Correlated Phases of Atomic Bose Gases on a Rotating Lattice:
 Composite Fermion Theory for Bosonic Atoms

Gunnar Möller
Cavendish Laboratory, Cambridge \& CU Boulder
CU Boulder Condensed Matter Seminar
April 16, 2008.
GM \& N. R. Cooper, arXiv:0904.3097

EPSRC

Overview

- Strongly Correlated Phases of Ultracold Atomic Bose Gases
- Atomic Bose Gases on a "Rotating Lattice"
- Strongly Correlated Phases: Numerical Evidence
- Summary

Atomic Bose Einstein Condensates

[Anderson et. al. [JILA], Science 269, 198 (1995).]
s-wave scattering length $a_{\mathrm{s}} \simeq 5 \mathrm{~nm} \ll \bar{a} \simeq 100 \mathrm{~nm}$
\Rightarrow Weakly interacting
Groundstate wavefunction

$$
\Psi\left(\left\{\boldsymbol{r}_{i}\right\}\right) \simeq \prod_{i=1}^{N} \psi_{c}\left(\boldsymbol{r}_{i}\right)
$$

Strongly Correlated Phases of Atomic Bose Gases

(1) Optical Lattice

Bose-Hubbard model
[Jaksch et al., PRL 81, 3108 (1998)]

$$
H=-J \sum_{\langle\alpha, \beta\rangle}\left[\hat{b}_{\alpha}^{\dagger} \hat{b}_{\beta}+h . c .\right]+\frac{1}{2} U \sum_{\alpha} \hat{n}_{\alpha}\left(\hat{n}_{\alpha}-1\right)-\mu \sum_{\alpha} \hat{n}_{\alpha}
$$

Strongly correlated regime for $U / J \gg 1$ at particle density $n \sim 1$.
$T=0$: competition between

- superfluid (BEC)
- Mott insulators, at $n=1,2, \ldots$.
[Fisher et al., PRB 40, 546 (1989)]

Transition to Mott insulator observed in experiment [Greiner et al., Nature 415, 39 (2002)]

[a) no lattice; b) SF (weak lattice potential) — h) MI (strong lattice potential)]

Strongly Correlated Phases of Atomic Bose Gases

(2) Rapid Rotation

Rotation frequency, Ω
Quantized vortices
Vortex density $n_{\mathrm{v}}=\frac{2 M \Omega}{h}$
[Coddington et al. [JILA], PRA 70, 063607 (2004)]

Harmonic confinement frequency ω_{\perp}.
$\Omega \simeq \omega_{\perp}: \Rightarrow$ quasi-2D Landau level spectrum

Filling Factor $\quad \nu \equiv \frac{n_{2 \mathrm{~d}}}{n_{\mathrm{v}}}$
Critical filling factor $\nu_{\mathrm{c}} \simeq 6$

- $\nu>\nu_{\mathrm{c}}$: Vortex Lattice (BEC)
- $\nu<\nu_{\mathrm{c}}$: Bosonic versions of fractional quantum Hall states:

Laughlin, hierarchy/CF, Moore-Read \& Read-Rezayi phases, smectic +...?
[For a review, see: N. R. Cooper, Adv. Phys. 57, 539 (2008)]
e.g. Laughlin state, $\nu=\frac{1}{2}$

$$
\Psi_{L}\left(\left\{\boldsymbol{r}_{i}\right\}\right) \propto \prod_{i<j}\left(z_{i}-z_{j}\right)^{2} e^{-\sum_{i}\left|z_{i}\right|^{2} / 4}
$$

$$
\left[z \equiv \frac{(x+i y)}{\ell} ; \ell \equiv \sqrt{\frac{1}{2 \pi n_{\mathrm{v}}}}\right]
$$

Atomic Bose Gases on a "Rotating Lattice"

- Rotating lattice
- Tunneling phases

Bose-Hubbard model with "magnetic field" (2D square lattice)

$$
H=-J \sum_{\langle\alpha, \beta\rangle}\left[\hat{b}_{\alpha}^{\dagger} \hat{b}_{\beta} e^{i A_{\alpha \beta}}+\text { h.c. }\right]+\frac{1}{2} U \sum_{\alpha} \hat{n}_{\alpha}\left(\hat{n}_{\alpha}-1\right)-\mu \sum_{\alpha} \hat{n}_{\alpha}
$$

Particle density, n
Interaction strength, U / J
Vortex density, $n_{\text {v }}$

$$
\begin{aligned}
& \sum_{\text {plaquette }} A_{\alpha \beta}=2 \pi n_{\mathrm{v}} \\
& \left(0 \leq n_{\mathrm{v}}<1\right)
\end{aligned}
$$

What are the groundstates of bosons on a "rotating lattice"?

Single particle spectrum is the "Hofstadter butterfly"

$n, n_{\mathrm{v}} \ll 1 \Rightarrow$ continuum limit
[Sørensen, Demler \& Lukin, PRL (2005); Hafezi et al., PRA (2007)]

Are there new strongly correlated phases on the lattice for $n \sim n_{\mathrm{V}} \sim 1$?
Hard-core limit $U \gg J \Rightarrow 0 \leq n_{\alpha} \leq 1$
[frustrated spin- $1 / 2$ quantum magnet]

Strongly Correlated States

Composite Fermions

Interacting electrons in magnetic field \Rightarrow non-interacting composite fermions.

[Illustration by Kwon Park]

Composite fermion $=$ bound state of an electron with two flux quanta.

Rapidly rotating bosons in the continuum
Composite fermion $=$ a bound state of a boson with one vortex.
[N. R. Cooper \& Wilkin, PRB 80, 16279 (1999)]

$$
\begin{gathered}
\Psi_{\mathrm{B}}\left(\left\{\boldsymbol{r}_{i}\right\}\right) \propto \mathcal{P}_{L L L} \prod_{i<j}\left(z_{i}-z_{j}\right) \psi_{\mathrm{CF}}\left(\left\{\boldsymbol{r}_{i}\right\}\right) \\
n_{\mathrm{v}}^{\mathrm{CF}}=n_{\mathrm{v}}-n
\end{gathered}
$$

CFs fill p Landau levels for

$$
\frac{n}{n_{\mathrm{v}}^{\mathrm{CF}}}= \pm p \quad \Rightarrow \quad \nu=\frac{n}{n_{\mathrm{v}}}=\frac{p}{p \pm 1}
$$

\Rightarrow (trial) incompressible states of interacting bosons, describe exact groundstates well for $\nu=1 / 2,2 / 3,(3 / 4)$
[Regnault \& Jolicoeur, PRL 91, 030402 (2003); ...]

Lattice: CF spectrum is the "Hofstadter butterfly"

Filled band of CFs at $\left(n, n_{\mathrm{v}}^{\mathrm{CF}}\right) \Rightarrow$ trial incompressible state of bosons at $\left(n, n_{\mathrm{v}}\right)$
There can exist incompressible states with no counterpart in the continuum

Recursive structure:

 [Hofstadter, PRB 14, 2239 (1976)]- Series of subcells which resemble unit-cell via rectantularization

Recursive structure:

 [Hofstadter, PRB 14, 2239 (1976)]- Series of subcells which resemble unit-cell via rectantularization
- Three 'trains' of subcells, named Left, Right and Center.

Recursive structure: [Hofstadter, PRB 14, 2239 (1976)]

- Series of subcells which resemble unit-cell via rectantularization
- Three 'trains' of subcells, named Left, Right and Center.
- Consecutive subcells in each train characterized by $N=\left\lfloor\beta^{-1}\right\rfloor$
- subcell variable β^{\prime}, defined by $\beta=\left[N+\beta^{\prime}\right]^{-1}$
- denominator t of cell variable $\beta^{(n)}=r / t$ indicates number of bands in cell
\Rightarrow Obtain filling $n=\frac{\# \text { bands filled }}{\# \text { bands total }}$ by counting bands

I) Counting bands in unit cell [Hofstadter, PRB 14, 2239 (1976), GM \& N. R. Cooper, arXiv:0904.3097]
- Total number of bands q follows from

$$
\beta=n_{v}=\frac{p}{q} .
$$

- Bands up to the first gap of the unit-cell $\Rightarrow A / l$ bands of the subcell in the L-train.
- Evaluate local variable of subcell:

$$
\beta^{\prime}=\beta^{-1}-\left\lfloor\beta^{-1}\right\rfloor=\frac{q-N p}{p}
$$

- The subcell contains p bands
\Rightarrow Therefore, $n=\frac{p}{q}=\beta=n_{v}$
- Result in line with continuum limit, where degeneracy of lowest Landau level is equal to flux the density: $n=n_{v}$

II) Counting bands in a subcell[Hofstadter, PRB 14, 2239 (1976), GM \& N. R. Cooper, arXiv:0904.3097]
- Know local variable of subcell:

$$
\beta^{\prime}=\beta^{-1}-\left\lfloor\beta^{-1}\right\rfloor=\frac{q-N p}{p}
$$

- Also need number of bands in sub-subcell:

$$
\beta^{\prime \prime}=\beta^{\prime-1}-\left\lfloor\beta^{\prime-1}\right\rfloor=\frac{p-(q-N p) p}{q-N p}
$$

\Rightarrow Evaluate the filling:

$$
n=\frac{q-N p}{q}=1-N \beta
$$

- Again, n depends linearly on β

Therefore, by induction:
0) $n \propto n_{v}$ in unit-cell, and
$+1)$ In a subcell, n depends linearly on the local variable of the mother-cell

\Rightarrow For all gaps of the Hofstadter spectrum, $n=\alpha n_{v}+\delta$ linear in n_{v}.

Gaps for non-interacting CFs

Do these new phases

 describe the exact groundstates?
Numerical Methods

- Exact Diagonalization
$L_{x} \times L_{y}$ square lattice, with periodic boundary conditions (torus).

$$
\begin{aligned}
& N=n L_{x} L_{y} \\
& N_{\mathrm{v}}=n_{\mathrm{v}} L_{x} L_{y}
\end{aligned}
$$

- Low-energy spectrum (Lanczos) for hard-core interactions $U \gg J$.
- Limited by rapidly growing Hilbert-spaces, $N \leq 6$.
- Expect strong finite size effects.

Composite Fermion Wavefunction

Continuum

$$
\Psi_{\mathrm{B}}\left(\left\{\boldsymbol{r}_{i}\right\}\right) \propto \mathcal{P}_{L L L} \underbrace{\prod_{i<j}\left(z_{i}-z_{j}\right)} \psi_{\mathrm{CF}}\left(\left\{\boldsymbol{r}_{i}\right\}\right)
$$

Slater det. of lowest Landau level wavefunctions: $\nu=1$ state of fermions.

Composite Fermion Wavefunction

Continuum

$$
\Psi_{\mathrm{B}}\left(\left\{\boldsymbol{r}_{i}\right\}\right) \propto \mathcal{P}_{L L L} \underbrace{\prod_{i<j}\left(z_{i}-z_{j}\right)} \psi_{\mathrm{CF}}\left(\left\{\boldsymbol{r}_{i}\right\}\right)
$$

Slater det. of lowest Landau level wavefunctions:
$\nu=1$ state of fermions.
Lattice

$$
\Psi_{\mathrm{B}}\left(\left\{\boldsymbol{r}_{i}\right\}\right) \propto \underbrace{\psi_{\mathrm{J}}^{\left(\phi_{x}, \phi_{y}\right)}\left(\left\{\boldsymbol{r}_{i}\right\}\right)}_{\nu=1 \text { state of fermions. }} \psi_{\mathrm{CF}}^{\left(-\phi_{x},-\phi_{y}\right)}\left(\left\{\boldsymbol{r}_{i}\right\}\right)
$$

- Hard-core bosons.
- Generalized periodic boundary conditions: phases $\left(\phi_{x}, \phi_{y}\right)$.
- Recovers the two $\nu=1 / 2$ Laughlin wavefunctions in continuum limit.

Continuum CF States, $\nu \equiv \frac{n}{n_{\mathrm{v}}}=\frac{p}{p \pm 1}$
Laughlin State $\nu=1 / 2$
[Sørensen, Demler \& Lukin, PRL (2005); Hafezi et al., PRA (2007)]
Describes the groundstate on the lattice up to $n_{\mathrm{v}} \simeq 0.4$.

CF States $\nu=2 / 3,3 / 2,2$
[GM \& N. R. Cooper, arXiv:0904.3097]

- CF state at $\nu=2 / 3$ applies also for hard-core interactions
- Competition with Read-Rezayi phases at $\nu=3 / 2,2$?

CF states stabilized by the lattice

Evidence for strongly correlated states at a series of these new cases.

Evidence for $n_{\mathrm{v}}=\frac{1}{2}(1-n)$:

Groundstate is consistent with the CF state for $n \lesssim 1 / 6$

Overlap with trial CF state

n	N	N_{v}	L_{x}	L_{y}	$\mid\left\langle\Psi_{\text {trial }}^{\text {CF }}\right\|$ g.s. $\rangle\left.\right\|^{2}$	Hilbert spc dim.
$1 / 7$	2	6	2	7	0.437	91
$1 / 7$	3	9	3	7	0.745	1330
$1 / 7$	4	12	4	7	$0[0.275]$	20.5 k
$1 / 7$	5	15	5	7	0.563	324 k
$1 / 7$	6	18	6	7	0.328	5.2 M
$1 / 9$	2	8	2	9	0.360	153
$1 / 9$	3	12	3	9	0.841	2925
$1 / 9$	4	16	4	9	$0[0.152]$	58.9 k
$1 / 9$	4	16	6	6	0.306	58.9 k
$1 / 9$	5	20	5	9	0.459	1.2 M

- Sizeable overlap with CF state (no free parameters!)
- Correct groundstate degeneracy on the torus (1).
- Correct Chern number (2), tested for $N \leq 5$.

Evidence for wider applicability of CF ansatz.

- Definition of Chern numbers:

$$
\mathcal{C}_{n}=\frac{1}{2 \pi i} \int_{T^{2}} d^{2} p\left[\partial_{1} A_{2}(p)-\partial_{2} A_{1}(p)\right] \equiv \frac{1}{2 \pi i} \int_{T^{2}} d^{2} p \mathcal{F}_{12}
$$

where A_{μ} is the Berry connection $A_{\mu}=\left\langle\Psi_{n}(p)\right| \partial_{\mu}\left|\Psi_{n}(p)\right\rangle$, and p a set of two periodic quantum numbers.

For $p=k$, one obtains the Hall voltage as $\sigma_{x y}=-\frac{e^{2}}{h} \sum_{n} \mathcal{C}_{n}$.
To calculate \mathcal{C}, we note the following:

- Integral over closed surface, can only be non-zero if A_{μ} becomes singular.
- Field strength is gauge invariant, can make use of gauge transformations

$$
\begin{aligned}
& A_{\mu}(p) \rightarrow A_{\mu}-\partial_{\mu} \chi(p) \\
& \Psi_{n}(p) \rightarrow e^{i \chi(p)} \Psi_{n}(p)
\end{aligned}
$$

to define multiple patches where the vector potential is regular.

Can find gauge transform such that the transformed vector potential A_{μ}^{\prime} becomes regular at singularities \mathcal{S}_{i} in A_{μ}, i.e. the singular part was absorbed by the gauge $\partial_{\mu} \chi(p)=A_{\mu}(p)-A_{\mu}^{\prime}$ and thus,

$$
\mathcal{C}_{n}=\frac{1}{2 \pi} \sum_{i} \oint_{\partial \mathcal{S}_{i}} \nabla \chi \cdot d p
$$

Generically, singularities will be at different locations in different gauges.
\Rightarrow Take two reference states Φ, Φ^{\prime} to define two gauge choices such that Ψ_{n} has a real projection onto the reference states:

$$
\Psi_{\Phi}=\Psi\left(\Psi^{\dagger} \Phi\right), \quad \Psi_{\Phi^{\prime}}=\Psi\left(\Psi^{\dagger} \Phi^{\prime}\right)
$$

One can read off the gauge that transforms between Φ and Φ^{\prime}

$$
\Psi_{\Phi}=\left(\Phi^{\dagger} \Psi\right)\left(\Psi^{\dagger} \Phi^{\prime}\right) \Psi_{\Phi^{\prime}} \equiv e^{i \chi} \Psi_{\Phi^{\prime}}
$$

This gauge becomes singular wherever $\Lambda=\left|\Phi^{\dagger} \Psi\right|^{2}=0$.
\Rightarrow The integral above can be evaluated graphically!

Graphical evaluation of Chern Numbers

\Rightarrow Chern number of $\mathcal{C}=2$, shown here for $n=1 / 9, n_{\phi}=4 / 9$ on 6×6 sites.

Summary

- Ultracold atomic Bose gases on a rotating lattice offer the possibility to explore novel aspects of the FQHE: the FQHE of bosons; the interplay of the FQHE and lattice periodicity.
- A generalized composite fermion construction leads to the prediction of strongly correlated incompressible phases of bosons at certain (n, n_{v}), including states which are stabilized by the lattice.
- We find numerical evidence for uncondensed incompressible fluids for several of the predicted cases. This shows a wider applicability of the CF construction than its continuum formulation.
- There are many other cases $\left(n, n_{\mathrm{v}}\right)$ to understand: CF states compete with other possible phases: condensed states / vortex lattice states, striped/smectic states, etc.

