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We study correlated phases occurring in the flat lowest band of the dice-lattice model at flux density
one-half. We discuss how to realize this model, also referred to as the 7 5 lattice, in cold atomic gases. We
construct the projection of the model to the lowest dice band, which yields a Hubbard Hamiltonian with
interaction-assisted hopping processes. We solve this model for bosons in two limits. In the limit of large
density, we use Gross-Pitaevskii mean-field theory to reveal time-reversal symmetry breaking vortex
lattice phases. At low density, we use exact diagonalization to identify three stable phases at fractional
filling factors v of the lowest band, including a classical crystal at » = 1/3, a supersolid state at v = 1/2,

and a Mott insulator at v = 1.
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The dice lattice [1,2], which is also referred to as the 7T 5
lattice [3], gives rise to an exceptional mechanism for
localization: when subjected to a magnetic field with a
flux density n, of one-half flux quantum per plaquette, it
realizes ‘“Aharonov-Bohm cages” that perfectly confine
particle motion by destructive interference around individ-
ual plaquettes [3]. The presence of these localized states
translates into a macroscopic degeneracy of states or equiv-
alently a spectrum with flat energy bands. A natural im-
plementation of this model can be found in Josephson
junction arrays [4], where condensates of Cooper pairs
on each site are well characterized by an xy model for
the classical order parameter. The rich physics of these
systems stems from a highly degenerate manifold of states
at low energies [5], described as vortex lattices. Dynamics
in this manifold is slow [6], and ordering at the lowest
temperatures is determined by such subtle effects as
magnetic interactions of currents [7] or anharmonic fluc-
tuations [8].

Given the perfectly flat bands in the spectrum of the dice
lattice, interactions can potentially lead to strongly corre-
lated states in the regime of low particle density where
number fluctuations are significant. This is reminiscent of
the physics of the fractional quantum Hall effect [9], which
is predicted to also exist in systems of bosonic atoms in the
continuum [10], or in the Hofstadter bands of a square
lattice [11-13]. Similarly for fermions, there has been
intense interest in realizing fractional quantum Hall states
in general flatband models with nonzero Chern numbers
[14]. However, the dice-lattice model at flux density of
one-half is fundamentally different from this Landau level
physics, as it does not break time-reversal symmetry. In
this model, the role of interactions has been described only
for the two-body problem of fermions, where it leads to
delocalized zero-energy states of pairs [15,16].

In this Letter, we study the physics of strongly correlated
states in the flat lowest band of the dice-lattice model at
flux density n, = 1/2. For additional motivation of this

0031-9007/12/108(4)/045306(5)

045306-1

PACS numbers: 67.85.Hj, 03.75.Lm, 74.81.Fa

study, we sketch candidates for robust implementations of
the dice-lattice model in cold atoms. In contrast to other
flatband models, as on the kagome lattice [17], our pro-
posal benefits from the magic of Aharonov-Bohm cages
and thus yields a perfectly flat lowest band separated by a
large gap from higher bands, using only nearest-neighbor
hopping. To analyze the problem of interacting particles in
this flatband, we introduce an effective model obtained by
projecting the Hamiltonian to this band, which is charac-
terized by one dimensionless interaction parameter. In the
limit of large density, we solve this model using Gross-
Pitaevskii mean-field theory and find time-reversal break-
ing ground states that realize the same phase patterns as in
the ground states of the classical xy model [5], but which
have additional density modulations. The projected model
also enables efficient numerical studies of the many-body
physics on the dice lattice based on exact diagonalization.
We undertake a numerical study in the regime of low
particle density that is of interest for cold atomic gases
on lattices. We identify stable phases of the model as a
function of density and find evidence for several phases
including classical crystalline states, a supersolid state with
triangular crystalline order, and a Mott insulator.

An optical dice lattice can be formed by three mutually
phase coherent pairs of counterpropagating laser beams at
relative angles of 277/3 [18]. Here, we propose instead to
use a set of three mutually incoherent pairs in the same
geometrical arrangement. This enables a particularly
convenient scheme to be realized for Yb by using an
“antimagic” wavelength, such that two internal states
('S, and *P) are trapped at the points of maximum or
minimum laser intensity [19]: these points again form a
dice lattice, with the structure shown in Fig. 1. To induce
dynamics in this lattice, one employs laser-assisted hop-
ping that simultaneously imprints phases onto the hopping
matrix elements [19]. For the flux density, n, = 1/2, that
yields the desired flatband structure on the dice lattice [3],
the magnetic unit cell contains six inequivalent atoms.
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FIG. 1 (color online). Figure showing the structure of the dice
lattice, highlighting a rectangular unit cell and negative hoppings
on three bonds (double hatched) that realize the case of flux
density ngy = % The blue contour highlights the extent of a
maximally localized single-particle wave function in the flat
lowest band. Localized states centered around all sixfold con-
nected sites of the lattice (encircled) form an orthonormal basis
for this band and lie on a triangular lattice.

Following the ideas of [19], the required phases can be
imprinted by optically assisted tunneling involving several
coupling lasers and one additional superlattice laser to
break inversion symmetry of the magnetic unit cell. We
note that at the field strength n, = 1/2 time-reversal sym-
metry is not broken, so it is possible to choose a gauge with
real tunneling amplitudes and with only three bonds in the
unit cell having a negative sign, as indicated in Fig. 1. This
allows for an alternative potential implementation, using
an optical dice lattice for single species atoms [18].
Negative hopping can be achieved in principle by shaking
lattice sites [20]; the application in this case may be
challenging, as it requires the threefold connected sites in
the magnetic unit cell to be independently shaken. Finally,
the synthetic gauge field can also be simulated by the
Coriolis force due to a rapid rotation of the system [21,22].

Our main focus concerns the many-body physics of
bosons on the dice lattice at this flux density, n, = 1/2,
as described by the Bose-Hubbard model
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Here, a'!) are the creation or annihilation operators of
atoms on single lattice sites. We adopt Roman indices for
sixfold connected “hubs” (*) and use Greek indices to
number threefold (A, V) connected sites of the dice lattice.
These types of sites can have distinct on-site repulsion
U., Uy. We choose a real gauge with A ,; = 0 or 77, with
negative bonds highlighted in Fig. 1.

The single-particle spectrum of (1) at ny, = 1/2is given
by three flatbands with E = —/6t, 0, /61 [3]. We focus on
the regime with nU, 5/t < 1, such that all dynamics

occurs in the lowest band only. Wave functions localized
on the hubs and extending to the neighboring threefold
connected sites (see Fig. 1) span an orthonormal basis {¢ it
for the lowest band [16,23]. These ¢; have amplitude
1/7/2 on the central site j and 1/+/12exp[iA ju] on the
peripheral sites w [24]. In our real gauge, ¢; are
identical up to translation in all unit cells. (Both sublattices
are also related by a magnetic translation involving a gauge
transformation.) The projection onto the lowest band real-
izes a new effective problem on a triangular lattice visual-
ized in Fig. 2, which derives from the density-density
interactions of the microscopic Hamiltonian (1) via
Vi = UaX,d7 ()i (w)di(n)d(n) + U3, 47(q)
¢7(9)¢1(q)¢i(g), and that reads

Hopoy = VDAl = 1) + y Y [Ah; + 8 + ePed]
i @)
+y; Y [ofgelele? + olkelen, + Hel )
A(i,j.k)

with 6} creating an atom in orbital ¢ i and 7 = @}Léj,
¥1 =3U. + 55Us, ¥2 = 753 Ua, ¥3 = 535 Ua. The prefac-
tors of/ = expi[A,, + A,, + A, + A,,]derive from the
gauge fields around a shared threefold connected site w
[see Fig. 2(b)(vi)]. In the real gauge, a';(]k = q"j’,‘c reduces to
a sign as illustrated in Fig. 2(c). This effective model
includes on-site and nearest-neighbor interactions as well
as pair hoppings and interaction-assisted hopping pro-
cesses. Equivalent projected models can be written gener-
ally also for multicomponent bosons or fermions.

Importantly, note that while the original model (1) is
strictly local, the projected Hamiltonian involves nonzero
range interactions between nearest-neighbor sites. In con-
trast to the flatband physics of the kagome lattice [17],
longer range interactions vanish exactly. The ratio of on-
site terms to nearest-neighbor terms can be tuned, since
u=U,/U, remains as a free parameter of the model
(while the tunneling ¢ drops out of the problem).
Choosing u >> 1 while maintaining nU,, <<t defines
the hard-core limit of the projected model, eliminating
configurations involving double occupancy.

We now inquire into the nature of the many-body ground
states of spinless bosons as a function of density. At
densities n > 1, but remaining in the regime nU,, <t
governed by the projected Hamiltonian (2), we expect that
correlations can be neglected. We analyze this regime
using a Gross-Pitaevskii mean-field equation deriving
from the matrix elements V;j; in the lowest band. This
ansatz is based on a condensate wave function which is a
coherent state of the form |W) = exp[Y;a jé;-r]|0>, such
that ¢;|¥) = a;|W). Introducing a chemical potential wu,
the energy is (H) =33, Vi ara, — pY la;l.
Using steepest descent numerical minimization of the en-
ergy, and expanding the resulting states on the full dice
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FIG. 2 (color online). (a) The projective dynamics within the
low energy band of the dice lattice at flux n, = 1/2 realizes an
effective model on a triangular lattice with an enlarged magnetic
unit cell of two distinct triangular sites A and B. (b) The density-
density interactions of the dice Hamiltonian (1) give rise to the
five distinct processes (i)—(v), including an on-site (i) and
nearest-neighbor (ii) interactions, coherent hopping of pairs of
particles onto the same (iii) and two distinct neighboring
sites (iv), and a stimulated hopping process (v). Hoppings are
shown as arrows, density interactions as dotted lines.
Processes (iv) and (v) have a nontrivial dependency on the gauge
from (vi); see main text. (c) Signs for the processes (iv),(v) in the
real gauge of Fig. 1: these processes involve sites on a triangular
plaquette, of which there are four types classified by the partic-
ipating sublattice indices [empty (A) or full (B) circles]. In
addition, one of the three sites carries two creation or annihila-
tion operators (marked by a hexagon).

lattice, we find that the phase patterns minimizing the
energy are identical to those described by Korshunov for
the xy model [5]. These ground states break time-reversal
symmetry and feature clusters of three plaquettes sharing
the same vorticity or phase winding = 7r. Unlike for the xy
model, the density for these mean-field states of the pro-
jected model (2) is not homogeneous. Instead, we find
n, = 2n, for u = 1. Quantum fluctuations are likely to
break the degeneracy of these different vortex patterns, as
occurs for thermal fluctuations in Josephson junction ar-
rays [8]. However, this effect is beyond Gross-Pitaevskii
theory, which does not capture the role of quantum
fluctuations.

To address the question of how fluctuations resolve the
frustration seen in the mean-field solutions, we study the

regime of low particle density that takes the system into the
strongly correlated limit. We express n in terms of the
density of states in the lowest band n,, defining the band
filling factor » = n/n, = 3n. A remarkable feature of the
Hamiltonian (2) is that all hoppings are mediated only by
the presence of neighboring particles, while single parti-
cles remain stationary. Consequently, the many-body spec-
trum at low filling factor » <w,. = 1/3 has a highly
degenerate zero-energy ground state. The two-body prob-
lem has been studied for two-species fermions with repul-
sive contact interactions [16], and it features delocalized
zero-energy spin-singlet states in addition to the trivial
zero-energy states with particles placed at a distance of
more than one lattice vector. The two-boson wave func-
tions have the same structure, due to their identical spatial
symmetry. Counting £ = 0 states in the spectra of finite
size systems confirms this. For filling factors v < v, =
1/3 the system has infinite compressibility. Precisely at v,.,
the model yields an incompressible ground state that is a
classical crystal of triangular symmetry with unit vectors
i, =17, + 7, and i, =27, — 7, (see Fig. 1 for the
definition of 7;,). The three degenerate crystal ground
states can be written as |W.) = [1,.¢T[F + ni; +

mii, ]|0), where ¢1[7] fills the orbital centered at 7, and 7, €

{0, 7, 71,} are translations with respect to the origin.
Compression to densities ¥ > v, = 1/3 costs a nonzero
energy. Such incompressible states at noninteger filling can
exist only due to the nonlocal interactions of the effective
model.

To study the behavior of the model at densities v > 1/3,
we calculate its spectrum and eigenstates using exact nu-
merical diagonalization, focusing on the hard-core limit
u >> 1. We consider a finite size system consisting of N,
bosons in L, X L, rectangular unit cells of the structure
shown in Fig. 2(a). We consider periodic boundary con-
ditions allowing arbitrary flux (6,, 6,) passing through the
two cycles of the ensuing torus.

We first ask at which densities there can appear phases
that are stable to phase separation. This requires positive
compressibility, such that A2E(N) = E(N + 1) + E(N —
1) — 2E(N) > 0. The dependency E(v) for v, <v <1 is
shown in Fig. 3(a) and A”E in Fig. 3(b). Besides the crystal
described above at v, = 1/3, three further densities v =
1/2, v =2/3,and v = 1 emerge as natural candidates for
stable phases, signaled by a sharp peak in A2E. Our results
for the energy per particle in Fig. 3(a) indicate that the state
of intermediate density » = 2/3 is merely a local mini-
mum and is unstable to phase separation into regions of
density » = 1/2 and 1 at long time scales, as demonstrated
in the inset by a Maxwell construction for the energy of a
phase separated system composed of the adjacent stable
phases. The physics of the » = 1 state is readily identified
as that of a Mott insulator.

The presence of the additional stable state at v = 1/2 is
an intriguing feature of the projected model (2). Our exact
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FIG. 3 (color online). (a) Energy per particle as a function of
the filling factor » = 3n of the low-lying band for the projected
Hamiltonian (2) at n, = 1/2 with hard-core interactions. Finite
size effects between different lattice geometries and the effect of
twisted boundary conditions (bandwidth shown as error bars for
3 X 3 and 3 X 4 geometries) are small. Inset: Energy measured
with respect to the tangent at points v = 1/2 and » = 1 (dashed
line in main panel), showing that » = 1/2 is the only stable
phase between the crystal at » = 1/3 and Mott state at » = 1 for
u >> 1. (b) Second difference of the energy per particle. Maxima
indicate potential incompressible phases, including the states at
v =1/3,1/2, and 1 as well as an additional weaker candidate at
v = 2/3 that is overridden by phase separation.

diagonalization studies at this filling, for systems up to 16
particles, reveal a considerable dependency on the bound-

ary conditions 6. The eigenvalues disperse, and bands
cross, so there is no protected ground-state manifold.

Nonetheless, at the energy minimum [occurring at 6=
(0, ), (a7, 7r), and (0, 0) for 4 X 2, 6 X 2, and 4 X 2 latti-
ces, respectively], the lowest four eigenvalues are sepa-
rated from higher excited states by an amount larger than
their respective splitting. The correlation function of the
lowest eigenstate at this point [Fig. 4(a)] reveals a triangu-
lar crystalline order with lattice vectors {29, 2v,} that
suggests a superlattice cell composed of 4 sites, consistent
with the relative isolation of the four low-lying eigenstates.

Taking a superposition of the four low-lying (and trans-
lationally invariant) exact eigenstates, one can explicitly
construct symmetry-broken states [25]. The picture that
emerges from these states is that of a supersolid, with half
the particles forming a crystal while the remaining parti-
cles Bose condense in a state that fills the channels between
the former. With hindsight, the presence of a condensate
fraction in the system explains the stiffness of the state to a

twist in the periodic boundary conditions 6 observed in the
exact spectra.

The density matrix p for a simple crystalline state of all
N, bosons would be characterized by N, eigenvalues of
order 1. For the superposition states, we typically find one
eigenvalue, A, that is larger than 1 and N, /2 eigenvalues

L

T T T T T T T 1
3hi-z)¢ @ @ e o4  3ifC)e><e <0 e>
L <OJn,n,|0> ] L J
2hi-r®o @ o @ - 2h-@> - <@ - B
hr ° [ ] [ ] o — hr o> 6><0 <0
oo . ® @ ¢ g 0f; & 59 ]
0 a 2a 3a  4a 0 a 2a  3a 4a
T T T T T T T 1 T T T T T
3htb) @ ° ° o — d) e
L ) <S|n |S> 1 Sr Ax4 622 /,//¢ 7
2hi-e S S— - L 2§ P
L P, 1 & o~
y; < =L L v V=001
hj * ® ,,«. ® e o A V=01
( 1 [ + |S>
@@, 0., 4 . T
0 a 2a 3a  4a 0 0.05 -1 0.1
N

FIG. 4 (color online). Data for N = 8 atoms at » = 1/2 on a
lattice of 4 X 2 unit cells. (a) Two-point correlation function
(i, iy) of the ground state |0) for 6 = (0, 7). The reference site
“0” is visually highlighted. Axes carry units a = |9,], h =
\3/4|5,]. (b) Density {A,) of the symmetry-broken crystal state
|S) (see main text). (c) Fluctuations (AZ) — (n,)* (blue circles)
and condensate wave function 9, of |S) (red arrows). (d) Scaling
of the condensate fraction Ay/N against N~!, for superposition
states |S) and pinned states with pinning centers of strength V,
on crystal sites.

of order 1, signaling the presence of both condensate and
crystalline components. Generalizing the construction of
symmetry-broken condensate states in Ref. [25], we gen-
erate these supersolid states as the superpositions of the
four lowest eigenstates in the exact spectrum by maximiz-
ing pgy = X424 A;, the sum of the first k= N/2 + 1
eigenvalues of p. In Fig. 4(b), we show the density profile
for the symmetry-broken state |S) obtained by optimizing
P(v/2+1)» With obvious crystalline order. In this state, only
half the density is concentrated on superlattice sites, while
the remainder forms a condensed background liquid. On
the crystal sites, particle number fluctuations are negli-
gible, and there is a very small amplitude for the eigen-
vector of the largest density matrix eigenvalue on these
sites [Fig. 4(c)]. This eigenvector has support on the back-
ground sites, where simultaneous fluctuations are strong.
These features are characteristic of a supersolid [17]. We
analyze A, for the superposition states |S) constructed
above, and alternatively for eigenstates obtained using
trapping potentials V, <0 on the superlattice sites.
Indeed, our numerics indicate the condensate fraction ex-
trapolates to a nonzero value = 0.06 in the thermodynamic
limit [Fig. 4(d)]. Unlike the vortex lattices at high density,
we find that the condensed fraction of this supersolid does
not break time-reversal symmetry. Experimentally, such
crystalline order could be observed clearly in in situ images
of the system; expansion images should reveal evidence for
a nonzero condensate fraction, and the density ordering
will appear in the noise correlations [26].
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In summary, we have proposed the dice-lattice model as
an attractive experimental system to explore the many-
body physics of time-reversal symmetric flatbands. We
have derived the effective Hamiltonian for interacting par-
ticles in such a band. Our results give the first insights into
its rich phase diagram for bosons, driven entirely by
interaction-assisted hopping processes which emerge as a
generic feature of projected flatband Hamiltonians.

We acknowledge support from Trinity Hall Cambridge
(G.M.) and EPSRC under EP/F032773/1 (N.R.C.).
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