Correlated Phases of Atomic Bose Gases on a Rotating Lattice: Composite Fermion Theory for Bosonic Atoms

Gunnar Möller Cavendish Laboratory, Cambridge & CU Boulder

CU Boulder Condensed Matter Seminar April 16, 2008.

GM & N. R. Cooper, arXiv:0904.3097

Engineering and Physical Sciences Research Council

Overview

- Strongly Correlated Phases of Ultracold Atomic Bose Gases
- Atomic Bose Gases on a "Rotating Lattice"
- Strongly Correlated Phases: Numerical Evidence
- Summary

Atomic Bose Einstein Condensates

[Anderson et. al. [JILA], Science 269, 198 (1995).]

s-wave scattering length $a_{\rm s}\simeq 5{\rm nm}\ll \bar{a}\simeq 100{\rm nm}$

 \Rightarrow Weakly interacting

Groundstate wavefunction

$$\Psi(\{\boldsymbol{r}_i\}) \simeq \prod_{i=1}^N \psi_c(\boldsymbol{r}_i)$$

Strongly Correlated Phases of Atomic Bose Gases

(1) Optical Lattice

[Bloch, Dalibard & Zwerger, RMP 80, 885 (2008)]

Bose-Hubbard model

[Jaksch et al., PRL 81, 3108 (1998)]

$$H = -J\sum_{\langle \alpha,\beta \rangle} \left[\hat{b}^{\dagger}_{\alpha} \hat{b}_{\beta} + h.c. \right] + \frac{1}{2}U\sum_{\alpha} \hat{n}_{\alpha}(\hat{n}_{\alpha} - 1) - \mu \sum_{\alpha} \hat{n}_{\alpha}$$

Strongly correlated regime for $U/J \gg 1$ at particle density $n \sim 1$.

- T = 0: competition between
- superfluid (BEC)
- Mott insulators, at $n = 1, 2, \ldots$

```
[Fisher et al., PRB 40, 546 (1989)]
```


Transition to Mott insulator observed in experiment [Greiner et al., Nature 415, 39 (2002)]

[a) no lattice; b) SF (weak lattice potential) — h) MI (strong lattice potential)]

Strongly Correlated Phases of Atomic Bose Gases

(2) Rapid Rotation

Rotation frequency, Ω

Quantized vortices

Vortex density $n_v = \frac{2M\Omega}{h}$

[Coddington et al. [JILA], PRA 70, 063607 (2004)]

Harmonic confinement frequency ω_{\perp} .

 $\Omega \simeq \omega_{\perp}$: \Rightarrow quasi-2D Landau level spectrum

[Wilkin, Gunn & Smith, PRL 80, 2265 (1998)]

Filling Factor
$$\nu \equiv \frac{n_{
m 2d}}{n_{
m v}}$$

[N. R. Cooper, Wilkin & Gunn, PRL 87, 120405 (2001)]

Critical filling factor $\nu_{\rm c} \simeq 6$

- $\nu > \nu_{\rm c}$: Vortex Lattice (BEC)
- $\nu < \nu_c$: *Bosonic* versions of fractional quantum Hall states: Laughlin, hierarchy/CF, Moore-Read & Read-Rezayi phases, smectic +...? [For a review, see: N. R. Cooper, Adv. Phys. **57**, 539 (2008)]
- e.g. Laughlin state, $\nu = \frac{1}{2}$

$$\Psi_L(\{\mathbf{r}_i\}) \propto \prod_{i < j} (z_i - z_j)^2 e^{-\sum_i |z_i|^2/4} \qquad \left[z \equiv \frac{(x + iy)}{\ell}; \ell \equiv \sqrt{\frac{1}{2\pi n_{\rm v}}} \right]$$

Atomic Bose Gases on a "Rotating Lattice"

- Rotating lattice [Tung, Schweikhard, Cornell (2006); Williams *et al.* (2008)]
- Tunneling phases [Jaksch & Zoller (2003); Mueller (2004); Sørensen, Demler & Lukin (2005)]

Bose-Hubbard model with "magnetic field" (2D square lattice)

$$\begin{split} H &= -J \sum_{\langle \alpha, \beta \rangle} \left[\hat{b}_{\alpha}^{\dagger} \hat{b}_{\beta} e^{iA_{\alpha\beta}} + h.c. \right] + \frac{1}{2} U \sum_{\alpha} \hat{n}_{\alpha} (\hat{n}_{\alpha} - 1) - \mu \sum_{\alpha} \hat{n}_{\alpha} \\ \end{split}$$
Particle density, n
Interaction strength, U/J
Vortex density, n_v
 $(0 \leq n_{v} < 1)$

What are the groundstates of bosons on a "rotating lattice"?

Single particle spectrum is the "Hofstadter butterfly"

[Harper, Proc. Phys. Soc. Lond. A 68, 874 (1955); Hofstadter, PRB 14, 2239 (1976)]

 $n, n_v \ll 1 \Rightarrow$ continuum limit [Sørensen, Demler & Lukin, PRL (2005); Hafezi *et al.*, PRA (2007)]

Are there new strongly correlated phases on the lattice for $n \sim n_v \sim 1$? Hard-core limit $U \gg J \Rightarrow 0 \le n_\alpha \le 1$ [frustrated spin-1/2 quantum magnet]

Strongly Correlated States

Composite Fermions

[Jain, Read, Girvin...]

Interacting electrons in magnetic field \Rightarrow non-interacting *composite fermions*.

Composite fermion = bound state of an electron with two flux quanta.

Rapidly rotating bosons in the continuum

Composite fermion = a bound state of a boson with *one vortex*.

[N. R. Cooper & Wilkin, PRB 80, 16279 (1999)]

$$\Psi_{\rm B}(\{\boldsymbol{r}_i\}) \propto \mathcal{P}_{LLL} \prod_{i < j} (z_i - z_j) \ \psi_{\rm CF}(\{\boldsymbol{r}_i\})$$

$$n_{\rm v}^{\rm CF} = n_{\rm v} - n$$

CFs fill p Landau levels for

$$\frac{n}{n_{\rm v}^{\rm CF}} = \pm p \qquad \Rightarrow \qquad \nu = \frac{n}{n_{\rm v}} = \frac{p}{p \pm 1}$$

 \Rightarrow (trial) incompressible states of interacting bosons, describe exact groundstates well for $\nu = 1/2, 2/3, (3/4)$

[Regnault & Jolicoeur, PRL **91**, 030402 (2003); . . .]

Lattice: CF spectrum is the "Hofstadter butterfly"

Filled band of CFs at $(n, n_v^{CF}) \Rightarrow$ trial incompressible state of bosons at (n, n_v)

There can exist incompressible states with no counterpart in the continuum

Recursive structure: [Hofstadter, PRB **14**, 2239 (1976)]

• Series of subcells which resemble unit-cell via rectantularization

Recursive structure: [Hofstadter, PRB **14**, 2239 (1976)]

• Series of subcells which resemble unit-cell via rectantularization

• Three 'trains' of subcells, named Left, **R**ight and **C**enter.

Recursive structure: [Hofstadter, PRB **14**, 2239 (1976)]

• Series of subcells which resemble unit-cell via rectantularization

- Three 'trains' of subcells, named Left, **R**ight and **C**enter.
- Consecutive subcells in each train characterized by $N = \lfloor \beta^{-1} \rfloor$

• subcell variable β' , defined by $\beta = [N + \beta']^{-1}$

• denominator t of cell variable $\beta^{(n)}=r/t$ indicates number of bands in cell

 \Rightarrow Obtain filling $n = \frac{\# \text{bands filled}}{\# \text{bands total}}$ by counting bands

I) Counting bands in unit cell [Hofstadter, PRB 14, 2239 (1976), GM & N. R. Cooper, arXiv:0904.3097]

• Total number of bands q follows from

$$\beta = n_v = \frac{p}{q}.$$

• Bands up to the first gap of the unit-cell

 \Rightarrow All bands of the subcell in the L-train.

• Evaluate local variable of subcell:

 $\beta' = \beta^{-1} - \lfloor \beta^{-1} \rfloor = \frac{q - Np}{p}$

• The subcell contains p bands

 \Rightarrow Therefore, $n = \frac{p}{q} = \beta = n_v$

• Result in line with continuum limit, where degeneracy of lowest Landau level is equal to flux the density: $n = n_v$

II) Counting bands in a subcell[Hofstadter, PRB 14, 2239 (1976), GM & N. R. Cooper, arXiv:0904.3097]

• Know local variable of subcell:

$$\beta' = \beta^{-1} - \lfloor \beta^{-1} \rfloor = \frac{q - Np}{p}$$

• Also need number of bands in sub-subcell:

$$\beta'' = \beta'^{-1} - \lfloor \beta'^{-1} \rfloor = \frac{p - (q - Np)p}{q - Np}$$

 \Rightarrow Evaluate the filling:

 $n = \frac{q - Np}{q} = 1 - N\beta$

• Again, n depends linearly on β

Therefore, by induction:

0) $n \propto n_v$ in unit-cell, and

+1) In a subcell, n depends linearly on the local variable of the mother-cell

 \Rightarrow For all gaps of the Hofstadter spectrum, $n = \alpha n_v + \delta$ linear in n_v .

Gaps for non-interacting CFs

band-gaps

 $\mathbf{n}_{\rm phi}$

Do these new phases describe the exact groundstates?

Numerical Methods

• Exact Diagonalization

 $L_x \times L_y$ square lattice, with periodic boundary conditions (torus).

$$N = nL_x L_y$$
$$N_v = n_v L_x L_y$$

- Low-energy spectrum (Lanczos) for hard-core interactions $U \gg J$.
- Limited by rapidly growing Hilbert-spaces, $N \leq 6$.
- Expect strong finite size effects.

Composite Fermion Wavefunction

Continuum

$$\Psi_{\rm B}(\{\boldsymbol{r}_i\}) \propto \mathcal{P}_{LLL} \prod_{i < j} (z_i - z_j) \psi_{\rm CF}(\{\boldsymbol{r}_i\})$$

Slater det. of lowest Landau level wavefunctions: $\nu=1$ state of fermions.

Composite Fermion Wavefunction

<u>Continuum</u>

$$\Psi_{\rm B}(\{r_i\}) \propto \mathcal{P}_{LLL} \prod_{i < j} (z_i - z_j) \psi_{\rm CF}(\{r_i\})$$

Slater det. of lowest Landau level wavefunctions: $\nu = 1$ state of fermions.

<u>Lattice</u>

[GM & N. R. Cooper, arXiv:0904.3097]

$$\Psi_{\rm B}(\{\boldsymbol{r}_i\}) \propto \underbrace{\psi_{\rm J}^{(\phi_x,\phi_y)}(\{\boldsymbol{r}_i\})}_{\nu = 1 \text{ state of fermions.}} \psi_{\rm CF}^{(-\phi_x,-\phi_y)}(\{\boldsymbol{r}_i\})$$

• Hard-core bosons.

- Generalized periodic boundary conditions: phases (ϕ_x, ϕ_y) .
 - Recovers the two $\nu = 1/2$ Laughlin wavefunctions in continuum limit.

[Haldane & Rezayi, PRB **31**, 2529 (1985)]

Continuum CF States, $\nu \equiv \frac{n}{n_v} = \frac{p}{p \pm 1}$

Laughlin State $\nu = 1/2$

[Sørensen, Demler & Lukin, PRL (2005); Hafezi et al., PRA (2007)]

Describes the groundstate on the lattice up to $n_{\rm v} \simeq 0.4$.

CF States $\nu = 2/3, 3/2, 2$

[GM & N. R. Cooper, arXiv:0904.3097]

• CF state at $\nu = 2/3$ applies also for *hard-core* interactions

• Competition with Read-Rezayi phases at $\nu = 3/2, 2?$

CF states stabilized by the lattice

Evidence for strongly correlated states at a series of these new cases.

Evidence for $n_v = \frac{1}{2}(1-n)$:

Groundstate is consistent with the CF state for $n \lesssim 1/6$

Overlap with trial CF state

n	N	$N_{ m v}$	L_x	L_y	$ \langle \Psi^{ m CF}_{ m trial} g.s. angle ^2$	Hilbert spc dim.
1/7	2	6	2	7	0.437	91
1/7	3	9	3	7	0.745	1330
1/7	4	12	4	7	0 [0.275]	20.5k
1/7	5	15	5	7	0.563	324k
1/7	6	18	6	7	0.328	5.2M
1/9	2	8	2	9	0.360	153
1/9	3	12	3	9	0.841	2925
1/9	4	16	4	9	0 [0.152]	58.9k
1/9	4	16	6	6	0.306	58.9k
1/9	5	20	5	9	0.459	1.2M

- Sizeable overlap with CF state (no free parameters!)
- Correct groundstate degeneracy on the torus (1).
- Correct Chern number (2), tested for $N \leq 5$.

Evidence for wider applicability of CF ansatz.

Calculation of Chern Numbers

• Definition of Chern numbers:

$$\mathcal{C}_{n} = \frac{1}{2\pi i} \int_{T^{2}} d^{2}p [\partial_{1}A_{2}(p) - \partial_{2}A_{1}(p)] \equiv \frac{1}{2\pi i} \int_{T^{2}} d^{2}p \mathcal{F}_{12},$$

where A_{μ} is the Berry connection $A_{\mu} = \langle \Psi_n(p) | \partial_{\mu} | \Psi_n(p) \rangle$, and p a set of two periodic quantum numbers.

For p = k, one obtains the Hall voltage as $\sigma_{xy} = -\frac{e^2}{h} \sum_n C_n$.

To calculate C, we note the following:

- Integral over closed surface, can only be non-zero if A_{μ} becomes singular.
- Field strength is gauge invariant, can make use of gauge transformations

$$A_{\mu}(p) \to A_{\mu} - \partial_{\mu}\chi(p)$$

 $\Psi_n(p) \to e^{i\chi(p)}\Psi_n(p)$

to define multiple patches where the vector potential is regular.

Can find gauge transform such that the transformed vector potential A'_{μ} becomes regular at singularities S_i in A_{μ} , i.e. the singular part was absorbed by the gauge $\partial_{\mu}\chi(p) = A_{\mu}(p) - A'_{\mu}$ and thus,

$$\mathcal{C}_n = \frac{1}{2\pi} \sum_i \oint_{\partial \mathcal{S}_i} \nabla \chi \cdot dp.$$

Generically, singularities will be at different locations in different gauges.

 \Rightarrow Take two reference states Φ , Φ' to define two gauge choices such that Ψ_n has a real projection onto the reference states:

$$\Psi_{\Phi} = \Psi \left(\Psi^{\dagger} \Phi \right), \quad \Psi_{\Phi'} = \Psi \left(\Psi^{\dagger} \Phi' \right)$$

One can read off the gauge that transforms between Φ and Φ'

 $\Psi_{\Phi} = (\Phi^{\dagger}\Psi)(\Psi^{\dagger}\Phi')\Psi_{\Phi'} \equiv e^{i\chi}\Psi_{\Phi'}.$

This gauge becomes singular wherever $\Lambda = |\Phi^{\dagger}\Psi|^2 = 0$. \Rightarrow The integral above can be evaluated graphically! Graphical evaluation of Chern Numbers

 \Rightarrow Chern number of C = 2, shown here for n = 1/9, $n_{\phi} = 4/9$ on 6×6 sites.

Summary

• Ultracold atomic Bose gases on a rotating lattice offer the possibility to explore novel aspects of the FQHE: the FQHE of bosons; the interplay of the FQHE and lattice periodicity.

• A generalized composite fermion construction leads to the prediction of strongly correlated incompressible phases of bosons at certain (n, n_v) , including states which are stabilized by the lattice.

• We find numerical evidence for uncondensed incompressible fluids for several of the predicted cases. This shows a wider applicability of the CF construction than its continuum formulation.

• There are many other cases (n, n_v) to understand: CF states compete with other possible phases: condensed states / vortex lattice states, striped/smectic states, etc.