

The modern-day blacksmith

Gareth Conduit

Machine learning for engineering faces the challenge that

not everything has been measured so data is Sparse

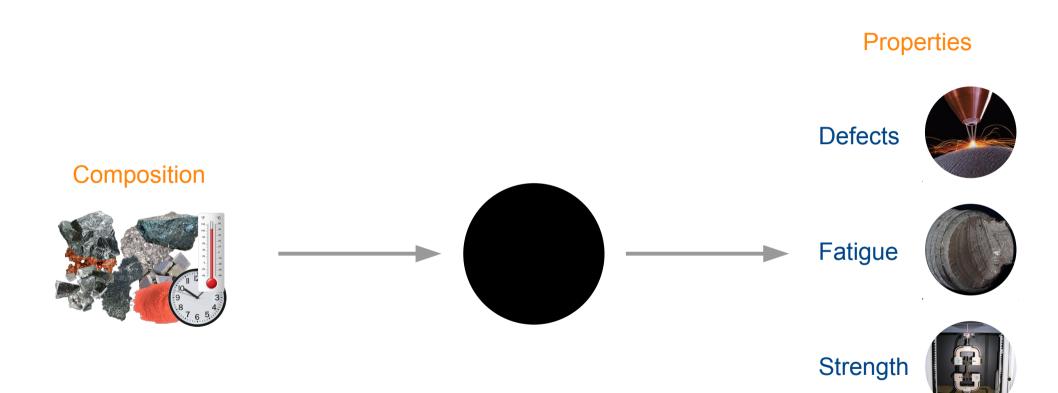
not everything has been measured so data is **Sparse**

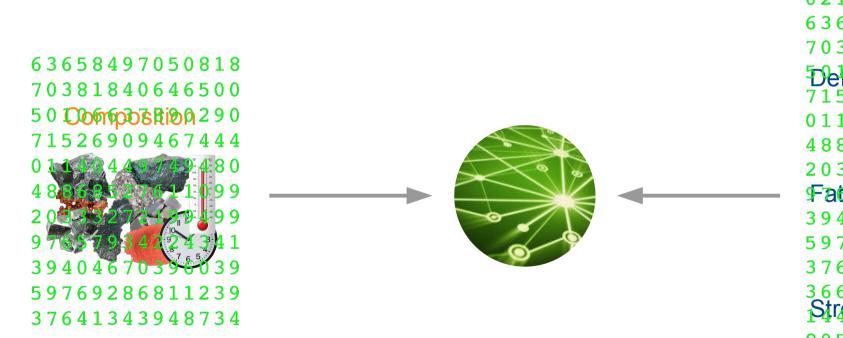
Exploit property-property relationships to merge data, simulations, and physical laws

Adaptive design of experiments to accelerate discovery

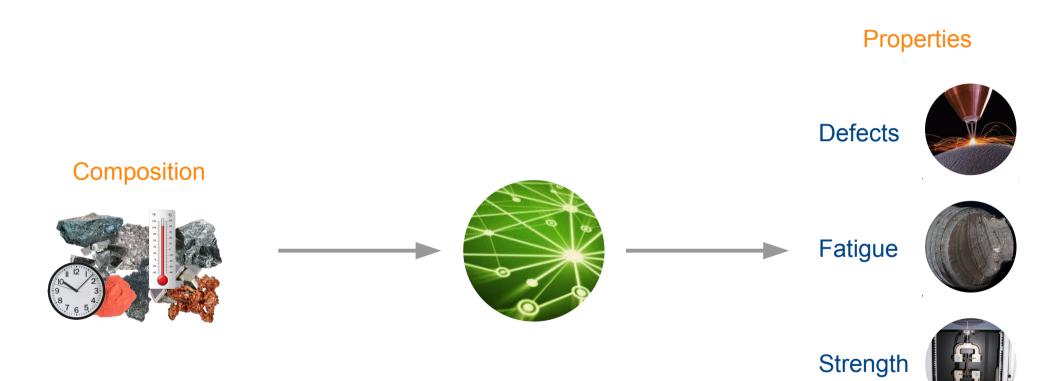
Probabalistic formulation design

Black box machine learning for materials design



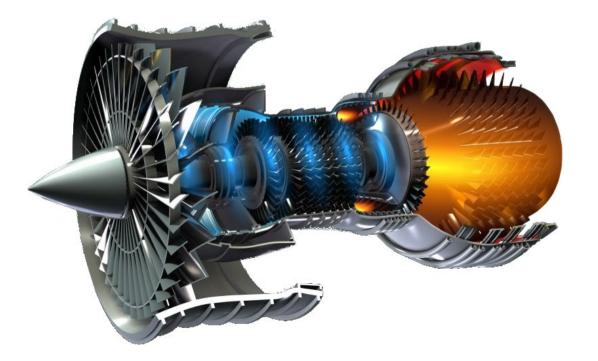


Machine learning predicts material properties

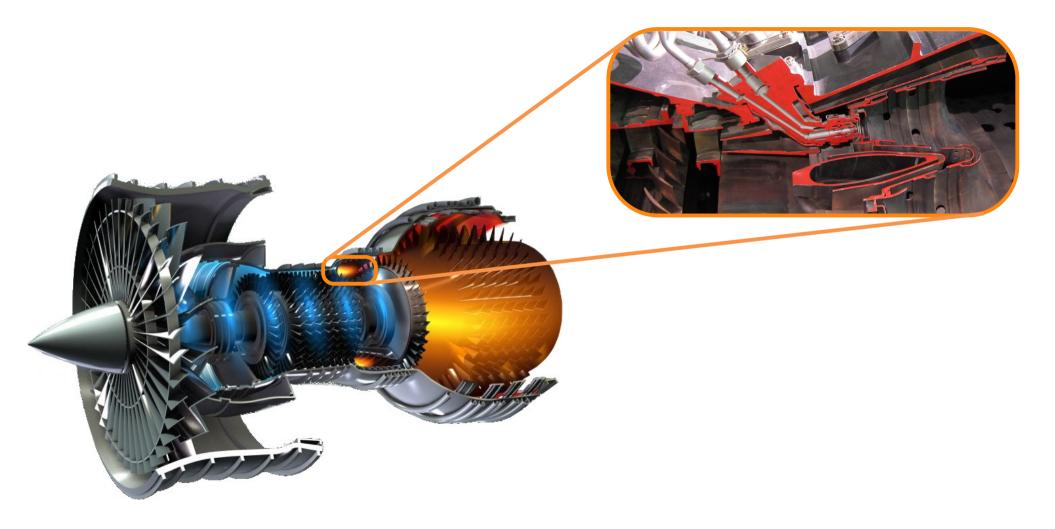


Exploit property-property relations to circumvent sparse data

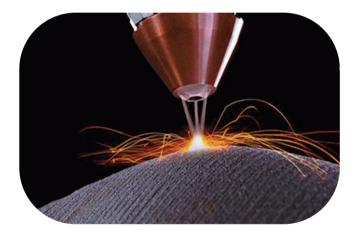
Jet engine schematic



Combustor in a jet engine



Direct laser deposition



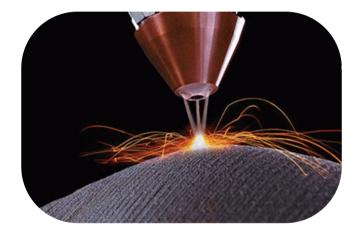
Data available to model defect density

Composition and heat treatment space 30 dimensions

Requires **31** points to fit a hyperplane

Just **10** data entries available to model defect density

Ability for printing and welding are strongly correlated



Laser

First predict weldability

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

Use weldability to predict defects formed

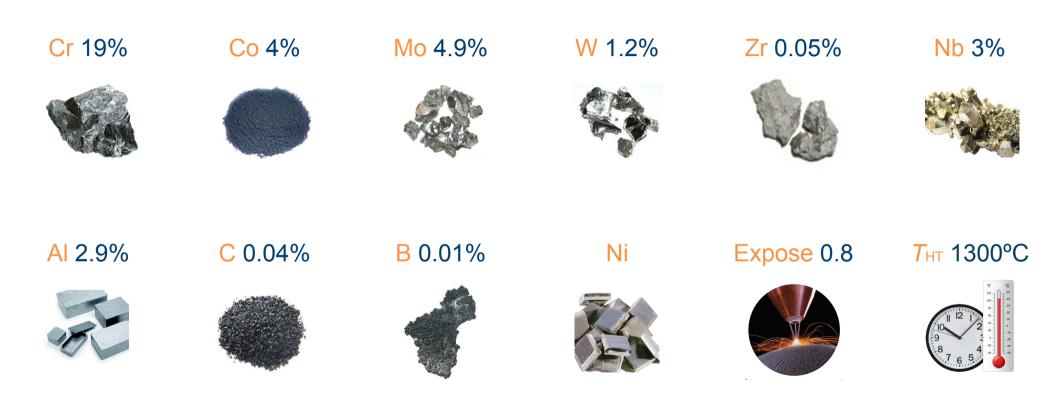
Use 1000 weldability entries to understand complex composition \rightarrow weldability model

10 defects entries capture the simple weldability \rightarrow defect relationship

Two interpolations aid composition → defects extrapolation

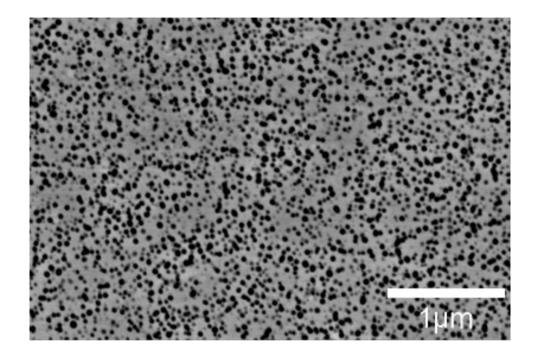
Elemental cost	< 25 \$kg⁻¹
Density	< 8500 kgm⁻³
γ' content	< 25 wt%
Oxidation resistance	< 0.3 mgcm ⁻²
Defects	< 0.15% defects
Phase stability	> 99.0 wt%
γ' solvus	> 1000°C
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³
Yield stress at 900°C	> 200 MPa
Tensile strength at 900°C	> 300 MPa
Tensile elongation at 700°C	> 8%
1000hr stress rupture at 800°C	> 100 MPa
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles

Composition and processing variables

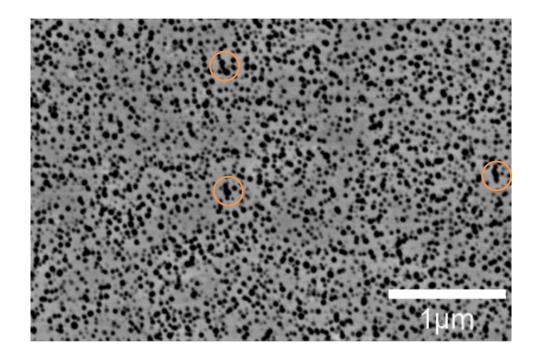


Phase behavior targets

Elemental cost	< 25 \$kg ⁻¹
Density	< 8500 kgm ⁻³
γ' content	< 25 wt%
Oxidation resistance	< 0.3 mgcm ⁻²
Defects	< 0.15% defects
Phase stability	> 99.0 wt%
γ' solvus	> 1000°C
Thermal resistance	> 0.04 KΩ ⁻¹ m ⁻³
Yield stress at 900°C	> 200 MPa
Tensile strength at 900°C	> 300 MPa
Tensile elongation at 700°C	> 8%
1000hr stress rupture at 800°C	> 100 MPa
Fatigue life at 500 MPa, 700°C	> 10 ⁵ cycles



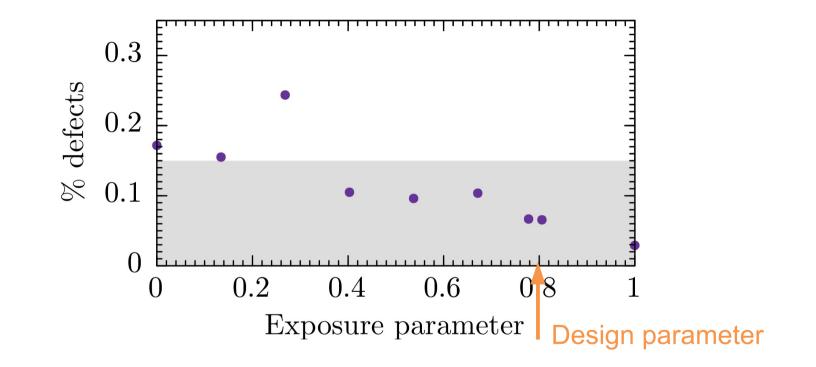
Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)



Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design **168**, 107644 (2019)

< 25 \$kg⁻¹
< 8500 kgm⁻³
< 25 wt%
< 0.3 mgcm ⁻²
< 0.15% defects
> 99.0 wt%
> 1000°C
> 0.04 KΩ ⁻¹ m ⁻³
> 200 MPa
> 300 MPa
> 8%
> 100 MPa
> 10 ⁵ cycles

Testing the defect density



Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019) Maximize uncertainty in design of experiments Commissioning an additive manufacturing machine is time consuming

Propose process parameters for the 400W M2 from GE Additive with the new additive-specific Aheadd® CP1 powder from Constellium

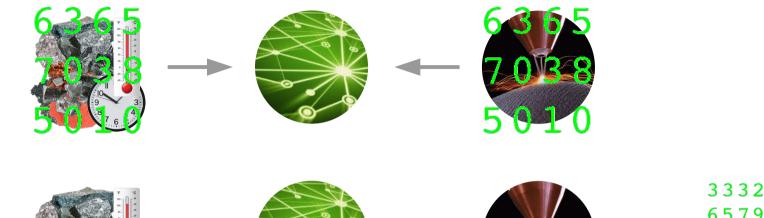
GE Additive

Train machine learning on initial data set

Train machine learning on initial data set

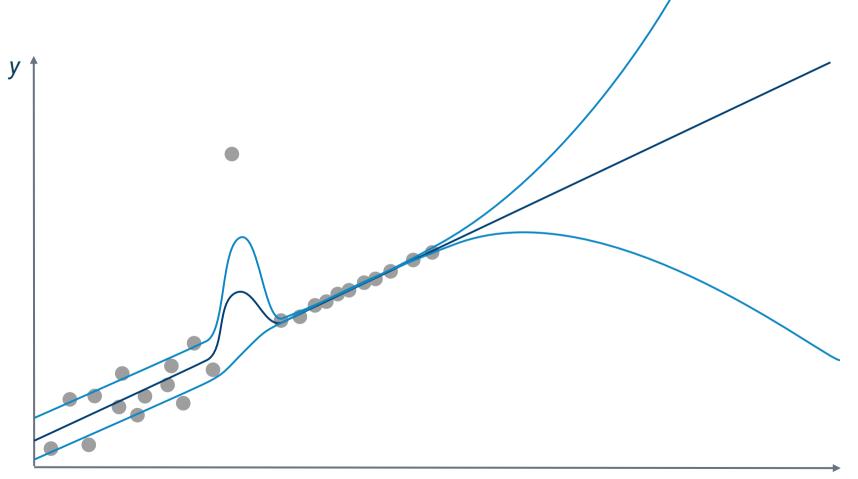
Machine learning proposes additional data to collect

Train machine learning on initial data set

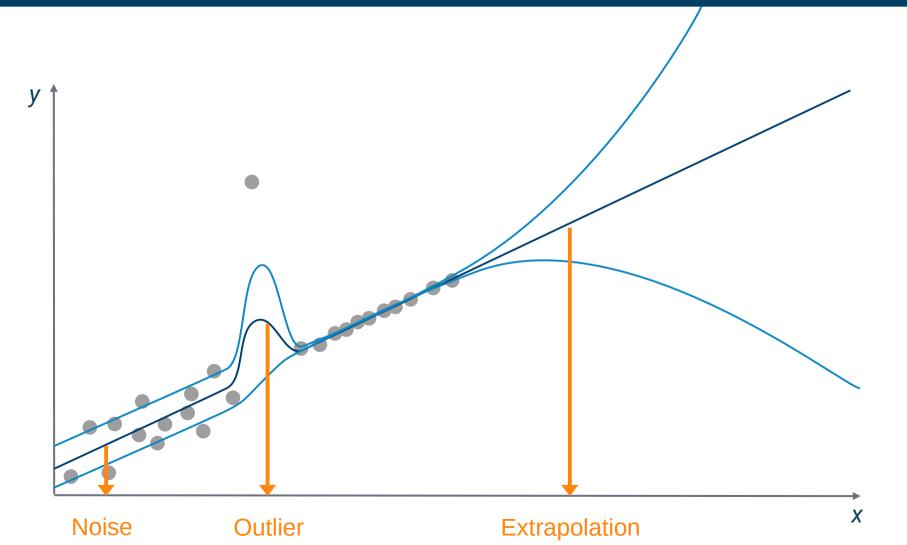


Machine learning proposes additional data to collect

Uncertainty estimated with machine learning



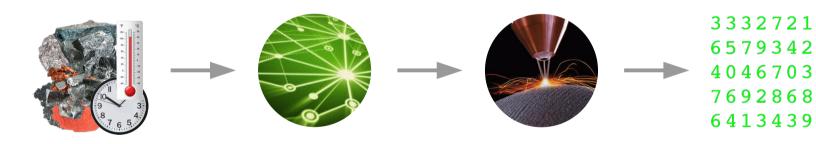
Interrogate machine learning of where to collect data



Train machine learning on larger data set

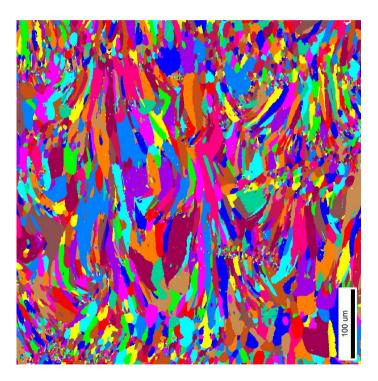
Train machine learning on initial data set

Machine learning proposes additional data to collect

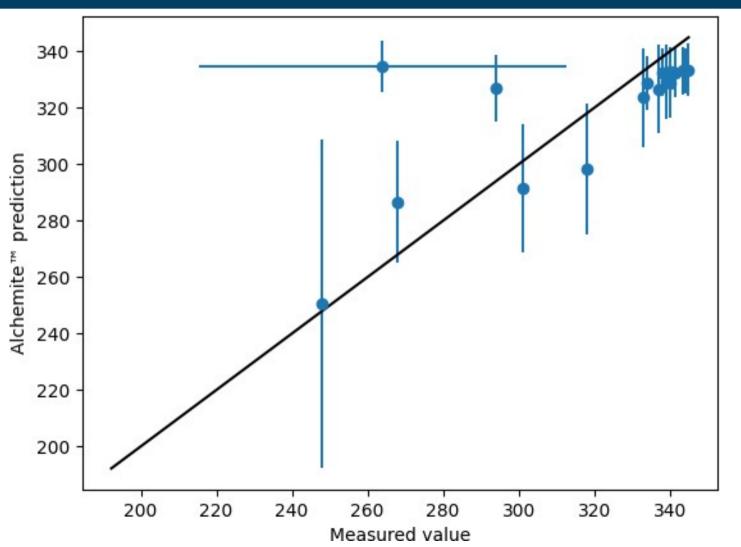


Train machine learning on larger data set

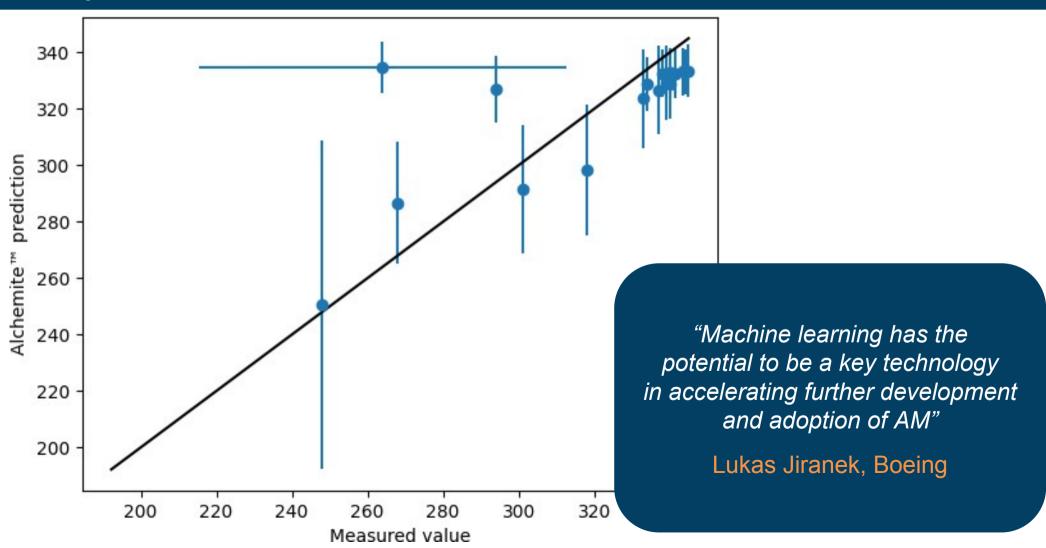
Project MEDAL proposed samples



Project MEDAL model performance

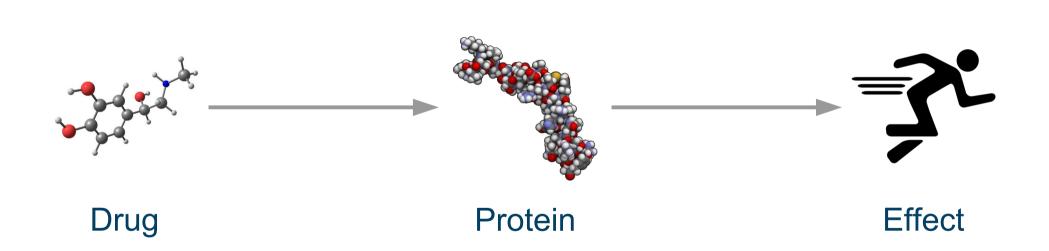


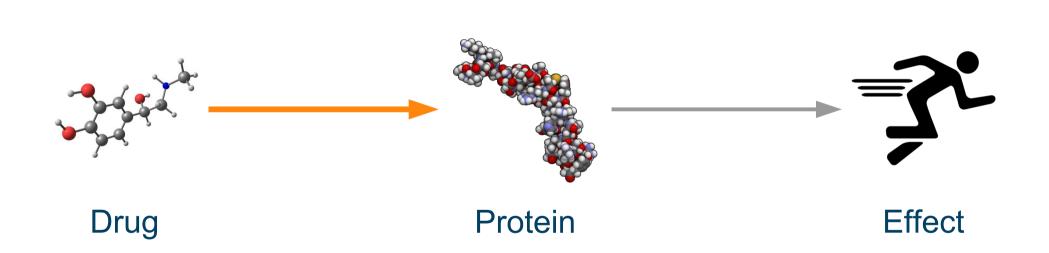
Project MEDAL outcome



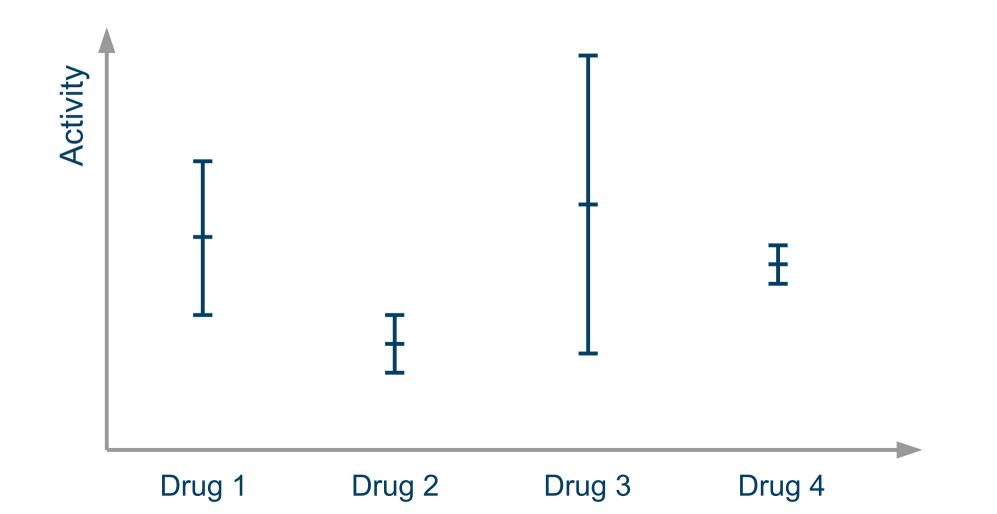
Minimize uncertainty in formulation design

Open Source Malaria contest

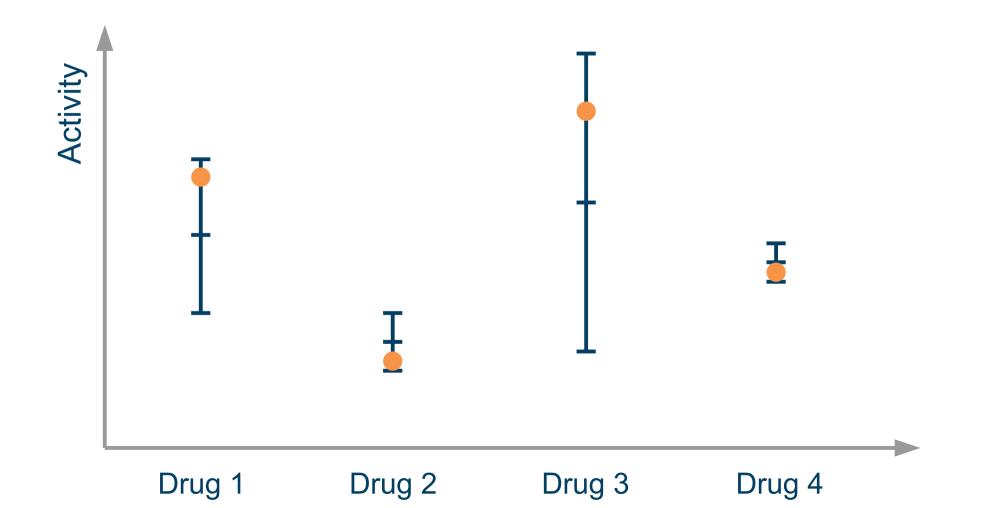




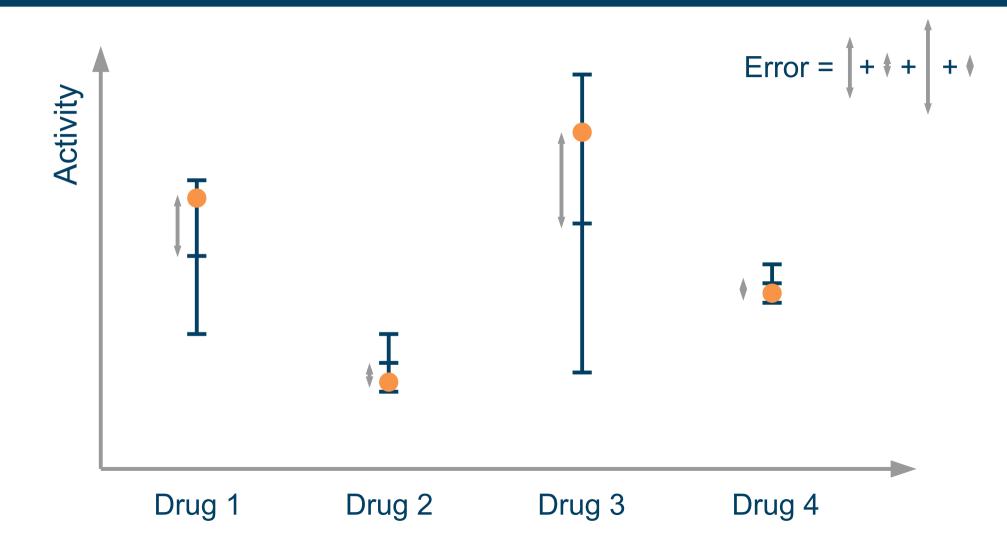
Predictions have an uncertainty



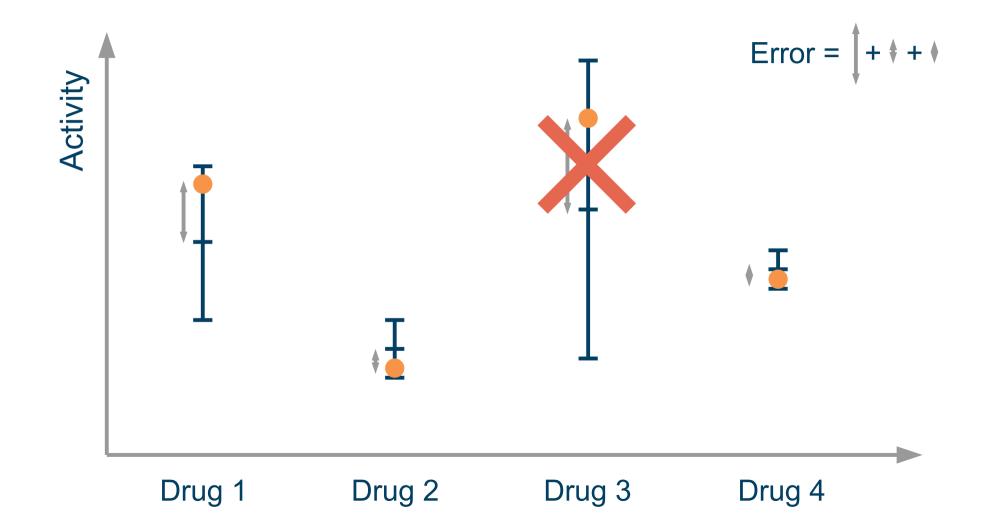
Validation data typically within one standard deviation



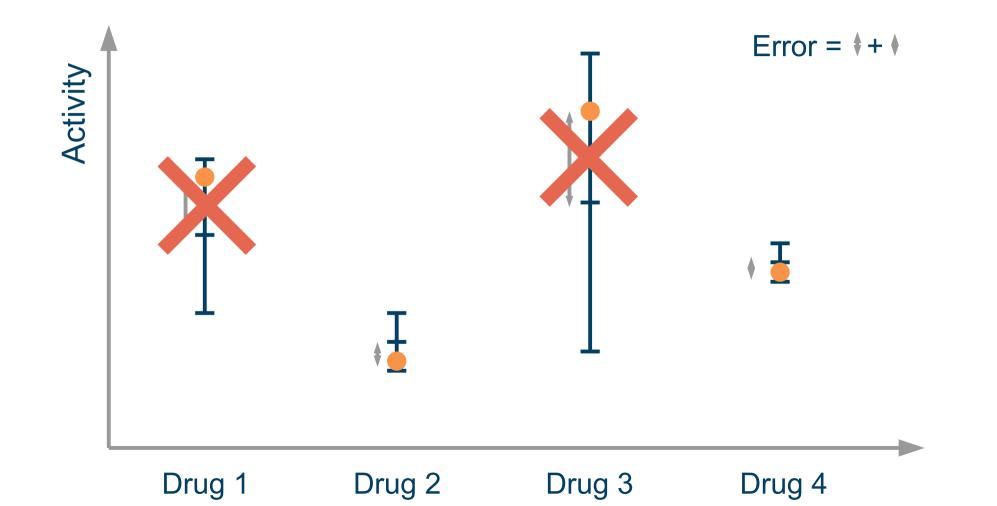
Accuracy R^2 metric calculated with difference from mean



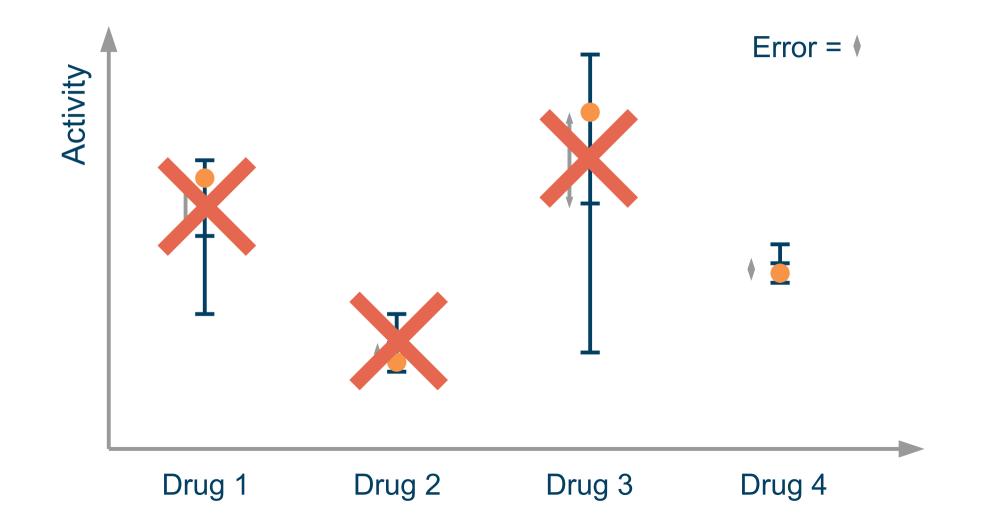
Impute 75% of data with smallest uncertainty



Impute 50% of data with smallest uncertainty



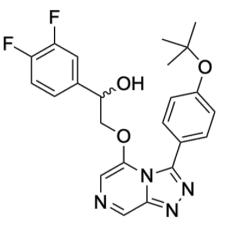
Impute 25% of data with smallest uncertainty



Improved performance by exploiting uncertainty

Focus on compounds with low uncertainty

Open Source Malaria experimental validation

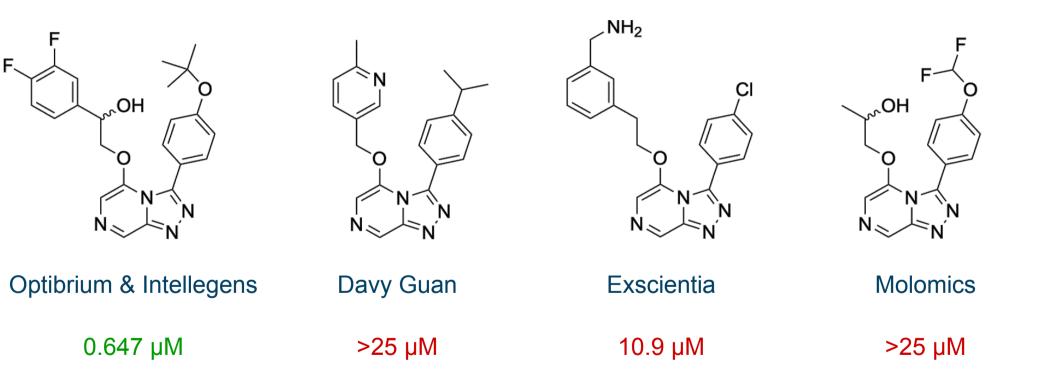


Optibrium & Intellegens

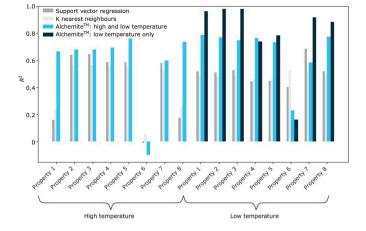
0.647 µM

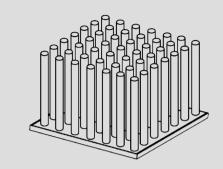
Journal of Medicinal Chemistry 64, 16450 (2021)

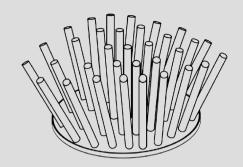
Open Source Malaria other compounds



Journal of Medicinal Chemistry 64, 16450 (2021)

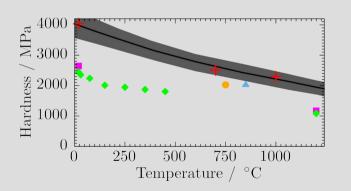






Johnson Matthey Technology Review **66**, 130 (2022)

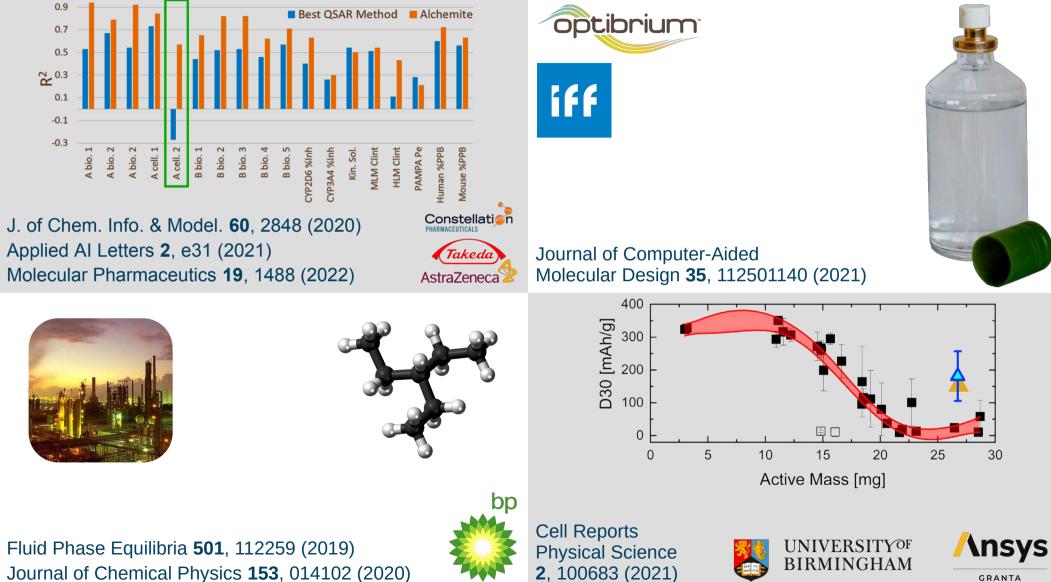
NASA Technical Memorandum 20220008637



Alloy	Source	ANN	Δ_{σ}	Actual
Steel AISI 301L	193	269	5	238[23]
Steel AISI 301	193	267	5	221[23]
Al1080 H18	51	124	5	120[23]
${ m Al}5083{ m wrought}$	117	191	14	300,190[4, 23]
${ m Al}5086{ m wrought}$	110	172	11	$269,131[4,\ 23]$
${ m Al}5454{ m wrought}$	102	149	14	124[23]
${ m Al}5456{ m wrought}$	130	201	11	165[23]
INCONEL600	223	278	10	$\geq 550[23]$
0				

Materials & Design 131, 358 (2017) Scripta Materialia 146, 82 (2018) Data Centric Engineering 3, e30 (2022)

Computational Materials Science 147, 176 (2018)



GRANTA

Exploit property-property relationships to improve predictions

Machine learning guided design of experiments

Probabilistic design improves success rate

Taken to market through Intellegens

