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Short-range tight-binding Hamiltonian. In the main text,
we use a tight-binding Hamiltonian with local but long-range
hopping for theoretical elegance. Now we show that we can
obtain similar results with only short-range hopping.

First, we only keep the nearest-neighbor (NN) and next-
nearest-neighbor (NNN) hopping in the tight-binding model,
Eq. (1) in the main text. Thus, we obtain a new tight-binding
model with short-range hopping

H ′0 =
∑
j,k,σ

t′(zj , zk)a†
j,Fnjk (σ)ak,σ, (S1)

where t′(zj , zk) = (−1)x+y+xye−
π
2 (1−φ)|z|2e−iπφ(xj+xk)y

for |z|2 ≤ 2 and t′(zj , zk) = 0 for |z|2 > 2. The meanings of
the symbols are the same as those in the main text.

Although the exact flatness of the lowest 2φLxLy eigen-
states in the absence of defects is lost due to the hopping trun-
cation, we still find that defects have almost the same effect on
the band structure of H ′0 as that on H0 shown in the main text
[Figs. S1 and S2]. The energies of some eigenstates localized
near the defects deviate from the original bands, and the dis-
persion of the lowest 2φLxLy+M eigenstates can be reduced
by a local potential V = −∑2φLxLy+M

n=1 εnTR(|ψn〉〈ψn|)
with negligible influence on the pertinent eigenvector sub-
space of H ′0, where εn’s and ψn’s are now the eigenvalues
and eigenvectors of H ′0 respectively. One can notice that such
a flattening procedure works better for smaller φ, as shown in
Figs. S1 and S2.

We diagonalize the interaction projected onto the lowest
2φLxLy+M eigenstates ofH ′0 to examine the topological de-
generacy at various filling fractions. Strikingly, we can get the
expected topological degeneracy even though we have trun-
cated the hopping [Fig. S3].

Second, let us further truncate the hopping range to include
only the nearest-neighbor terms of the conventional Harper-
Hofstadter model [S1–S3], with the same type of defects
added. Remarkably, the defect-enhanced eight-fold Laughlin
degeneracy of projected interactions remains stable for small
flux density φ even in this case [Fig. S4]. These results imply
that the long-range hopping is indeed not necessary for the
realization of lattice genons, thus facilitating their experimen-
tal realization. A realization based on the nearest-neighbor
Harper-Hofstadter model would provide an additional range
of host states to explore, as single layers can be chosen to re-
alize higher Chern number C bands that support a series of

hierarchy states at filling factors ν = r/(kCr+1), with r ∈ Z
and k even (odd) for bosons (fermions) [S4].

Simplified local potentials. In the main text, we use an ad-
ditional potential V = −∑2φLxLy+M

n=1 εnTR(|ψn〉〈ψn|) that
is localized near the ends of branch cuts in order to restore a
flat lowest band. At R → ∞, this flattening process by V is
asymptotically exact in the sense that the lowest 2φLxLy+M
eigenstates of H0 + V will become exactly degenerate again
at zero energy and have the same eigenvectors as those of
H0. Although having an elegant mathematical form, the hop-
ping range in V depends on R. In order to facilitate real-
istic experimental implementations, we now consider a sim-
plified version of V that only contains single-site energies
and NN hopping terms: Ṽ = α

∑2M
n=1 TR,NN(|ψn〉〈ψn|) +

β
∑2φLxLy+M
n=2φLxLy−M+1 TR,NN(|ψn〉〈ψn|). Here we only sum

over the 4M single-particle states with the largest deviations
from the original band structure (see Sec. III in the main text).
|ψn〉’s are still the eigenvectors of the tight-binding Hamilto-
nian before band corrections. TR,NN truncates |ψn〉〈ψn| not
only at the radius R around each defect, but also up to the NN
hopping. α and β are parameters which we need to optimize
to pursue the flattest lowest band.

We find that Ṽ with small R is sufficient to flatten the
lowest band, with negligible influence on the pertinent eigen-
vector subspace of the tight-binding Hamiltonian before band
corrections. As shown in Fig. S5, a flat lowest band required
by the RR state is restored by Ṽ for H0 [Eq. (1) in the main
text] [Figs. S5(a) and (b)] as well as for the conventional Hof-
stadter model with defects at small flux density [Fig. S5(c)].
Therefore, Ṽ , which only contains single-site and NN terms
near each defect, is potentially suitable for the experimental
realization of genons. In practice, one can even simply it fur-
ther by eliminating some terms with small coefficients from
the simplified potential Ṽ .

Straight branch cuts used in the main text. For complete-
ness, we indicate the precise positions of branch cuts used to
generate the data in the main text. All cuts in the main text
are oriented along the y-axis, and for such branch cuts con-
necting a pair of two defects with identicalX1-coordinate and
positions (X1, Y1) and (X1, Y2) we use the more succinct no-
tation (X1, Y1 → Y2).

For ν = 1/2 with two pairs of defects (Fig. 3), two branch
cuts are located at (0.5, 0.25 → 1.75), (2.5, 0.25 → 1.75)
for Lx × Ly = 4 × 3; (0.5, 0.5 → 2.5), (2.5, 0.5 →
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2.5) for Lx × Ly = 4 × 4 and 4 × 5; (0.25, 0.25 →
1.75), (3.25, 0.25→ 1.75) for Lx×Ly = 6×3; (0.25, 0.5→
2.5), (3.25, 0.5 → 2.5) for Lx × Ly = 6 × 4; and
(0.25, 0.75 → 3.25), (3.25, 0.75 → 3.25) for Lx × Ly =
6 × 5. For ν = 1 with one pair of defects [Fig. 4(a)], the
branch cut is located at (0.5, 0.5 → 2.5) for Lx × Ly =
3 × 4; (0.5, 0.75 → 3.25) for Lx × Ly = 3 × 5; and
(1.5, 0.25 → 1.75) for Lx × Ly = 4 × 3. For ν = 1 with
two pairs of defects [Fig. 4(b)], the branch cuts are located at
(0.25, 0.5 → 2.5), (1.75, 0.5 → 2.5) for Lx × Ly = 3 × 4
and (0.25, 0.75→ 3.25), (1.75, 0.75→ 3.25) for Lx × Ly =
3 × 5. For ν = 3/2 with one pair of defects [Fig. 4(e)], the
branch cut is located at (0.25, 0.5→ 2.5) forLx×Ly = 3×4.

Tilted branch cuts. In the main text, we have presented data
for branch cuts arranged in the y-direction, as detailed above.
In addition, we now consider more general locations of de-
fects that yield tilted branch cuts. In these general cases, we
denote the branch cut connecting a pair of defects at (X1, Y1)
and (X2, Y2) as (X1, Y1) → (X2, Y2). In the following we
use the same tight-binding model H0 as in the main text.

With tilted branch cuts, we observe a similar effect of de-
fects on the band structure as that in the main text [Fig. S6].
Moreover, the many-body spectra of projected interactions re-
produce the expected topological degeneracy for the given
number of branch cuts [Fig. S7].

Definition of particle entanglement spectra and state

counting. PES are a useful diagnostic for topological order.
For a D-fold degenerate ground-state manifold {|Ψα〉} of N
particles, we define the PES levels ξ as ξ ≡ − lnλ, where
the λ’s are the eigenvalues of the reduced density matrix ρA
of NA particles obtained by tracing out NB = N − NA
particles from the whole system, i.e., ρA = TrBρ with
ρ = 1

D
∑D
α=1 |Ψα〉〈Ψα|. A gap in the PES is expected, below

which the number of PES levels is the same as the counting of
the corresponding quasihole excitation spectrum [S5], which
in our case can be obtained from diagonalizing the interaction
Hamiltonian of NA

b particles on the same lattice size with the
same branch cuts.
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Figure S1. Single-particle spectra and defect-induced localized states with NN and NNN hopping only. We study the band structure on
a Lx × Ly = 12 × 12 lattice with φ = 1/2. (a) The single-particle spectrum {εn} of H ′

0. In the absence of defects (M = 0), ε1, · · · , ε144
are no longer exactly degenerate at zero energy. With a branch cut (M = 1, white dashed line) at (5.5, 2.5 → 8.5), the original band
structure is distorted, with one nearly degenerate cluster (ε144, ε145) having the largest deviation. (b) The lattice site weight of eigenvectors
ψ1, ψ2, ψ144, ψ145 ofH ′

0 for the same defects as in (a). All of them are strongly localized near the defects. However, the localization of ψ1 and
ψ2 is weaker than the case ofH0 in the main text, probably because now they have much less energy deviation from the original band structure.
(c) The single-particle spectrum {εRn } ofH ′

0+V withR = 0, 1, and 2 and the same defects as in (a). The degeneracy of εR1 , · · · , εR145 (shaded
in gray) becomes better for larger R, with the flatness 0.6, 2.2, 3.7 for R = 0, 1, 2.
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Figure S2. Single-particle spectra and defect-induced localized states with NN and NNN hopping only. We show the band structure on a
Lx × Ly = 12 × 12 lattice with φ = 1/3. (a) The single-particle spectrum {εn} of H ′

0. In the absence of defects (M = 0), ε1, · · · , ε96 are
no longer exactly degenerate at zero energy. With a branch cut (M = 1, white dashed line) at (5.5, 2.5 → 8.5), the original band structure
is distorted, with two nearly degenerate clusters (ε1, ε2) and (ε96, ε97) having the largest deviation. (b) The lattice site weight of eigenvectors
ψ1, ψ2, ψ96, ψ97 of H ′

0 for the same defects as in (a). All of them are strongly localized near the defects. (c) The single-particle spectrum
{εRn } of H ′

0 + V with R = 0, 1, and 2 and the same defects as in (a). The degeneracy of εR1 , · · · , εR97 (shaded in gray) becomes better for
larger R, with the flatness 0.7, 2.2, 7.3 for R = 0, 1, 2.
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Figure S3. Defect-enhanced topological degeneracy with NN and NNN hopping only. We show the many-body spectra resulting from the
single-particle Hamiltonian H ′

0. The interactions and branch cut locations in each specific system size are the same as those used in the main
text with H0. The approximately degenerate ground states, together with the degeneracyD, are highlighted by the cyan shade. One can notice
that we get the same topological degeneracy as that in the main text.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n

0.00

0.02

0.04

0.06

0.08

E
n
−
E

1

D = 8

Nb = 6, Lx × Ly = 6× 6, φ = 1/6

Nb = 8, Lx × Ly = 6× 8, φ = 1/6

Nb = 8, Lx × Ly = 8× 8, φ = 1/8

Figure S4. Defect-enhanced topological degeneracy in the Hof-
stadter model with defects, for the Abelian ν = 1/2 state.
We show the many-body calculations with NN hopping only for
two branch cuts at ν = 1/2. Two branch cuts are located at
(0.25, 0.5 → 3.5), (3.25, 0.5 → 3.5) for Lx × Ly = 6 × 6;
(0.25, 1.5 → 5.5), (3.25, 1.5 → 5.5) for Lx × Ly = 6 × 8; and
(1.5, 1.5→ 5.5), (5.5, 1.5→ 5.5) for Lx × Ly = 8× 8.
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Figure S5. Flattening the lowest band by a local potential Ṽ including only single-site energies and NN hoppings. We show the band
structure on an Lx × Ly = 12 × 12 lattice with a single branch cut (M = 1) at (5.5, 2.5 → 8.5). (a) The single-particle spectrum {εRn }
of H0 + Ṽ at φ = 1/2 with (R,α, β) = (0, 0, 0) and (2, 0.8,−1.4). (b) The single-particle spectrum {εRn } of H0 + Ṽ at φ = 1/3 with
(R,α, β) = (0, 0, 0) and (2, 0.9,−1.3). (c) The single-particle spectrum {εRn } of HHof + Ṽ at φ = 1/6 with (R,α, β) = (0, 0, 0) and
(2, 1,−1.3), whereHHof is the conventional Harper-Hofstadter model with added defects. One can see that, compared to the spectrum without
Ṽ correction [(R,α, β) = (0, 0, 0)], a flat lowest band (shaded in gray) required to stabilize the RR state is indeed established by Ṽ , with a
flatness ratio of 3.4, 7.7 and 15.5 in (a), (b) and (c) respectively.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
n

0.0

0.5

1.0

1.5

2.0

2.5

ε n

n = 1, 2

n = 144, 145

(a)

M = 0

M = 1

ψ1 ψ2

ψ144 ψ145

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(b)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
n

0.0

0.5

1.0

1.5

2.0

2.5

εR n

(c)

M = 1, R = 0

M = 1, R = 1

M = 1, R = 2

Figure S6. Single-particle spectra and defect-induced localized states for tilted branch cuts. We study the band structure on a Lx×Ly =
12 × 12 lattice with φ = 1/2. (a) The single-particle spectrum {εn} of H0. In the absence of defects (M = 0), ε1, · · · , ε144 are exactly
degenerate at zero energy. With a tilted branch cut (M = 1, white dashed line) at (3, 2.5) → (8, 8.5), the original band structure is
distorted, with two nearly degenerate clusters (ε1, ε2) and (ε144, ε145) having the largest deviation. (b) The lattice site weight of eigenvectors
ψ1, ψ2, ψ144, ψ145 of H0 for the same defects as in (a). All of them are strongly localized near the defects. The eigenstates with less
energy deviation from the original band structure, for example, ψ3, ψ4, ψ142, ψ143, are less localized (not shown here). (c) The single-particle
spectrum {εRn } of H0 + V with R = 0, 1, and 2 and the same defects as in (a). The degeneracy of εR1 , · · · , εR145 (shaded in gray) becomes
better for larger R, with the flatness 0.6, 1.0, 8.1 for R = 0, 1, 2.
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Figure S7. Many-body spectra for tilted branch cuts. The approximately degenerate ground states, together with the degeneracy D, are
highlighted by the cyan shade. (a) ν = 1/2 with two branch cuts at (0.25, 0.5) → (0.5, 2), (2.25, 0) → (2.5, 1.5) for Lx × Ly = 4 × 3;
(0, 0.75)→ (1, 2.75), (2, 0.25)→ (3, 2.25) for Lx×Ly = 4× 4; (0.25, 0.5)→ (0.5, 2), (3.25, 0)→ (3.5, 1.5) for Lx×Ly = 6× 3; and
(0.5, 0.75) → (1.5, 2.75), (3.5, 0.25) → (4.5, 2.25) for Lx × Ly = 6 × 4. (b) ν = 1 with one branch cut at (0.25, 0.5) → (1.75, 2.5) for
Lx×Ly = 3×4 and (0.25, 0.5)→ (1.75, 3) forLx×Ly = 3×5. (c) ν = 1 with two branch cuts at (0.1, 0.75)→ (0.4, 2.75), (1.6, 0.25)→
(1.9, 2.25) for Lx × Ly = 3 × 4 and (0.19, 0.5) → (0.31, 3.5), (1.69, 0.45) → (1.81, 3.45) for Lx × Ly = 3 × 5. (d) ν = 3/2 with one
branch cut at (0.5, 0.5)→ (2, 2.5) for Lx × Ly = 3× 4.
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