(0.0 - 3.5)
Si (silicon)		٢	(0.0 - 0.25)
Young's modulus		0	(205.1 - 213.0)
Yield strength (elastic limit)		٢	(134.7 - 469.6)
Tensile strength		٢	(260.5 - 815.6)
Elongation		٢	(12.6 - 43.9)
Fracture toughness		0	(52.4 - 166.5)
Thermal conductivity		0	(39.7 - 75.3)
Specific heat capacity		٢	(434.3 - 499.6)
Thermal expansion coefficient	[0	(11.0 - 13.2)

Apply deep learning to high-value fragmented data

Merge experiments and simulations into **holistic** design tool

Experimentally **proven** materials and drugs design with 7 companies, founded startup **intellegens.ai**

Steels demonstrator: http://app.intellegens.ai/app/network/#/327