
Correlated Phases of Atomic Bose Gases

on a Rotating Lattice:

Composite Fermion Theory for Bosonic Atoms

Gunnar Möller
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Overview

• Strongly Correlated Phases of Ultracold Atomic Bose Gases

• Atomic Bose Gases on a “Rotating Lattice”

• Strongly Correlated Phases: Numerical Evidence

• Summary



Atomic Bose Einstein Condensates

[Anderson et. al. [JILA], Science 269, 198 (1995).]

s-wave scattering length as ≃ 5nm ≪ ā ≃ 100nm

⇒Weakly interacting

Groundstate wavefunction Ψ({ri}) ≃

N∏

i=1

ψc(ri)



Strongly Correlated Phases of Atomic Bose Gases

(1) Optical Lattice [Bloch, Dalibard & Zwerger, RMP 80, 885 (2008)]

Bose-Hubbard model [Jaksch et al., PRL 81, 3108 (1998)]

H = −J
∑

〈α,β〉

[

b̂†αb̂β + h.c.
]

+
1

2
U

∑

α

n̂α(n̂α − 1) − µ
∑

α

n̂α



Strongly correlated regime for U/J ≫ 1
at particle density n ∼ 1.

T = 0: competition between

• superfluid (BEC)

• Mott insulators, at n = 1, 2, . . .

[Fisher et al., PRB 40, 546 (1989)]

Transition to Mott insulator observed in experiment [Greiner et al., Nature 415, 39 (2002)]

[a) no lattice; b) SF (weak lattice potential) — h) MI (strong lattice potential)]
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Strongly Correlated Phases of Atomic Bose Gases

(2) Rapid Rotation

Rotation frequency, Ω

Quantized vortices

Vortex density nv = 2MΩ
h

[Coddington et al. [JILA], PRA 70, 063607 (2004)]

Harmonic confinement frequency ω⊥.

Ω ≃ ω⊥: ⇒quasi-2D Landau level spectrum [Wilkin, Gunn & Smith, PRL 80, 2265 (1998)]



Filling Factor ν ≡
n2d

nv
[N. R. Cooper, Wilkin & Gunn, PRL 87, 120405 (2001)]

Critical filling factor νc ≃ 6

• ν > νc: Vortex Lattice (BEC)

• ν < νc: Bosonic versions of fractional quantum Hall states:
Laughlin, hierarchy/CF, Moore-Read & Read-Rezayi phases, smectic +...?

[For a review, see: N. R. Cooper, Adv. Phys. 57, 539 (2008)]

e.g. Laughlin state, ν = 1
2

ΨL({ri}) ∝
∏

i<j

(zi − zj)
2e−

P

i |zi|
2/4

[

z ≡
(x+ iy)

ℓ
; ℓ ≡

√
1

2πnv

]



Atomic Bose Gases on a “Rotating Lattice”

• Rotating lattice [Tung, Schweikhard, Cornell (2006); Williams et al. (2008)]

• Tunneling phases [Jaksch & Zoller (2003); Mueller (2004); Sørensen, Demler & Lukin (2005)]

Bose-Hubbard model with “magnetic field” (2D square lattice)

H = −J
∑

〈α,β〉

[

b̂†αb̂βe
iAαβ + h.c.

]

+
1

2
U

∑

α

n̂α(n̂α − 1) − µ
∑

α

n̂α

Particle density, n

Interaction strength, U/J

Vortex density, nv

4 3

21
A

∑

plaquetteAαβ = 2πnv

(0 ≤ nv < 1)

What are the groundstates of bosons on a “rotating lattice”?



Single particle spectrum is the “Hofstadter butterfly”
[Harper, Proc. Phys. Soc. Lond. A 68, 874 (1955); Hofstadter, PRB 14, 2239 (1976)]
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n, nv ≪ 1 ⇒continuum limit [Sørensen, Demler & Lukin, PRL (2005); Hafezi et al., PRA (2007)]

Are there new strongly correlated phases on the lattice for n ∼ nv ∼ 1?

Hard-core limit U ≫ J ⇒0 ≤ nα ≤ 1 [frustrated spin-1/2 quantum magnet]



Strongly Correlated States

Composite Fermions [Jain, Read, Girvin...]

Interacting electrons in magnetic field ⇒non-interacting composite fermions.

[Illustration by Kwon Park]

Composite fermion = bound state of an electron with two flux quanta.



Rapidly rotating bosons in the continuum

Composite fermion = a bound state of a boson with one vortex.
[N. R. Cooper & Wilkin, PRB 80, 16279 (1999)]

ΨB({ri}) ∝ PLLL

∏

i<j

(zi − zj) ψCF({ri})

nCF
v = nv − n

CFs fill p Landau levels for

n

nCF
v

= ±p ⇒ ν =
n

nv
=

p

p± 1

⇒(trial) incompressible states of interacting bosons,
describe exact groundstates well for ν = 1/2, 2/3, (3/4)

[ Regnault & Jolicoeur, PRL 91, 030402 (2003); . . .]



Lattice: CF spectrum is the “Hofstadter butterfly” [Kol & Read, PRB 48, 8890 (1993)]
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Filled band of CFs at (n, nCF
v ) ⇒trial incompressible state of bosons at (n, nv)

There can exist incompressible states with no counterpart in the continuum



Calculating fillings in the Hofstadter diagram [GM & N. R. Cooper, arXiv:0904.3097]
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Recursive structure:
[Hofstadter, PRB 14, 2239 (1976)]

• Series of subcells which resemble
unit-cell via rectantularization



Calculating fillings in the Hofstadter diagram [GM & N. R. Cooper, arXiv:0904.3097]
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Recursive structure:
[Hofstadter, PRB 14, 2239 (1976)]

• Series of subcells which resemble
unit-cell via rectantularization

• Three ‘trains’ of subcells, named
Left, Right and Center.



Calculating fillings in the Hofstadter diagram [GM & N. R. Cooper, arXiv:0904.3097]
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Recursive structure:
[Hofstadter, PRB 14, 2239 (1976)]

• Series of subcells which resemble
unit-cell via rectantularization

• Three ‘trains’ of subcells, named
Left, Right and Center.

• Consecutive subcells in each train
characterized by N = ⌊β−1⌋

• subcell variable β′,
defined by β = [N + β′]

−1

• denominator t of cell variable β(n) = r/t
indicates number of bands in cell

⇒Obtain filling n = #bands filled
#bands total by counting bands



I) Counting bands in unit cell [Hofstadter, PRB 14, 2239 (1976), GM & N. R. Cooper, arXiv:0904.3097]
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• Total number of bands q follows from

β = nv = p
q .

• Bands up to the first gap of the unit-cell

⇒All bands of the subcell in the L-train.

• Evaluate local variable of subcell:

β′ = β−1 − ⌊β−1⌋ = q−Np
p

• The subcell contains p bands

⇒Therefore, n = p
q = β = nv

• Result in line with continuum limit, where
degeneracy of lowest Landau level is
equal to flux the density: n = nv



II) Counting bands in a subcell[Hofstadter, PRB 14, 2239 (1976), GM & N. R. Cooper, arXiv:0904.3097]
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• Know local variable of subcell:

β′ = β−1 − ⌊β−1⌋ = q−Np
p

• Also need number of bands in sub-subcell:

β′′ = β′−1 − ⌊β′−1⌋ = p−(q−Np)p
q−Np

⇒Evaluate the filling:

n = q−Np
q = 1 −Nβ

• Again, n depends linearly on β

Therefore, by induction:

0) n ∝ nv in unit-cell, and

+1) In a subcell, n depends linearly on the
local variable of the mother-cell

⇒For all gaps of the Hofstadter spectrum, n = αnv + δ linear in nv.



Gaps for non-interacting CFs [GM & N. R. Cooper, arXiv:0904.3097]



Do these new phases
describe the exact groundstates?



Numerical Methods

• Exact Diagonalization

Lx × Ly square lattice, with
periodic boundary conditions
(torus).

N = nLxLy

Nv = nvLxLy 1 2 Lx

1

Ly

2

• Low-energy spectrum (Lanczos) for hard-core interactions U ≫ J .

• Limited by rapidly growing Hilbert-spaces, N ≤ 6.

• Expect strong finite size effects.



Composite Fermion Wavefunction

Continuum

ΨB({ri}) ∝ PLLL

∏

i<j

(zi − zj)

︸ ︷︷ ︸

ψCF({ri})

Slater det. of lowest Landau level wavefunctions:
ν = 1 state of fermions.



Composite Fermion Wavefunction

Continuum

ΨB({ri}) ∝ PLLL

∏

i<j

(zi − zj)

︸ ︷︷ ︸

ψCF({ri})

Slater det. of lowest Landau level wavefunctions:
ν = 1 state of fermions.

Lattice [GM & N. R. Cooper, arXiv:0904.3097]

ΨB({ri}) ∝ ψ
(φx,φy)
J ({ri})

︸ ︷︷ ︸
ψ

(−φx,−φy)
CF ({ri})

ν = 1 state of fermions.

• Hard-core bosons.

• Generalized periodic boundary conditions: phases (φx, φy).

- Recovers the two ν = 1/2 Laughlin wavefunctions in continuum limit.
[Haldane & Rezayi, PRB 31, 2529 (1985)]



Continuum CF States, ν ≡ n
nv

= p
p±1

Laughlin State ν = 1/2 [Sørensen, Demler & Lukin, PRL (2005); Hafezi et al., PRA (2007)]

Describes the groundstate on the lattice up to nv ≃ 0.4.

CF States ν = 2/3, 3/2, 2 [GM & N. R. Cooper, arXiv:0904.3097]
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• CF state at ν = 2/3 applies also for hard-core interactions

• Competition with Read-Rezayi phases at ν = 3/2, 2?



CF states stabilized by the lattice

Evidence for strongly correlated states
at a series of these new cases.

Evidence for nv = 1
2(1 − n):

Groundstate is consistent with the CF state for n <
∼ 1/6



Overlap with trial CF state

n N Nv Lx Ly |〈ΨCF
trial|g.s.〉|

2 Hilbert spc dim.

1/7 2 6 2 7 0.437 91
1/7 3 9 3 7 0.745 1330
1/7 4 12 4 7 0 [0.275] 20.5k
1/7 5 15 5 7 0.563 324k
1/7 6 18 6 7 0.328 5.2M
1/9 2 8 2 9 0.360 153
1/9 3 12 3 9 0.841 2925
1/9 4 16 4 9 0 [0.152] 58.9k
1/9 4 16 6 6 0.306 58.9k
1/9 5 20 5 9 0.459 1.2M

• Sizeable overlap with CF state (no free parameters!)

• Correct groundstate degeneracy on the torus (1).

• Correct Chern number (2), tested for N ≤ 5.

Evidence for wider applicability of CF ansatz.



Calculation of Chern Numbers [Hatsugai, JPSJ 74, 1374 (2005), Hafezi et al., PRA 76 (2007)]

• Definition of Chern numbers:

Cn =
1

2πi

∫

T 2
d2p[∂1A2(p) − ∂2A1(p)] ≡

1

2πi

∫

T 2
d2pF12,

where Aµ is the Berry connection Aµ = 〈Ψn(p)|∂µ|Ψn(p)〉, and p a set of two
periodic quantum numbers.

For p = k, one obtains the Hall voltage as σxy = −e2

h

∑

n Cn.

To calculate C, we note the following:

• Integral over closed surface, can only be non-zero if Aµ becomes singular.

• Field strength is gauge invariant, can make use of gauge transformations

Aµ(p) → Aµ − ∂µχ(p)

Ψn(p) → eiχ(p)Ψn(p)

to define multiple patches where the vector potential is regular.



Can find gauge transform such that the transformed vector potential A′
µ becomes

regular at singularities Si in Aµ, i.e. the singular part was absorbed by the gauge
∂µχ(p) = Aµ(p) −A′

µ and thus,

Cn =
1

2π

∑

i

∮

∂Si

∇χ · dp.

Generically, singularities will be at different locations in different gauges.
⇒Take two reference states Φ, Φ′ to define two gauge choices such that Ψn has a
real projection onto the reference states:

ΨΦ = Ψ (Ψ†Φ), ΨΦ′ = Ψ (Ψ†Φ′)

One can read off the gauge that transforms between Φ and Φ′

ΨΦ = (Φ†Ψ)(Ψ†Φ′)ΨΦ′ ≡ eiχΨΦ′.

This gauge becomes singular wherever Λ = |Φ†Ψ|2 = 0.
⇒The integral above can be evaluated graphically!



Graphical evaluation of Chern Numbers
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⇒Chern number of C = 2, shown here for n = 1/9, nφ = 4/9 on 6 × 6 sites.



Summary

• Ultracold atomic Bose gases on a rotating lattice offer the possibility to explore
novel aspects of the FQHE: the FQHE of bosons; the interplay of the FQHE and
lattice periodicity.

• A generalized composite fermion construction leads to the prediction of strongly
correlated incompressible phases of bosons at certain (n, nv), including states
which are stabilized by the lattice.

• We find numerical evidence for uncondensed incompressible fluids for several of
the predicted cases. This shows a wider applicability of the CF construction than
its continuum formulation.

• There are many other cases (n, nv) to understand: CF states compete with
other possible phases: condensed states / vortex lattice states, striped/smectic
states, etc.


