
 Gareth Conduit

The modern-day blacksmith



Machine learning for engineering faces the challenge that

not everything has been measured so data is sparse 

Exploit property-property relationships to merge data, simulations, and physical laws

Adaptive design of experiments to accelerate discovery



Actively pursue three approaches to empower machine learning

not everything has been measured so data is sparse 

Exploit property-property relationships to merge data, simulations, and physical laws

Adaptive design of experiments to accelerate discovery

Probabalistic formulation design



Black box machine learning for materials design
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Train the machine learning
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Machine learning predicts material properties
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Exploit property-property relations

to circumvent sparse data



Jet engine schematic



Combustor in a jet engine



Direct laser deposition



Data available to model defect density

Composition and heat treatment space 30 dimensions

Requires 31 points to fit a hyperplane

Just 10 data entries available to model defect density

10 entries



Ability for printing and welding are strongly correlated

Laser Electricity



First predict weldability

Use 1000 weldability entries to understand complex composition → weldability model

1000 entries



Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition → weldability model

10 defects entries capture the simple weldability → defect relationship

Two interpolations aid composition → defects extrapolation

10 entries1000 entries



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Target properties



Cr 19% Co 4% Mo 4.9% W 1.2% Zr 0.05% Nb 3%

Al 2.9% C 0.04% B 0.01% Ni Expose 0.8 THT 1300ºC

Composition and processing variables



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Phase behavior targets



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Elemental cost  < 25 $kg-1

Density  < 8500 kgm-3

γ’ content  < 25 wt%

Oxidation resistance  < 0.3 mgcm-2

Defects  < 0.15% defects

Phase stability  > 99.0 wt%

γ’ solvus  > 1000˚C

Thermal resistance  > 0.04 KΩ-1m-3

Yield stress at 900˚C  > 200 MPa

Tensile strength at 900˚C  > 300 MPa

Tensile elongation at 700˚C  > 8%

1000hr stress rupture at 800˚C  > 100 MPa

Fatigue life at 500 MPa, 700˚C  > 105 cycles

Defects target



Testing the defect density

Design parameter

Probabilistic neural network identification of an alloy for direct laser deposition
B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC
Materials & Design 168, 107644 (2019)



Maximize uncertainty

in design of experiments



Project MEDAL

Commissioning an
additive manufacturing machine

is time consuming

Propose process parameters for the

400W M2 from GE Additive
with the new additive-specific

Aheadd® CP1 powder from Constellium



Train machine learning on initial data set

Train machine 
learning on initial 
data set



Machine learning proposes additional data to collect

Train machine 
learning on initial 
data set

Machine learning 
proposes additional 
data to collect



Uncertainty estimated with machine learning

x

y



Interrogate machine learning of where to collect data

x

y

Outlier ExtrapolationNoise



Train machine learning on larger data set

Train machine 
learning on initial 
data set

Machine learning 
proposes additional 
data to collect

Train machine 
learning on larger 
data set



Project MEDAL proposed samples



Project MEDAL model performance



Project MEDAL outcome

“Machine learning has the
potential to be a key technology

in accelerating further development
and adoption of AM”

Lukas Jiranek, Boeing



Minimize uncertainty

in formulation design



Open Source Malaria contest



Action of a drug

Drug Protein Effect



Action of a drug

Drug Protein Effect



Predictions have an uncertainty
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Validation data typically within one standard deviation
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Accuracy R² metric calculated with difference from mean

A
ct

iv
ity

Drug 1 Drug 2 Drug 3 Drug 4

Error =   +   +   +



Impute 75% of data with smallest uncertainty
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Impute 50% of data with smallest uncertainty
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Impute 25% of data with smallest uncertainty

A
ct
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Drug 1 Drug 2 Drug 3 Drug 4

Error =



Improved performance by exploiting uncertainty

High accuracy

Low accuracy



Different drugs can treat the same ailment



Focus on compounds with low uncertainty

High accuracy

Low accuracy



Open Source Malaria experimental validation

Optibrium & Intellegens

0.647 µM

Journal of Medicinal Chemistry 64, 16450 (2021)



Open Source Malaria other compounds

Optibrium & Intellegens Davy Guan Exscientia Molomics

0.647 µM >25 µM 10.9 µM >25 µM

Journal of Medicinal Chemistry 64, 16450 (2021)
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Materials & Design 131, 358 (2017)
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J. of Chem. Info. & Model. 60, 2848 (2020)
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Molecular Pharmaceutics 19, 1488 (2022)

Journal of Computer-Aided
Molecular Design 35, 112501140 (2021)

Fluid Phase Equilibria 501, 112259 (2019)
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Summary

Exploit property-property relationships to improve predictions

Machine learning guided design of experiments

Probabilistic design improves success rate

Taken to market through Intellegens
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