## intellegens

#### **DATA - DRIVEN DISCOVERY**





#### Chemicals, alloys, composites, plastics, batteries, glass, and ceramics



What approach do you currently follow to design materials or chemicals?



What approach do you currently follow to design materials or chemicals?

Trial and improvement experimental development costs >\$10m

Expert driven and subjective does not always work toward optimal design



#### Artificial intelligence

Machines that mimic human behaviour

#### **Machine learning**

Subset of artificial intelligence that uses statistical methods to enable machines to improve with experience

#### **Deep learning**

Subset of Machine Learning that makes the computation of multi-layer neural network feasible



#### Artificial intelligence

Machines that mimic human behaviour

#### **Machine learning**

Subset of artificial intelligence that uses statistical methods to enable machines to improve with experience

#### **Deep learning**

Subset of Machine Learning that makes the computation of multi-layer neural network feasible



#### Machine learning for materials and chemicals design

- **accelerates** research & development processes
- significantly reduces costs
- increases productivity

#### Difficulty with contemporary machine learning









#### Siloed data

### Each silo may have different formats and measurements

## Model not trained on all available information and data





#### Sparse data

Experimental data is sparse and noisy and disconnected from your simulation data

Only clean and complete data can be used by contemporary machine learning



Merge data silos to exploit all streams of data

Impute missing values to train from all available data

Reduce costs and accelerate discovery

through high quality predictive and reproducible models

#### Alchemite<sup>™</sup>

Deep learning for formulation and process optimization



### •

#### Data

Fill in blanks in sparse data and merge together noisy data sets

Spot errors or potential outliers in your current data

Extract more knowledge from your data



### F

#### **Guide experiments**

Use confidence levels to guide where you need to test further

Carry out the experiments that will add the greatest insights

Eliminate the scattergun approach, shorten time to market, and reduce prototype cost



### F

#### **Optimize formulations**

Design a formulation based on multiple target requirements

Optimize the formulation of current material whilst maintaining its characteristics



#### **EXAMPLE**

For materials design

#### Historical materials data

Tens of properties



# Thousands of materials

|   |         | COMPOSITION |        |     | PROCESS  | PROPERTIES |    |     |  |
|---|---------|-------------|--------|-----|----------|------------|----|-----|--|
| - |         | Iron        | Carbon | Mn  | Temp (C) | TS         | YS | HBW |  |
|   | Steel 1 | 99.1        | 0.27   | 0.6 | 842      | 76         |    | 149 |  |
|   | Steel 2 | 98.6        |        | 0.9 |          |            | 80 | 170 |  |
|   | Steel 3 |             | 0.42   |     | 1100     |            |    | 179 |  |
|   | Steel 4 | 98.4        | 0.55   | 0.8 |          | 118        | 70 | 241 |  |

#### Contemporary methods do properties separately



#### Exploit property-property correlations



#### Alchemite<sup>™</sup> trains and predicts all values



Tens of properties

| ••• | ••••••  |                  |                  |                 |                |              |              |     |  |
|-----|---------|------------------|------------------|-----------------|----------------|--------------|--------------|-----|--|
|     |         | COMPOSITION      |                  |                 | PROCESS        | PROPERTIES   |              |     |  |
|     |         | Iron             | Carbon           | Mn              | Temp (C)       | TS           | YS           | HBW |  |
|     | Steel 1 | 99.1             | 0.27             | 0.6             | 842            | 76           | <b>64</b> ±2 | 149 |  |
|     | Steel 2 | 98.6             | <b>0.37</b> ±0.1 | 0.9             | <b>892</b> ±17 | <b>90</b> ±5 | 80           | 170 |  |
|     | Steel 3 | <b>98.8</b> ±0.8 | 0.42             | <b>0.7</b> ±0.1 | 1100           | <b>91</b> ±9 | 77±3         | 179 |  |
|     | Steel 4 | 98.4             | 0.55             | 0.8             | <b>980</b> ±38 | 118          | 70           | 241 |  |

j

#### Set target material properties

Tens of properties



## Thousands of materials

÷

**COMPOSITION** PROCESS PROPERTIES Carbon Mn Temp (C) TS YS Iron HBW 99.1 0.27 0.6 842 76 64±2 149 Steel 1 98.6  $0.37 \pm 0.1$ 0.9 **892**±17 170 90±5 80 Steel 2 98.8±0.8 0.42 0.7±0.1 1100 91±9 77±3 179 Steel 3 98.4 0.55 0.8 118 980±38 70 241 Steel 4 0.8 Steel 5 93 80

#### Alchemite<sup>™</sup> can design materials



## Thousands of materials

:

**COMPOSITION** PROCESS PROPERTIES Mn Temp (C) Iron Carbon TS YS HBW 99.1 76 0.27 0.6 842 64±2 149 Steel 1 98.6  $0.37 \pm 0.1$ 0.9 892±17 90±5 80 170 Steel 2 98.8±0.8 0.42 0.7±0.1 1100 91±9 77±3 179 Steel 3 98.4 0.55 0.8 980±38 118 70 241 Steel 4 0.8 201±12 990±20 93 Steel 5 98.9±0.3 0.49±0.1 80

Tens of properties

#### Schematic of a jet engine





#### Combustor in a jet engine





#### Direct laser deposition requires new alloys



#### Analogy between direct laser deposition and welding





#### Laser



#### Target properties



Elemental cost

Density

γ' content

Oxidation resistance

Processability

Phase stability

γ' solvus

Thermal resistance

Yield stress at 900°C

Tensile strength at 900°C

Tensile elongation at 700°C

1000hr stress rupture at  $800^{\circ}C$ 

Fatigue life at 500 MPa, 700°C

- < 25 \$kg<sup>-1</sup>
- < 8500 kgm<sup>-3</sup>
- < 25 wt%
- < 0.3 mgcm<sup>-2</sup>
- < 0.15% defects
- > 99.0 wt%
- > 1000°C
- > 0.04 KΩ<sup>-1</sup>m<sup>-3</sup>
- > 200 MPa
- > 300 MPa
- > 8%
- > 100 MPa
- > 10<sup>5</sup> cycles





#### Experimental validation: microstructure



Materials & Design 168, 107644 (2019)

#### Experimental validation: defects







Materials & Design 168, 107644 (2019)

#### Experimental validation: oxidation resistance







Materials & Design 168, 107644 (2019)

## A better alloy cheaper and faster



90% reduction in expensive experiments

Reduced costs by \$10 million

Accelerated discovery and validation from 20 to 2 years



#### Other applications





Nickel & moly alloys





Lubricants



#### Steels for welding



Metal-organic framework























SAMSUNG



**BASF** We create chemistry





#### Predicting bioactivity from incomplete data



Alchemite<sup>™</sup> accurately imputes assay activities Significantly outperforms

traditional QSAR models

Uses just 20% of computing resource





#### **ALCHEMITE<sup>™</sup> ANALYTICS**

The machine learning platform for materials and chemicals design

#### **Consulting project** One-off project to design a formulation

#### Alchemite<sup>™</sup> engine API

Deploy machine learning engine into existing software stack

Coogle Cloud Microsoft Azure

Alchemite<sup>™</sup> Analytics platform Software for use by engineers & scientists

Bespoke tool development Front-end with underlying Alchemite<sup>™</sup> engine

#### **ALCHEMITE<sup>™</sup> ANALYTICS**

| _                            | FEATURE | RANGE        | VALUE             | RESULT | UNCERTAINTY |  |
|------------------------------|---------|--------------|-------------------|--------|-------------|--|
| Data Explorer                | с       | 0.00 - 0.43  | 0.41              |        |             |  |
| <ul> <li>Predict</li> </ul>  | Ma      | 0.01 - 2.00  | Intert a volue    | 142    | +100        |  |
| <ul> <li>Optimize</li> </ul> |         | 0.01 - 0.00  |                   | 1.04   | 1.00        |  |
| Metadata                     | Si      | 0.01 - 4.75  | 2.4               |        |             |  |
|                              | Cr      | 0.01 - 17.50 | 16.2              |        |             |  |
|                              | Nİ      | 0.01 - 21.00 | (Insert a value ) | 6.03   | ± 2.16      |  |
|                              | Мо      | 0.02 - 9.67  | Insert a value    | 1.19   | ± 1.45      |  |
|                              | v       | 0.00 - 4.32  | Insert a value    | 0.07   | ± 0.13      |  |
|                              | N       | 0.00 - 0.15  | (Insert a value)  | 0.03   | ± 0.05      |  |
|                              | Nb      | 0.00 - 2.50  | Insert a value    | 0.21   | ± 0.29      |  |



#### **Accelerate R&D**

Generate models to gain a better understanding of the landscape

#### **Guide experiments**

Choose the next best experiment to run in the optimal direction

Visualise and analyse Verify data and visualise changing parameters



#### Upcoming online event Alchemite<sup>™</sup> Analytics platform demo

Subscribe to receive our latest news https://intellegens.ai/subscribe/

Emailinfo@intellegens.aiWebsitehttps://intellegens.aiAlchemite™https://intellegens.ai/alchemite-analytics/Papershttps://intellegens.ai/article-type/papers/

@intellegensaiin /company/intellegensai

