Multi-particle theory of superconductivity

Thomas Whitehead and Gareth Conduit

Perturb in the number of particles

Good understanding of few-particle system

Perturb in the number of particles

Good understanding of few-particle system

Building block for many-body state

Five atoms gave Jochim the few-many particle crossover

Cooper pair

Cooper pair

Cooper pair

Cooper pair

Binding energy of a Cooper pair $\quad E=2 \omega_{D} \exp \left(-\frac{2}{g v}\right)$

Cooper pair in a spin-imbalanced Fermi sea

Cooper pair in a spin-imbalanced Fermi sea

Cooper pair in a spin-imbalanced Fermi sea

Cooper pair in a spin-imbalanced Fermi sea

States included in the wave function

Multiple majority spins in the instability

Energy of the $\left(N_{\uparrow}, N_{\downarrow}\right)$-spin instability

Binding energy of a Cooper particle

$$
E=\left(N_{\uparrow}+N_{\downarrow}\right) \omega_{D} \exp \left(-\frac{\left(N_{\downarrow}+N_{\downarrow}\right) \xi^{\prime}}{g N_{\uparrow} N_{\downarrow}} \frac{N_{c}}{V_{\mathrm{C}}}\right)
$$

$$
E=2 \omega_{\mathrm{D}} \exp \left(-\frac{2 \xi^{\prime}}{g v}\right)
$$

Optimal number of up and down spin electrons in the instability is

$$
\frac{N_{\uparrow}}{N_{\downarrow}}=\frac{v_{\uparrow}}{v_{\downarrow}}
$$

Multi-particle superconductor

Superconducting transition temperature

$$
T_{\mathrm{c}}=\omega_{\mathrm{D}} \exp \left(-\frac{\left(N_{\uparrow}+N_{\downarrow}\right) \xi^{\prime}}{2 g N_{\uparrow} N_{\downarrow}} \frac{N_{\mathrm{c}}}{v_{\mathrm{c}}}\right)
$$

Peak transition temperature is at the number ratio

$$
\frac{N_{\uparrow}}{N_{\downarrow}}=\frac{v_{\uparrow}}{v_{\downarrow}}
$$

Summary of multi-particle superconductor

Number of up to down spin electrons is the ratio of the density of states

Superconducting state based on multi-particle instability in a spin-imbalanced system

Analytical, exact diagonalization, and Diffusion Monte Carlo evidence

Applications in Spin-Orbit coupled systems and number fluctuations in the BCS superconductor

Future plans in few-to-many particles

Multi-particle superconductivity
Observables of the superconducting state Spin-orbit coupling
Number fluctuations in BCS superconductor

Non-equilibrium physics
Extract eigenvectors with greatest overlap Time evolution of a disordered system

