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1 COURSE DETAILS

1 Course Details

1.1 Synopsis

Newtonian dynamics with constraints: Degrees of freedom, constraint forces, F = ma in

different coordinate systems, the energy method. Case study of the simple pendulum, sliding

ladder and double pendulum.

Lagrangian dynamics: Generalized coordinates, the Lagrangian, generalized momentum, gen-

eralized force, Lagrangian equations of motion. Examples with one and multiple degrees of

freedom. Relation between symmetry and conservation. Statement of time invariance and energy

conservation.

1-D dynamics: 1-D equation of motion, first integral and energy conservation, motion in a po-

tential energy well, stable and unstable equilibrium states, phase portraits, second integral of the

equation of motion, case study of the simple pendulum.

Effective potential: use of angular momentum conservation to reduce 2-D problems to 1-D

problems in an effective potential. Case study of radial potentials, including satellite motion and

motion in a cone.

Two body problem: use of center-of-mass and separation coordinates to reduce the two body

problem to one body motion in a radial potential.

Stability and normal modes: linearizing equations of motion, use of M and K matrices to find

normal modes via generalized eigenvalue problem, expansion of the Lagrangian to identify M
and K matrices, translational modes, orthogonal modes, normal coordinates, relation between

stability/instability and real/imaginary mode frequencies.

Using a computer: different methods for numerical integration of equations of motion (Euler,

Verlet, RK4) and notions of stability and order for integration methods. Case study of the double

pendulum, poincare sections and chaos.

Time variation: understanding that Lagrangians can explicitly depend on time and how to in-

corporate external driving forces into Lagrangians, Case studies of an accelerating wedge, driven

normal modes, parametric resonance.
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1 COURSE DETAILS 1.2 Practicalities

1.2 Practicalities

This is a very new course: we taught Lagrangians in part I for the first time in 2019. Do a favor

to future generations by sending typos, errors and general feedback to jsb56.

There is only one IB past tripos paper on this content (2P1 2019). However, to help with revision,

we have also issued a sample paper (2P1 sample paper 2019) and a revision sheet with a few extra

Lagrangian problems. These are available on the 2P1 moodle page. Additionally, much of this

content was previously covered in 3C5. By the end of this course, you should be able to tackle

Q4 (and, where there is one, Q5) on most 3C5 papers. Some particularly suitable 3C5 questions

are listed on the examples sheets.

Many books and texts have been written on this subject: if you don’t like my take, try one from

someone else. A few good starting points are:

D.A. Wells, Lagrangian dynamics (Schaum’s Ouline Series)

Goldstein, H. Classical Mechanics, Addison Wesley, 2nd edition 1980.

Introduction to Classical Mechanics (With Problems and Solutions) by David Morin.

Landau and Lifshitz, course for theoretical physics, vol 1: mechanics. This is a personal favorite

— a short advanced book which covers everything in this course and much much more. Be

warned though, short in length does not mean quick to read.

Finally, a beautiful set of notes on classical dynamics from David Tong at DAMPT:

http://www.damtp.cam.ac.uk/user/tong/dynamics/clas.pdf

vii
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2 GENERALIZED COORDINATES

2 Generalized coordinates

Dynamics is about predicting motion. For mechanisms, this means predicting how their config-

uration changes in time. Before we can do this, we need a set of quantities that describe the

mechanism’s configuration. The number of quantities you need is called the the mechanisms’

number of degrees of freedom.

For example:

To specify the position of a particle in 3-D space, we need three Cartesian coordinates (x, y, z).
The particle has three degrees of freedom, and its motion, is given by x(t), y(t) and z(t).

A door has one degree of freedom, opening angle θ. θ

A double pendulum has two degrees of freedom, θ1 and θ2.

θ

θ

1

2

A bead that slides along a wire has one degree of freedom s.

s

A rigid body in three dimensions has six degrees of freedom: three for the location of its center

of mass, and three angles (yaw, pitch and roll) to describe its orientation.

x

y

z

(r, �, �)

�

�

r
(x, y, z)

orThere are many different ways of describing the configuration

of a mechanical system. For example, a particle in 3-D can be

described with three Cartesian coordinates (x, y, z), three polar

coordinates (r, θ, φ) three cylindrical polar coordinates (r, θ, z).
However you always need to determine three quantities to pin the

particle down.

Similarly, the configuration of a double pendulum could be speci-

fied in many ways, but you always need to specify two things.

θ

θ

1

2

x

θ

θ

1

2

x

1

2

We will call the set of n variables you are using to describe the configuration of an n degree of

freedom mechanism it’s generalized coordinates, and denote them {qi} = q1, q2....qn, or some-

times as a vector q = (q1, q2...qn). The use of q reminds us that we might be dealing with

positions, or angles, or some combination of both.

1



3 RECAP OF NEWTONIAN DYNAMICS

3 Recap of Newtonian Dynamics

Dynamics is about predicting how things will move.

Newton provided a complete answer to this problem. All matter is a bunch or particles. Each

particle has an equation of motion given by Newton’s second law:

F = ma,

which, written in 2-D Cartesian coordinates x− y becomes:

Fx = mẍ

Fy = mÿ.

Integrate these equations twice, ẍ→ ẋ→ x, and you get the particle coordinates as a function of

time. Problem solved.

Newton’s scheme is easy if all the forces are known, and can be expressed simply in Cartesian

coordinates. For example, if I release a stone of mass m, at rest, from height of y = h then

Fy = −mg = mÿ =⇒ ÿ = −g =⇒ ẏ = −gt =⇒ y = h− 1

2
gt2.

3.1 Simple pendulum

θ
l

m

x
y

g

Life is harder when the particles are constrained in mechanisms.

Now the most natural generalized coordinates will not be Carte-

sian positions of particles. For example, in a simple pendulum,

the string constrains the mass to be distance l from the pivot:

x2 + y2 = l2.

The string enforces this constraint by pulling on the mass with its tension, T , which is an example

of a constraint force. If the mass tries to move further from the pivot, the string can always pull

harder, but we don’t a priori know what tension the string is producing, so if we are going to use

F = ma, we must also solve for the tension.

Stupidly applying F = ma to pendulum mass, in Cartesians, we have (noting that sin θ = x/l
and cos θ = −y/l)

−T x
l
= mẍ

−mg − T
y

l
= mÿ,

which, frankly, isn’t very helpful. We have three equations, which we now need to solve to find

the motion of the three unknowns, x(t), y(t) and T (t). This is silly: the pendulum mechanism

has a single degree of freedom described naturally by the angle θ, so all we really want to know

is θ(t). To switch from Cartesian coordinates to θ, we can substitute x = l sin θ and y = −l cos θ.

This substitution directly satisfies the constraint equation and, with a bit of it of persistence (see

2



3 RECAP OF NEWTONIAN DYNAMICS 3.2 Ladder sliding down a wall

examples sheet!) one can then rearrange the equations of motion to get the famous pendulum

equation and an expression for the tension:

θ̈ = −g
l
sin θ T = mg cos θ +mlθ̇2.

However, this approach gets very cumbersome with more complicated systems. We would prefer

an approach that delivers the θ equation of motion directly. For the simple pendulum, several such

approaches are on offer. One is to apply F = ma in a polar r-θ coordinate system centered on

the pivot. In A-level terms, this is equivalent to resolving parallel and perpendicular to the string.

Looking in the data book for the form of the acceleration vector in polar coordinates, F = ma
becomes:

Fr = m(r̈ − rθ̇2)

Fθ = m(rθ̈ + 2ṙθ̇).

In polar coordinates the string constraint is simply r = l, which tells us that ṙ = r̈ = 0, immedi-

ately reducing the F = ma equations to the pair of equations we are looking for:

Fθ = −mg sin(θ) = mlθ̈, Fr = mg cos(θ)− T = −mlθ̇2.

However, this approach relied on spotting a friendly coordinate system to simplify the constraint,

which won’t be possible for complicated mechanisms. Furthermore, even in this approach, half

the work is going towards calculating T , whereas we only really care about the equation for θ.

A smarter approach is to use conservation of energy. The entire energy is the sum of the mass’s

kinetic energy, T (sorry) and its potential energy V :

E = T + V =
1

2
ml2θ̇2 −mgl cos θ.

Mathematically, energy conservation means that Ė ≡ dE
dt

= 0, which gives us:

d

dt

(

1

2
ml2θ̇2 −mgl cos θ

)

= 0

=⇒ ml2θ̇θ̈ +mgl sin θθ̇ = 0

=⇒ θ̈ = −g
l
sin(θ).

This approach yields the θ equation directly, without tension making an appearance at all. It also

bypasses difficulties of vectors and signs which plague F = ma. The approach works for any one

degree of freedom mechanism that conserves energy, provided that you can do enough kinematics

to work out the energy in terms of the natural generalized coordinate.

3.2 Ladder sliding down a wall

A second example is a ladder sliding down a wall without friction, as shown below.

3



3.2 Ladder sliding down a wall 3 RECAP OF NEWTONIAN DYNAMICS

θ
g

l

R

R

mg

(l sinθ,l cosθ) 1
2
_

1

2

Here the constraints are that the ends of the ladder stay in contact with the walls, and are imple-

mented by normal reaction forces R1 and R2, as shown in the free body diagram.

The ladder is a rigid body, which we model as a uniform rod of total mass m. As a rigid body

in 2-D, it is in general a three-degree-of-freedom system, with three coordinates, (x, y) for the

location of its center of mass and θ for its orientation. From the theory of rigid bodies, we know

that we can apply F = ma directly to the center of mass giving two equations:

R1 = mẍ

R2 −mg = mÿ,

and we have a third angular equation, G = Iθ̈ to describe the rotational dynamics, which we take

around the center of mass to get:

R2
l

2
sin θ − R1

l

2
cos θ =

1

12
ml2θ̈.

To make progress, we again realize that the ladder really only has one degree of freedom, most

naturally described by θ, so we substitute (x, y) = l
2
(sin θ, cos θ), which turns the two F = ma

equations into

R1 =
ml

2

(

θ̈ cos θ − θ̇2 sin θ
)

R2 −mg =
ml

2

(

−θ̈ sin θ − θ̇2 cos θ
)

,

which are trivial equations for R1 and R2. Substituting these into the angular equation gives, after

a good deal of algebra

θ̈ =
3g sin θ

2l
,

which is the equation of motion we are looking for.

Alternativley, we could use the energy method. The kinetic energy of the ladder is the sum of a

translational part and a rotational part

T =
1

2
m
(

ẋ2 + ẏ2
)

+
1

2
Iθ̇2 =

1

2
m
l2

4
θ̇2 +

1

2

1

12
ml2θ̇2 =

1

6
ml2θ̇2.

The potential energy is just the gravitational potential of the center of mass, so the total energy is

E = T + V =
1

6
ml2θ̇2 +mg

l

2
cos θ.

Using energy conservation, Ė = 0 gives us directly

Ė =
1

3
ml2θ̇θ̈ −mg

l

2
sin θθ̇ = 0 =⇒ θ̈ =

3g

2l
sin θ,

without any need to consider reaction forces, or any suppressed pages of tedious algebra.

4



3 RECAP OF NEWTONIAN DYNAMICS 3.3 Double pendulum

3.3 Double pendulum

Finally consider a simple double pendulum consisting of two equal masses m connected by light

strings of length l. The double pendulum has two degrees of freedom described by two natural

generalized coordinates, θ1 and θ2. To find its motion, we need two equations of motion to

calculate θ1(t) and θ2(t). Since Ė = 0 can only deliver one equation, we are forced to go back

to basics and apply Newton’s laws directly. There is no helpful coordinate system, so we apply

F = ma to each mass in their Cartesian coordinates (x1, y1) and (x2, y2),

θ

θ

1

2

x
y

l

l

m

m

g

T

T1

2
(x ,y )1 1

(x ,y )2 2

−T1 sin θ1 + T2 sin θ2 = mẍ1

T1 cos θ1 − T2 cos θ2 −mg = mÿ1

−T2 sin θ2 = mẍ2

T2 cos θ2 −mg = mÿ2,

and remember we have the constraints

x21 + y21 = l2 (x2 − x1)
2 + (y2 − y1)

2 = l2.

We need to solve these six equations to find T1(t), T2(t), x1(t), y1(t), x2(t), and y2(t). To satisfy

the constraints, we write x1 = l sin θ1, y1 = −l cos θ1, x2 = l sin θ1 + l sin θ2, y2 = −l cos θ1 −
l cos θ2. Substituting into the four equations of motion produces a complete mess:

−T1 sin θ1 + T2 sin θ2 = ml(θ̈1 cos θ1 − θ̇21 sin θ1)

T1 cos θ1 − T2 cos θ2 −mg = ml(θ̈1 sin θ1 + θ̇21 cos θ1)

−T2 sin θ2 = ml(θ̈1 cos θ1 − θ̇21 sin θ1 + θ̈2 cos θ2 − θ̇22 sin θ2)

T2 cos θ2 −mg = ml(θ̈1 sin θ1 + θ̇21 cos θ1 + θ̈2 sin θ2 + θ̇22 cos θ2).

With a few pages of algebra, we can now solve these four equations for T1, T2, θ̈1 and θ̈2 to get:

T1 = −
2m
(

2g cos(θ1) + 2lθ̇21 + lθ̇22 cos(θ1 − θ2)
)

cos(2(θ1 − θ2))− 3

T2 =
−2m cos(θ1 − θ2)

(

g cos(θ1) + lθ̇21

)

− 2lmθ̇22

cos(2(θ1 − θ2))− 3

θ̈1 =
g(sin(θ1 − 2θ2) + 3 sin(θ1)) + 2l sin(θ1 − θ2)

(

θ̇21 cos(θ1 − θ2) + θ̇22

)

l(cos(2(θ1 − θ2))− 3)

θ̈2 = −
2 sin(θ1 − θ2)

(

2g cos(θ1) + 2lθ̇21 + lθ̇22 cos(θ1 − θ2)
)

l(cos(2(θ1 − θ2))− 3)

where the first two equations are expressions for T1 and T2, and the second two are the equations

of motion for θ1 and θ2 that we actually want. Technically this all works, but it is very tedious,

and things will only get worse for mechanisms with more than two degrees of freedom. We need

a direct route to the equations of motion for θ1 and θ2 that doesn’t go via constraints and Cartesian

coordinates.

5



4 LAGRANGIAN MECHANICS

4 Lagrangian mechanics

Joseph-Louis (Giuseppe

Luigi), comte de Lagrange

The energy method allows us to get the equations of motion

for generalized coordinates directly, without needing constraint

forces. We need an equivalent method, but for systems with more

than one degree of freedom. In 1788, 100 years after Newton’s

principia, an Italian mathematician called Lagrange provided such

an approach, which we now call Lagrangian Mechanics. Before

we get to grips with it, it is helpful to start with two observations.

Firstly, Newton’s second law of motion can be rewritten in terms

of the momentum, px = mẋ, as:

d

dt
(px) = Fx.

Secondly, a particle’s momentum can be calculated from its kinetic energy T as

d

dẋ
(T ) =

d

dẋ

(

1

2
mẋ2

)

= mẋ = px.

We will start with a general explanation of how to do Lagrangian mechanics, which (disclaimer)

will appear quite bizarre, and simultaneously apply it to a very simple system, a mass m moving

along the x axis and attached to a spring k

Consider a mechanical system with n generalized coordinates q1, q2, q3....qi...qn. Remember,

these generalized coordinates could be Cartesian coordinates, polar coordinates, angles, dis-

tances, or whatever else happens to be convenient.

For the mass, there is only one degree of freedom, and

one generalized coordinate q1 = x. For convenience we

take x = 0 as the the spring’s unstretched point.

We calculate the kinetic energy T and potential energy

V , in terms of the qi and q̇i.

For our mass, T = 1
2
mẋ2 and V = 1

2
kx2.

Next we calculate the system’s Lagrangian, L, as a func-

tion of the qi, q̇i and in general time t, as

L (q1, q2, q3....q̇1, q̇2...., t) = T − V.

Notice the minus sign: the Lagrangian is not the total energy E = T + V .

For our mass:

L(x, ẋ) = 1

2
mẋ2 − 1

2
kx2.

6



4 LAGRANGIAN MECHANICS

For each generalized coordinate, qi, we can calculate a generalized momentum pi (also known as

the momentum conjugate to qi) and a generalized force Fi by taking derivatives of the Lagrangian:

pi =
∂L
∂q̇i

Fi =
∂L
∂qi

.

Notice these are partial derivatives. In this step, the Lagrangian must be regarded as a function

of the variables q1....qn and q̇1...q̇n, and all of these variables are held constant except the one the

derivative is with respect to. For example:

∂

∂q1

(

q21q2q̇1
)

= 2q1q2q̇1.

For our mass on a spring, these equations give the actual momentum and the actual force:

px =
∂L
∂ẋ

= mẋ Fx =
∂L
∂x

= −kx.

The equation of motion for each generalized coordinate is then simply:

d

dt
(pi) = Fi.

This result is obviously analogous to Newton’s second law, but now written in a form that works

for any convenient coordinate qi. The time derivative, d
dt

, is a full derivative not a partial deriva-

tive: it knows the coordinates and velocities are functions of time and catches everything. E.g.:

d

dt
(q1q̇1) = q̇21 + q1q̈1.

For our mass on a spring, this approach produces the expected F = ma equation of motion:

d

dt
(mẋ) = −kx =⇒ mẍ = −kx.

However, the amazing thing about Lagrange’s approach, is that it works just as easily for highly

constrained systems, non-inertial frames of reference and non-Cartesian coordinates, and there-

fore makes light work of hard mechanics problems. It delivers exactly one “F = ma” like second

order equation of motion for each generalized coordinate.

In terms of the Lagrangian itself (rather than generalized momentum and force), the equation of

motion for qi can be written
d

dt

(

∂L
∂q̇i

)

=
∂L
∂qi

,

or, more commonly,
d

dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= 0.

The easiest way to get to grips with all this is via some examples.
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4.1 Lagrangian examples with one degree of freedom 4 LAGRANGIAN MECHANICS

4.1 Lagrangian examples with one degree of freedom

4.1.1 Simple pendulum

�
l

m

g

l� 
.

lcos�
The pendulum is a one degree of freedom system, with coordinate

θ. The velocity of the mass is vθ = lθ̇, and distance below the

pivot is l cos(θ). The Lagrangian is thus:

L(θ, θ̇) = T − V =
1

2
ml2θ̇2 +mgl cos(θ).

The generalized momentum for θ works out to be mass’s angular momentum around the pivot:

pθ =
∂L
∂θ̇

= ml2θ̇,

and the generalized force for θ works out as the gravitational torque around the pivot:

Fθ =
∂L
∂θ

= −mgl sin θ.

Putting these together, we get the correct equation for the pendulum:

d

dt

(

ml2θ̇
)

= −mgl sin θ =⇒ θ̈ = −g
l
sin θ.

How easy was that! Like magic, we have ended up doing rotational dynamics, with angular

momentum and torque, culminating not in ṗ = F but its angular equivalent J̇ = G.

4.1.2 Sliding ladder

�
g

l
For the ladder sliding without friction, we previously worked out

the kinetic energy as the sum of rotational and translational parts:

T =
1

8
ml2θ̇2 +

1

24
ml2θ̇2 =

1

6
ml2θ̇2,

and the potential energy as V = mg(l/2) cos(θ). The Lagrangian is

L(θ, θ̇) = T − V =
1

6
ml2θ̇2 − 1

2
mgl cos(θ).

The generalized momentum and force are

pθ =
∂L
∂θ̇

=
1

3
ml2θ̇ Fθ =

1

2
mgl sin θ,

so the equation of motion, directly, is

1

3
ml2θ̈ =

1

2
mgl sin θ =⇒ θ̈ =

3g

2l
sin θ.

If we were smart, we could have got this equation of motion directly by taking moments around

(x, y) = l(sin θ, cos θ), which is the point of intersection of the lines of action of the two reaction

forces. However, Lagrangian mechanics has saved us from having to spot this.
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4 LAGRANGIAN MECHANICS 4.1 Lagrangian examples with one degree of freedom

4.1.3 Bead on a wire

s

A bead on a wire is described by the arc-length coordinate s, so

its speed is ṡ and its kinetic energy is T = 1
2
mṡ2. If the wire at s

has height h(s), the Lagrangian is

L(s, ṡ) = T − V =
1

2
mṡ2 −mgh(s).

The generalized momentum and force are

ps =
∂L
∂ṡ

= mṡ Fs = −mgh′(s).

We can recognize ps as the momentum of the bead, and, if we recall that for a curve in intrinsic

coordinates h′(s) = sin(θ), the generalized force is the component of the weight force in the

tangential direction. The equation of motion is

ms̈ = −mgh′(s) =⇒ s̈ = −gh′(s).

4.1.4 Bead on a spinning hoop

�

� a

m

As a final one-degree-of-freedom example, consider the motion of

a bead on a spinning wire hoop, as shown on the right. The posi-

tion of the bead on the hoop is described by a single coordinate φ,

even though it is moving both along the hoop and with the hoop.

The bead velocity can be broken into two orthogonal components:

tangential to the hoop it is moving at aφ̇, and into the page it is

moving in circles at a sinφω. There is no potential energy, so the

Lagrangian is simply

L(φ, φ̇) = 1

2
m
(

a2φ̇2 + a2 sin2 φω2
)

.

The generalized momentum and force are

pφ =
∂L
∂φ̇

= ma2φ̇ Fφ =
∂L
∂φ

= ma2ω2 sinφ cosφ,

so the equation of motion for φ is

ma2φ̈ = ma2ω2 sinφ cosφ =⇒ φ̈ = ω2 sin φ cosφ.

This is an amazing equation of motion to have got so easily. If you analyzed the problem in the

frame rotating with the hoop, there would be a centrifugal force ma sinφω2 pointing horizontally

outwards. Working in this frame, Fφ is the torque of this centrifugal force, pφ is the angular

momentum, and the equation of motion is J̇ = G: the Lagrangian approach has not only delivered

an angular equation of motion, it has effectively done so in a rotating frame with the correct

centrifugal torque!
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4.2 Examples with multiple degrees of freedom 4 LAGRANGIAN MECHANICS

4.2 Examples with multiple degrees of freedom

The real power of Lagrangian mechanics is in finding equations of motion for systems with mul-

tiple degrees of freedom. Unlike the energy method, Lagrangian mechanics delivers one equation

of motion for each coordinate, which is enough to calculate the whole motion of the system.

4.2.1 Two simple pendulums

We first consider two entirely independent pendulums, with different length, mass, and angle.

�
l

m

g
� l

m

1 1

1

2
2

2

The Lagrangian L = T − V is now the sum of the individual Lagrangians for each pendulum

L(θ1, θ2, θ̇1, θ̇2) = T1 + T2 − V1 − V2 = (T1 − V1) + (T2 − V2) = L1(θ1, θ̇1) + L2(θ2, θ̇2),

where

L1(θ1, θ̇1) =
1

2
m1l

2
1θ̇

2
1 +m1gl1 cos θ1 L2(θ2, θ̇2) =

1

2
m2l

2
2θ̇

2
2 +m2gl2 cos θ2.

If we now work out the generalized momentum and force for θ1, we see that we get the answer

we would expect from just using L1,

pθ1 =
∂L
∂θ̇1

=
∂L1

∂θ̇1
= m1l

2
1θ̇1 Fθ1 =

∂L
∂θ1

=
∂L1

∂θ1
= −m1gl1 sin θ1

and the right equation of motion:

d

dt
(pθ1) = m1l

2
1θ̈1 = −m1gl1 sin θ1.

If we work out the equation of motion for θ2 we will get the expected pendulum equation for

θ2. The general message here is that the Lagrangians for independent/uncoupled systems simply

add together, and the motion for each sub-system will then be governed by its sub-Lagrangian.

The Universe is one big system, and the Lagrangian for the universe is the sum of many inde-

pendent sub-Lagrangians for its component parts. Indeed, since you asked (and obviously not for

examination!) the Lagrangian for the Universe is actually the sum of three parts

L =
√
g

(

R − 1

2
FµνF

µν + ψ̄ /Dψ̄

)

where the first term (and the
√
g) give gravity, the middle term is the other fundamental forces

(electromagnetic and nuclear) and the last term gives “Leptons” like electrons and quarks.

More prosaically, this is also the first time we have produced equations of motion for two different

coordinates, θ1 and θ2, from the same Lagrangian. We couldn’t do that with the energy method,

as we would only get one equation, Ė = 0.
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4 LAGRANGIAN MECHANICS 4.2 Examples with multiple degrees of freedom

4.2.2 Particle in 2-D

Consider a particle sliding around a 2-D plane in a potential energy V . This particle has two de-

grees of freedom, which we might describe using the Cartesian (x, y) or polar (r, θ) coordinates.

r

	

r

r	




x

x



y

y



In Cartesians, the velocity is simply (ẋ, ẏ) so the Lagrangian is

L(x, y, ẋ, ẏ) = 1

2
m
(

ẋ2 + ẏ2
)

− V (x, y).

The generalized momenta, generalized forces and equations of motion are

px =
∂L
∂ẋ

= mẋ Fx =
∂L
∂x

= −∂V
∂x

mẍ = −∂V
∂x

py =
∂L
∂ẏ

= mẏ Fy =
∂L
∂y

= −∂V
∂y

mÿ = −∂V
∂y

which is exactly as you would get if you applied F = ma in Cartesian coordinates.

However, in 2-D polar coordinated (r, θ) the velocity of the particle in the r direction is now

vr = ṙ, and in the theta direction it is vθ = rθ̇, so the Lagrangian for the particle is

L(r, θ, ṙ, θ̇) = 1

2
m
(

v2r + v2θ
)

− V (r, θ) =
1

2
m(ṙ2 + r2θ̇2)− V (r, θ).

The generalized momenta and generalized forces are now

pr =
∂L
∂ṙ

= mṙ Fr =
∂L
∂r

= −∂V
∂r

+mrθ̇2

pθ =
∂L
∂θ̇

= mr2θ̇ Fθ =
∂L
∂θ

= −∂V
∂θ

,

we see that pr is the particle’s real momentum in the r direction, but the pθ is its angular momen-

tum about the origin. Putting these together into the equations of motion

d

dt
(pr) = mr̈ = −∂V

∂r
+mrθ̇2 =⇒ m(r̈ − rθ̇2) = −∂V

∂r
d

dt
(pθ) = m(r2θ̈ + 2rṙθ̇) = −∂V

∂θ
=⇒ m(rθ̈ + 2ṙθ̇) = −1

r

∂V

∂θ
.

We see here that we have got exactly F = ma, but now in polar coordinates. The complicated

expressions for acceleration in the r direction (r̈ − rθ̇2) and the θ direction (rθ̈ + 2ṙθ̇) have

turned up in the Lagrangian equations automatically, with no need to look them up. Note also the

importance of the full time derivative to correctly find the ṙθ̇ Coriolis term.
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4.2.3 Two masses connected by a spring

x1 x2x

m1 m
2

We next consider two masses, m1 and m2,

each moving on the x axis, with coordinates

x1 and x2, and connected by a spring of natu-

ral length l and constant k. This is a two degree

of freedom system (x1 and x2), and the Lagrangian for the system is

L(x1, x2, ẋ1, ẋ2) =
1

2
m1ẋ1

2 +
1

2
m2ẋ2

2 − 1

2
k(x2 − x1 − l)2.

As the two masses are connected, this does not simply break into two separate sub-Lagrangians

for each mass. The generalized momenta are the real x momenta of each mass:

px1 =
∂L
∂ẋ1

= m1ẋ1 px2 =
∂L
∂ẋ2

= m2ẋ2,

and the generalized forces are the real x forces:

Fx1 =
∂L
∂x1

= k(x2 − x1 − l) Fx2 =
∂L
∂x2

= −k(x2 − x1 − l).

Putting it all together, we have two equations of motion, which are the expected F = ma equa-

tions for each mass:

m1ẍ1 = k(x2 − x1 − l) m2ẍ2 = −k(x2 − x1 − l).

This might not seem like much: we certainly could have got these equations with regular New-

tonian mechanics. However, with Lagrangians we can easily analyze the system in more com-

plicated coordinates. For example, we might instead take one coordinate as the center of mass

xG = (m1x1+m2x2)/(m1+m2), and the other coordinate as the separation, xs = x2 −x1. This

is a different pair of coordinates to describe the same two-degree-of-freedom system.

In terms of these new coordinates, the actual positions of the masses are,

x1 = xG − m2

m1 +m2
xs x2 = xG +

m1

m1 +m2
xs,

and, with a bit of algebra, the kinetic energy is now

1

2
m1ẋ1

2 +
1

2
m2ẋ2

2 =
1

2
(m1 +m2)ẋG

2 +
1

2

m1m2

m1 +m2
x2s.

The Lagrangian is thus:

L(xG, xs, ẋG, ẋs) =
1

2
(m1 +m2)ẋ

2
G +

1

2

m1m2

m1 +m2
x2s −

1

2
k(xs − l)2.

In the new coordinates, the Lagrangian has turned into the sum of two separate parts, one for

xG and one for xs, so these two coordinates will have uncoupled equations of motion. More

precisely, the new generalized momenta, forces and equations of motion are:

pxG = (m1 +m2)ẋG FxG = 0 =⇒ (m1 +m2)ẍG = 0

pxs =
m1m2

m1 +m2
ẋs Fxs = −k(xs − l) =⇒ m1m2

m1 +m2
ẍs = −k(xs − l).

We see that pxG is the total momentum of the two masses, and the xG equation of motion corre-

sponds to conservation of total momentum.
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4.2.4 Double pendulum

�

�

1

2

x
y

l

l

m

m

g

T

T1

2
(x ,y )1 1

(x ,y )2 2

Finally, we return to our original two-degree of freedom problem, the

double simple pendulum. The Cartesian positions of the two masses

are

(x1, y1) = l(sin θ1,− cos θ1) (x2, y2) = l(sin θ1,− cos θ1)+l(sin θ2,− cos θ2),

so kinetic energy for the double pendulum is

T =
1

2
m
(

ẋ21 + ẏ21
)

+
1

2
m
(

ẋ22 + ẏ22
)

=
1

2
m
(

l2θ̇21

)

+
1

2
m
(

l2θ̇21 + l2θ̇22 + 2lθ̇1θ̇2(cos θ1 cos θ1 + sin θ1 sin θ2)
)

=
1

2
ml2

(

2θ̇21 + θ̇22 + 2θ̇1θ̇2 cos(θ2 − θ1)
)

,

and the potential energy is simply V = mg(y1 + y2) = −mgl(2 cos θ1 + cos θ2). Putting these

together, the double pendulum Lagrangian is

L(θ1, θ2, θ̇1, θ̇2) =
1

2
ml2

(

2θ̇21 + θ̇22 + 2θ̇1θ̇2 cos(θ2 − θ1)
)

+mgl(2 cos θ1 + cos θ2).

The generalized momenta and forces are then

pθ1 =
∂L
∂θ̇1

= ml2(2θ̇1 + θ̇2 cos(θ2 − θ1)) Fθ1 =
∂L
∂θ1

= ml2θ̇1θ̇2 sin (θ2 − θ1)− 2mgl sin θ1

pθ2 =
∂L
∂θ̇2

= ml2(θ̇2 + θ̇1 cos(θ2 − θ1)) Fθ2 =
∂L
∂θ2

= −ml2θ̇1θ̇2 sin (θ2 − θ1)−mgl sin θ2.

Putting all this together gives us the equations of motion for θ1 and θ2:

d

dt
(pθ1) = ml2

(

2θ̈1 + θ̈2 cos(θ2 − θ1)− θ̇2 sin(θ2 − θ1)(θ̇2 − θ̇1)
)

= ml2θ̇1θ̇2 sin (θ2 − θ1)− 2mgl sin θ1

d

dt
(pθ2) = ml2

(

θ̈2 + θ̈1 cos(θ2 − θ1)− θ̇1 sin(θ2 − θ1)(θ̇2 − θ̇1)
)

= −ml2θ̇1θ̇2 sin (θ2 − θ1)−mgl sin θ2.

Neatening these equations up, we get

2θ̈1 + θ̈2 cos(θ2 − θ1)− θ̇22 sin(θ2 − θ1) = −2
g

l
sin θ1

θ̈2 + θ̈1 cos(θ2 − θ1) + θ̇21 sin(θ2 − θ1) = −g
l
sin θ2.

These equations are normally regarded as the final equations of motion, but to make contact with

the previous Newtonian approach, we can solve these equations for θ̈1 and θ̈2 to get the same final

form.

Although this Lagrangian approach was still quite involved, it was far easier than applying F =
ma directly, and we haven’t had to suppress any extra pages of algebra.
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5 CONSERVATION LAWS

5 Conservation Laws

Emmy Noether

As we have just seen, complicated mechanisms with multiple de-

grees of freedom tend to produce complicated equations of mo-

tion. Often, we can’t solve these equations, but we can try to

understand what type of motion they produce. One powerful ap-

proach is to look for quantities, such as energy, momentum and

angular momentum, which are constant during the motion. La-

grangian mechanics makes finding these quantities easy.

In general, the Lagrangian equation of motion is

d

dt
(pi) = Fi,

which, recalling how we calculate pi and Fi, can be written in

terms of the Lagrangian itself as
d

dt

(

∂L
∂q̇i

)

=
∂L
∂qi

.

If it happens that the Lagrangian does not actually depend on qi, then the generalized force is

Fi =
∂L
∂qi

= 0 and the equation of motion now takes a very simple form:

d

dt
(pi) = 0,

which is simply saying that the generalized momentum pi does not change during the motion: it

is constant or conserved. This result is known as Noether’s theorem.

We have seen examples where pi is the real momentum, the angular momentum, and nothing

easily identifiable, so this idea can prove the conservation of many different quantities depending

on the system in question. Although the result seems simple — trivial almost — it is an amazingly

useful, and has turned out to be one of the most profound insights in physics.
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5.1 Example: Conservation of momentum

θ

g
x

y
x

y

A particle, mass m, slides without friction on a two dimen-

sional ramp that makes an angle θ with the horizontal. The

particle has two degrees of freedom, described with Carte-

sian x and y coordinates in the inclined plane, as shown on

the right. With these coordinates, the Lagrangian is

L(x, y, ẋ, ẏ) = 1

2
mẋ2 +

1

2
mẏ2 −mgx sin θ.

The generalized momenta are

px =
∂L
∂ẋ

= mẋ py =
∂L
∂ẏ

= mẏ,

which are just the x and y components of the real momentum. The generalized forces are

Fx =
∂L
∂x

= −mg sin θ Fy =
∂L
∂y

= 0,

which are indeed the actual total force on the particle in the x and y directions respectively. We

note that L does not depend on y, so Fy = 0, and the equation of motion for y,

d

dt
(py) = 0,

is a conservation law, telling us that py = mẏ is constant during the motion. The Lagrangian does

depend on x, so the x equation of motion is not a conservation law:

d

dt
(px) = −mg sin θ =⇒ ẍ = −g sin θ.

θ

gx

y
x

y
δy

In Newtonian terms, these equations make perfect sense: the

weight force has a component down the hill, so momentum

down the hill is not constant, but there is no force in the y
direction, so py is conserved. In Lagrangian terms, the La-

grangian not depending on y indicates that the Lagrangian

does not change if you displace the particle a bit in the y di-

rection, as shown on the right. This means that, if you release

the particle in the same way from both starting points, the

particle will conduct the same motion, just offset in y. The genius of Noether’s theorem is that it

links this invariance (or “symmetry”) of the system to a conservation law in the motion: y mo-

mentum is conserved because the motion doesn’t change if you start from a different y coordinate.
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5.2 Example: Conservation of Angular Momentum 5 CONSERVATION LAWS

5.2 Example: Conservation of Angular Momentum

g

θ

r

z

ϕ

Consider a particle sliding without friction on the inside of a cone

with opening angle 2θ, as shown on the right. The position of the

particle is now described in polar coordinates r − φ − z, though

the particle only has two degrees of freedom since, on the cone,

r = z tan θ. The Lagrangian for the particle is

L =
1

2
m
(

ṙ2 + r2φ̇2 + ż2
)

−mgz,

which, if we eliminate z to use r and φ as our two coordinates,

becomes

L(r, φ, ṙ, φ̇) = 1

2
m
(

ṙ2 csc2 θ + r2φ̇2
)

−mgr cot θ.

In this case, the momentum for the φ coordinate is

pφ =
∂L
∂φ̇

= mr2φ̇

is the the z component of angular momentum. The Lagrangian does not depend on φ so Fφ = 0
and the equation of motion for φ

d

dt
(pφ) = 0

is the statement that z angular momentum is conserved. The Lagrangian does depend on r, so pr
will not be conserved.

An office chair is invariant under

rotation about z (top), but not about x
(bottom), so its motion will conserve

hz but not hx.

Just as linear momentum is conserved when the La-

grangian/system is invariant under a translational offset

in space, angular momentum is conserved when the La-

grangian/system is invariant under an offset in angle, i.e.

a rotation. In this case, if we start the particle in the

same way from two locations with different values of φ,

the two motions will be identical but offset in φ, and this

invariance leads to conservation of angular momentum.

Once we learn to think in this way, it gets much easier

to spot when we expect certain components of angular

momentum to be conserved. For example, imagine a

spinning office chair. If you rotate the chair 90 degrees

around the z axis, nothing really changes — the system

is invariant — so its motion will preserve angular momentum about the z axis. A spinning chair

continues to spin. On the other hand if you rotate 90 degrees around the x axis, you will fall out

of the chair. This is far from invariant, so the system will not conserve angular momentum around

the x axis.
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5.3 Example: Conservation of total momentum

x1 x2x

m1 m
2

Consider, again, the system of two masses and

a spring from section 4.2.3. In this case, we do

not expect either mass to conserve its individ-

ual momentum, as the two masses are pushing

and pulling on each other via the spring. However, as there is no external force on the system,

we do expect it to conserve its total momentum. If we take our two coordinates as x1 and x2, the

positions of the masses, the Lagrangian is again

L(x1, x2, ẋ1, ẋ2) =
1

2
m1ẋ1

2 +
1

2
m2ẋ2

2 − 1

2
k(x2 − x1 − l)2.

As we saw previously, with this coordinate choice, the generalized momenta are the real x mo-

menta of each mass, (px1 = ∂L
∂ẋ1

= m1ẋ1) and, since the Lagrangian does depend on both x1
and x2, neither px1 nor px2 is conserved. However, if we again rewrite the Lagrangian in terms

of a center of mass coordinate xG = (m1x1 + m2x2)/(m1 + m2), and a separation coordinate

xs = x2 − x1, the Lagrangian again becomes

L(xG, xs, ẋG, ẋs) =
1

2
(m1 +m2)ẋ

2
G +

1

2

m1m2

m1 +m2

x2s −
1

2
k(xs − l)2.

With these new coordinates, the generalized momentum pxG = (m1 + m2)ẋG is the total mo-

mentum and, since the Lagrangian does not depend on xG, we know immediately that it will be

conserved during the motion. The key point here is that the system is invariant under translation,

but only if you translate the whole system; if you just translate one of the masses, you stretch the

spring and the system isn’t invariant at all. Using the center of mass as a coordinate allows us

to translate the whole system by changing just one coordinate, and therby expose this invariance,

and find the corresponding conserved quantity. Here we have encountered some truly profound

theoretical physics. The fact that conducting a mechanical experiment (e.g. swinging a pendu-

lum) at two different points in space produces the same motion is the fundamental reason why

total momentum is conserved

5.4 Better conservation of total momentum (non examinable)

The above derivation is rather clunky, as it requires an awkward and specific coordinate choice to

find the conservation rule. Having understood that the key point is invariance under translating

the whole system, we can exploit this invariance directly by formulating it as a mathematical

statement: L (x1, x2, ẋ1, ẋ2) = L (x1 + a, x2 + a, ẋ1, ẋ2) .This statement holds for any a, but if a
is small we can represent the right side as a Taylor series:

L (x1 + a, x2 + a, ẋ1, ẋ2) = L (x1, x2, ẋ1, ẋ2) +
∑

i=1,2

∂L
∂xi

a =⇒
∑

i=1,2

∂L
∂xi

a = 0.

If we substitute in the equation of motion d
dt
(pxi) =

∂L
∂xi

into both terms of the sum, we get

∑

i=1,2

∂L
∂xi

a = 0 =⇒
∑

i=1,2

d

dt
(pxi) = 0 =⇒ d

dt

∑

i=1,2

pxi = 0,
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where this last equation is the equation of conservation of total momentum:

d

dt

∑

i=1,2

pxi =
d

dt

∑

i=1,2

miẋi = 0.

The beauty of this argument is that it trivially generalizes to N particles, m dimensions and

different types of invariance. For example, the exact same argument can also be applied to angles

and rotations rather than translations. In this case, we discover that angular momentum around

an axis will be conserved if the system is “invariant” (i.e. behaves the same way) after a rotation

around that axis. In the Universe as a whole, angular momentum is conserved because space is

isotropic and linear momentum is conserved because space is translationally invariant.

5.5 Conservation of Energy

In general, if we have a Lagrangian of the form L(qi, q̇i, t), the generalized momentum pi is

conserved if L does not depend explicitly on qi, i.e. if ∂L
∂qi

= 0. Conservation of energy is

more complicated, because energy is never one of the conjugate momenta. However, just as x
momentum is conserved if L doesn’t depend on x, it can be shown that the total energy

E = T + V

will be conserved if L(qi, q̇i, t) does not depend (explicitly) on time, i.e if. ∂L
∂t

= 0. All the La-

grangians we have seen so far have this property, but we will see some explicitly time dependent

Lagrangians in the last section of the course. This result means that the fact that we get the same

motion from a pendulum whether we start it now, or some time later, is the ultimate reason energy

is conserved. This result is extremely useful, and we will use it repeatedly, but we will not prove

it this year.
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6 ONE DEGREE OF FREEDOM

6 One degree of freedom

We now turn to solving Lagrangian equations of motion, to actually predict motion. The simplest

case is if a mechanism only has a one degree of freedom, q, in which case the Lagrangian will

(almost certainly) be of the form:

L(q, q̇) = 1

2
mq̇2 − V (q).

This Lagrangian gives rise to a single generalized momentum and force

p =
∂L
∂q̇

= mq̇ F =
∂L
∂q

= −V ′(q),

so the equation of motion is simply

d

dt
(mq̇) = mq̈ = −V ′(q).

θ
l

m

g

lθ 
�

lcosθ

The classic example, which exhibits all the key behaviors of one

d.o.f. (degree of freedom) systems, is, once again, the simple pen-

dulum:

L(θ, θ̇) = 1

2
ml2θ̇2 +mgl cos θ,

for which the generalized momentum and force are

pθ =
∂L
∂θ̇

= ml2θ̇ Fθ =
∂L
∂θ

= −mgl sin θ,

and the equation of motion is the famous pendulum equation:

ml2θ̈ = −mgl sin(θ), =⇒ θ̈ = −g
l
sin(θ).

In this section, we will give a complete and final treatment of the simple pendulum, as an illus-

tration of what one can find in one-degree-of-freedom Lagrangian dynamics.

6.1 First integral of the equation of motion

To find the motion of the system, we need to integrate twice, θ̈ → θ̇ → θ.

The first integration can always be done analytically. The Lagrangian doesn’t have any t depen-

dence, so the motion will conserve total energy,

E = T + V =
1

2
mq̇2 + V (q).

In this simple one d.o.f. case, we can easily verify energy conservation from the equation of

motion. The trick is to multiply the equation of motion by q̇, which allows us to write it as an

exact time derivative:

mq̈q̇ + V ′(q)q̇ = 0

=⇒ d

dt

(

1

2
mq̇2 + V (q)

)

= 0.
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6.1 First integral of the equation of motion 6 ONE DEGREE OF FREEDOM

This equation is now a conservation law for the quantity 1
2
mq̇2 + V (q), which is E. Integrating

once with respect to time gives:

1

2
mq̇2 + V (q) = E is constant.

The original equation gave us acceleration as a function of position, but having integrated we now

have velocity as a function of position:

q̇ =

√

2

m
(E − V (q)).

This result tells us pretty much everything about the motion of the system. If we draw a graph

of V (q), we can represent the total energy of a motion, E, as a straight horizontal line. At any

position, q, the gap between the line and the potential tells is the kinetic energy of the particle, T
from which we can get the velocity q̇.

q q

E

E

V(q) V(q)

T

T

Fundamentally, there are two possibilities. Either the E line intersects the V curve twice (left,

above), in which case these are turning points where q̇ = 0, and the mechanism will move

between the two turning points periodically forever. Alternativley,E might be above the V curve

(or intersect only once) (right, above) in which case q will never turn round, but instead eventually

reach infinity.

For the pendulum case, the first integral (energy conservation) gives us the following θ̇ as a

function of position:

θ̇ =

√

2

(

E

ml2
+
g

l
cos θ

)

.

Drawing the V (θ) curve for the pendulum potential V (θ) = −mgl cos(θ), we see the pendulum

can show both behaviors, depending on the value of E.

E

V(θ)

θ0 2π

E

V�)

�0 2π

Physically, ifE < mgl the pendulum has insufficient energy to reach the vertical upwards config-

uration, and swings backwards and forwards periodically forever: this is the hallmark oscillatory

motion of a pendulum. If E > mgl, the pendulum can reach the vertically upwards and swings

in circles, winding θ up to larger and larger numbers.
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6 ONE DEGREE OF FREEDOM 6.2 Equilibrium States

6.2 Equilibrium States

For certain values of the energy, and certain positions of the mechanisms there may be equilibrium

states where the mechanisms simply sits still for ever. In general, to find equilibrium points,

simply set q = q0 and q̇ = q̈ = 0 in the equation of motion, and see if there are any solutions.

Setting q̈ = 0 in the original equation of motion, we see that such a point must have

V ′(q0) = 0,

i.e. it must be an stationary point of the potential energy V (q). However, it isn’t sufficient just to

be at q0, we also need that q̇ = 0 which, from the energy expression, tells us that

E = V (q0).

This all makes good intuitive sense in the potential-energy picture: these points occur when the

system is at a minima/maxima in the potential energy V ′(q0) = 0, and are simultaneously not

moving so E = V (q0). Since the mechanism is at a stationary point it will never start moving,

and since it is not moving, it will stay there for ever.

In the case of the pendulum, there are two such equilibrium states, the pendulum can be vertically

up or vertically down.

θ = 0, θ̇ = 0 and θ = π, θ̇ = 0.

E

V(�)

�0

E
V(�)

� π2π 3π-π
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6.3 Phase portrait 6 ONE DEGREE OF FREEDOM

6.3 Phase portrait

q

q
�The above ideas can be summarized in one beautiful and infor-

mative plot, known as a phase portrait. This is a plot with q on

one axis and q̇ on the other axis, so each point corresponds to the

mechanism being in a certain configuration and moving at certain

rate. As the mechanism moves, both q and q̇ will change, tracing

out a curve for the motion, which is known as an orbit. A simple

example is shown on the right. Note that the plot is self consistent,

as q increases along the trajectory when q̇ is positive and decreases

when q̇ is negative. For this reason, we often don’t bother with the arrows indicating direction.

In general there is one such line on the phase portrait for each value of the total energy E, which

plots the motion of the mechanism when it moves with that particular value of E.

For the pendulum, the simplest orbit is E = −mgl, which is simply the equilibrium point θ =
θ̇ = 0. In this “motion” the pendulum never actually moves, so the curve is a point at θ = θ̇ = 0.

θ
 l

g

-π 0 π

-2

0

2

θ

Periodic motions of the pendulum with

E < mgl.

For −mgl < E < mgl the pendulum swings

backwards and forwards in a periodic motion.

These swings form closed loops in the phase

portrait, as the motion returns to its starting

point each swing. The curves are loops rather

than arcs because the pendulum has a different

sign of θ̇ on the backward and forward part of

the swing. These loops are nested, with lower

energy loops inside the higher energy loops, as

the higher energy loops have higher amplitude.

If E is only slightly smaller than mgl, the

pendulum almost reaches the vertical position,

forming the largest loop corresponding to the

highest amplitude periodic motion.

θ
 l

g

-π 0 π

-2

0

2

θ

Circular motions of the pendulum with

E > mgl.

If E = mgl the pendulum sits at the equilib-

rium point at θ = ±π, θ̇ = 0 and the curve is

a point.

If E > mgl the pendulum swings in circles

winding θ to higher and higher values. This

produces infinite lines on the phase portrait

rather than closed loops. The pendulum moves

fastest at θ = 0 and slower at θ = ±π where

the potential energy is higher.

Putting all these different types of loop on one

portrait, we get a beautiful summary of all the

possible motions of the pendulum. It is helpful

to extend the range of θ beyond ±π so we can

see more clearly the motion around the θ = π
equilibrium.
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θ
 l

g

-2π -π 0 π 2π

-2

0

2

θ

The key reason phase portraits are intelligible and useful is that the lines for different values of

E can never cross each other. If they did, and you started the pendulum with the θ and θ̇ of the

crossing point, it wouldn’t know where to go next!

6.4 Stability and Instability

The two equilibria for the pendulum are physically very dif-

ferent. If the pendulum is given a little push from θ = 0, it

must gain potential energy, so it slows down, stops and turns

round. It will then swing back and forth periodically, staying

close to the θ = 0 equilibrium, and if we added in damp-

ing, it would eventually settle back down to θ = 0. This is

evident on the phase portrait because the curves around the

equilibrium point are loops that enclose it. We call such an

equilibrium a stable equilibrium.

If we try the same at θ = π, the pendulum will gain kinetic

energy as it moves away from the equilibrium and hence head

away even faster. The resulting motion will not stay around

θ = π, and if we add in damping it will settle down to θ = 0.

We can see on the phase portrait that even the curves very

near the θ = π equilibrium ultimately run far away from it.

We call this state an unstable equilibrium.

To probe this mathematically, we consider what happens if our system is a small distance from

an equilibrium point, q = q0 + δq. If we substitute this into the equation of motion, we get:

mδ̈q = −V ′(q0 + δq).

However, since δq is small, we can Taylor expand the right hand side and take advantage of the

fact that, at an equilibrium V ′(q0) = 0. This gives us

mδ̈q ≈ −V ′′(q0)δq,

which is an equation of motion for δq with very different character depending on the sign of

V ′′(q0). In both cases the “force” is proportional to displacement δq, but if V (q0) was a minimum,
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6.5 Second integral of the equation of motion 6 ONE DEGREE OF FREEDOM

V ′′(q0) is positive, the force pulls back to equilibrium and this is the equation of simple harmonic

motion. For example, for the pendulum, around θ = 0 + δθ we have

δ̈θ = −g
l
δθ =⇒ δθ = a0 cos

(
√

g

l
t+ φ

)

,

which is the motion of the pendulum vibrating around the equilibrium position.

On the other hand, if V (q0) was a maximum, V ′′(q0) is negative and the force pushes away from

the equilibrium. In this case the equation has exponentially growing and decaying solutions. For

example, for the pendulum, around θ = π + δθ we have

δ̈θ =
g

l
δθ =⇒ δθ = Ae−

√
g

l
t +Be

√
g

l
t.

The exponentially growing term here corresponds to the system speeding up as it moves away

from the equilibrium state. The decaying solution corresponds to launching the pendulum up-

wards towards the equilibrium point with exactly the right amount of energy to come to rest when

it gets there, which is much less likely in practice.

There is an important difference between the two solutions. In the stable case, if δθ starts small

it remains small, so the approximate equation of motion remains valid. If the unstable case, even

if δθ starts small, it grows until it gets big, at which point the Taylor series approximation breaks

down. This doesn’t mean the solution is useless: it is very useful because it tells us the growth

rate of a small perturbation: i.e. how long you have before a small perturbation grows big.

6.5 Second integral of the equation of motion

Although the phase portrait and the stability analysis give a detailed picture of the dynamics of a

pendulum, we still haven’t achieved a final answer for the angle of the pendulum as a function of

time, θ(t). We need to integrate a second time, θ̇ → θ, to get position from velocity. In principle

this is easy. We have an expression for the velocity from the first integral (energy conservation):

q̇ =

√

2

m
(E − V (q)).

If we divide through by the right hand side then integrate with respect to time, we have a q integral

on the left and a t integral on the right:

∫

√

m/2
√

E − V (q)
dq =

∫

dt = t.

This means, if we start from qi, and want to know when the particle reaches qf , all we have to do

is work out the definite integral

tqi→qf =

∫ qf

qi

√

m/2
√

E − V (q)
dq.

All energy conserving one degree of freedom motion can thus be reduced to a single final integral.

We say we the motion has been reduced to quadrature. Sadly, the integral is rarely tractable

analytically, so now we need a computer.
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6 ONE DEGREE OF FREEDOM 6.5 Second integral of the equation of motion

6.5.1 Second integral for the simple pendulum (non-examinable)

For the case of the pendulum, if we release it at rest at an angle θ0, it will have energy E =
−mgl cos(θ0), so it will reach θ at a time given by:

tθ0→θ =

∫ θ

θ0

√

ml2/2√
E +mgl cos θ

dθ =

√

l

2g

∫ θ0

θ

1√
cos θ − cos θ0

dθ.

To calculate the time period of the pendulum’s oscillations T (sorry again) then we can work it

out as four times the length of time it takes to get from θ0 to θ = 0:

T = 4

√

l

2g

∫ θ0

0

1√
cos θ − cos θ0

dθ.

This integral doesn’t have an answer in terms of analytic functions, but it is easy enough to

evaluate on a computer. If you want to look clever, you can make a cunning substitution, sin u =
sin (θ/2)
sin (θ0/2)

, which brings the integral into the form:

T = 4

√

l

g

∫ π/2

0

1
√

1− sin2 (θ0/2) sin
2 u

du ≡ T0
2

π
K

(

sin
θ0
2

)

where K(x) is a special function called the “complete elliptic integral of the first kind,” and

T0 = 2π
√

l
g

is the SHM time period of a small amplitude oscillations. However, if you look

up what the definition of K(x) is, you will find it is defined as this integral, so this hasn’t really

moved us much further on, except we can now evaluate the function on a serious calculator. This

allows us to make a nice plot of the pendulum time period as a function of amplitude.

0
π

2
π
θ(0)0

1

2

3

4

5

T/T0

Notably, the time period diverges as θ0 → π, which makes sense as, in this limit, the pendulum

has just enough energy to reach vertical, but slows down a great deal as it gets there, and almost

reaches the vertical equilibrium point before falling back down again.

We can also look up the Taylor series of K(x) for small x to make a series expansion for the time

period of a pendulum in its amplitude:

T = T0

(

1 +
θ20
16

+
11θ40
3072

+
173θ60
737280

+
22931θ80

1321205760
+ ...

)

.

One word of warning, different sources define K(x) in different ways. Some authors and pro-

gramming languages (including wolfram-alpha) use a convention where K(x) → K(x2).
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7 EFFECTIVE POTENTIAL

7 Effective potential

Although we can tackle one-degree-of-freedom problems with Lagrangians, the real benefit lies

with more complicated systems. Unfortunately, in these cases, the equations themselves are often

complicated, coupled non-linear differential equations which are very difficult to solve. For the

rest of the course, we will be looking at strategies for understanding the motion of these more

complicated systems.

One helpful strategy is to use conservation laws (typically conservation of angular momentum) to

effectively reduce the number of degrees of freedom for a system. If we can turn the problem into

a one-degree-of-freedom problem, we can then exploit our insights from the previous section.

7.1 Motion in a central potential

�

�

�
���

�

This strategy is very helpful when we have a particle moving in a

potential energy which, in polar coordinates, takes the form V (r).
Such a potential is called a “central potential,” and arises naturally

whenever the only force on the particle is back towards the ori-

gin. Important examples include movement of a satellite around

the Earth (V (r) = −GMm/r), motion of an electron around an

atom, or motion of a particle tethered to the origin with a spring

or string
(

V (r) = 1
2
k(r − l)2

)

. In all these case, taking the coor-

dinates of the particle as (r, θ), the Lagrangian has the form:

L(r, θ, ṙ, θ̇) = T − V =
1

2
m
(

ṙ2 + r2θ̇2
)

− V (r).

The generalized momenta are,

pr =
∂L
∂ṙ

= mṙ, pθ =
∂L
∂θ̇

= mr2θ̇,

which are the actual momentum in the r direction and the angular momentum around the origin.

There is no θ dependence in the Lagrangian, so Fθ = ∂L
∂θ

= 0, and the equation of motion for θ
simply says that angular momentum, h, will be conserved:

d

dt
(pθ) = 0 =⇒ mr2θ̇ = h.

This is expected because the problem is rotationally invariant. In more Newtonian terms, the only

force on the particle always acts through the origin so there is no torque in the z direction.

In contrast, there is r dependence in L so the generalized force is not zero but rather:

Fr =
∂L
∂r

= mrθ̇2 − V ′(r)

and the equation of motion for r is

mr̈ = mrθ̇2 − V ′(r).
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7 EFFECTIVE POTENTIAL 7.1 Motion in a central potential

We now have two equations of motion for two variables, θ and r, and our task is to solve these

equations to find the motion. Fortunately, we have already integrated the θ equation once to get

a simple conservation rule for angular momentum. This rule tells us that, during the motion, θ̇ is

determined by the radius:

θ̇ =
h

mr2
.

If we substitute this into the equation of motion for r, we can eliminate θ and θ̇ entirely:

mr̈ =
h2

mr3
− V ′(r).

We now have a one degree of freedom equation to solve for r(t). It is in the standard form for 1D

motion in a potential, mr̈ = −V ′

eff (r), with a modified effective potential energy Veff(r), where

Veff(r) =
h2

2mr2
+ V (r).

The additional term, which is called the centrifugal potential, Vcent(r). If we re-insert the defini-

tion of h, we see that ,

Vcent(r) =
h2

2mr2
=

1

2
mr2θ̇2,

i.e. it is the kinetic energy of the particle associated with its motion in the θ direction.

This observation makes the centrifugal potential quite intuitive. As the particle approaches the

origin θ̇ has to increase to conserve angular momentum, increasing the kinetic energy associated

with θ̇. This leads to a kinetic energy barrier as the particle approaches the origin, which grows as

1/r2: the particle would need an infinite θ̇, and hence infinite kinetic energy, to reach the origin

whilst conserving angular momentum.

As with all one-degree-of-freedom systems, we can now multiply the equation of motion by ṙ
and integrate to get a first integral,

1

2
mṙ2 + Veff(r) = E,

where E is a constant of integration corresponding to the total energy.

7.1.1 Satellite Motion

For a satellite going around Earth, the potential has the form V = −GMm/r ≡ −A/r, so the

effective potential takes the form:

Veff(r) =
h2

2mr2
− A

r
.

If we sketch this potential as a function of r, we see that −1/r dominates as r → ∞, but +1/r2

dominates as r → 0, so the potential always diverges positively near the origin and tends to zero

from below at infinity and has a has a single minimum in between.
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The radial behavior of the satellite is just like a 1D motion in this new potential. There is one

equilibrium point at the minimum, which is located at

V ′

eff(rmin) = 0 =⇒ − h2

mr3min

+
A

r2min

= 0 =⇒ rmin =
h2

mA
.

If the satellite has just the right amount of energy, it can sit at this minimum. Of course, the

satellite isn’t actually sitting still, it just has a constant radius — i.e. the satellite is going in

circles. Its angular velocity is:

θ̇ =
h

mr2min

=

√
mArmin

mr2min

=

√

A

mr3min

,

as we would have got from A-level “motion is a circle” formula −A/r2 = mrθ̇2. Although the

value of h is fixed by during a given satellite motion, and hence the radius rmin is fixed during

a given motion, you can of course give the satellite a different h if you start its with a different

angular momentum and, for that motion, the location of rmin will be different — this is why, in

practice, satellites can have circular orbits at any radius we need.

If the satellite has a little more energy, it will oscillate back and forth periodically in the potential

minimum. The circular orbit is stable, because it is at a minimum in the effective potential. In

terms of the real orbit, this radial vibration amounts to going around in a circle with slightly

undulating radius... i.e. something like an ellipse.

For small oscillations we can do a small vibration analysis to find the frequency of these undula-

tions. Setting r = rmin + δr, we can Taylor expand the effective potential to get:

Veff(rmin + δr) ≈ Veff(rmin) +
1

2
V ′′

eff(rmin)δr
2.

Substituting this into the equation of motion, we get the expected SHM equation and solution:

mδ̈r = −V ′′

eff(rmin)δr =⇒ δr = a0 cos





√

V ′′

eff (rmin)

m
t+ φ



 .

To calculate the time period’ we need to evaluate V ′′

eff(rmin). First taking the second derivative

gives:

V ′′

eff(r) =
3h2

mr4
− 2A

r3
,

secondly, inserting our result for V ′(rmin) = 0 to eliminate h,

V ′′

eff (rmin) =
3Armin

r4min

− 2A

r3min

=
A

r3min

.
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7 EFFECTIVE POTENTIAL 7.1 Motion in a central potential

The angular frequency for these radial vibrations,
√

A
mr3min

, is the same as the angular velocity of

the underlying circular orbit. This means that the orbit does exactly one complete radial undula-

tion on each circular orbit, so the orbit closes (i.e. gets back to where it started) and forms a focus

centered ellipse In the figure above, we can see how the radial vibration in the effective potential

changes a circular orbit into an elliptical one.

If the satellite has even more energy, the quadratic small-vibrations analysis will not apply, but

we know from last year the orbit remains closed and elliptical.

If the total energy increases above zero, the 1-D radial motion will not be bound and periodic, but

escape to infinity. Five man-made objects have achieved this state in the solar system: Voyager 1,

Voyager 2, New Horizons, Pioneer 10 and Pioneer 11.

7.1.2 Motion in a cone

g

�

�

z

ϕ

Consider again a particle sliding along the surface of a cone under

gravity. We already calculated the Lagrangian:

L(r, φ, ṙ, φ̇) = 1

2
m
(

ṙ2 csc2 θ + r2φ̇2
)

−mgr cot θ.

We now understand that this is an example of motion in a central

potential V (r) = mgr cot θ, which is linear in r. The generalized

momenta and forces are:

pφ =
∂L
∂φ̇

= mr2φ̇ Fφ =
∂L
∂φ

= 0

pr =
∂L
∂r

= mṙ csc2 θ Fr =
∂L
∂r

= mrφ̇2 −mg cot θ.

The equation of motion for φ is indeed conservation of z angular momentum, h:

d

dt
(pφ) = 0 =⇒ mr2φ̇ = h,
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and the equation of motion for r is

d

dt
(pr) = mr̈ csc2 θ = mrφ̇2 −mg cot θ =⇒ mr̈ = mrφ̇2 sin2 θ −mg cos θ sin θ.

Again using angular momentum conservation mr2φ̇ = h to eliminate φ̇ from this equation,

mr̈ =
h2 sin2 θ

mr3
−mg cos θ sin θ

we see it is in the form of 1-D motion in an effective potential

Veff(r) =
h2 sin2 θ

2mr2
+mgr cos θ sin θ,

the main difference from the satellite case is that the new Veff(r) grows linearly for large r,

rather than asymptoting to zero. The effective potential has one minimum, corresponding again

2 4 6 8 10

5

10

15

eff
V (r)

r

r

1/r 2

rmin

E

r

a

rb

to movement in circles around the cone at radius rmin, where

V ′

eff (rmin) = 0 =⇒ r3min =
h2 tan θ

gm2
,

and the angular velocity of these circles is

φ̇ =
h

mr2min

=

√

g

rmin tan θ
.

�

�

�

b

If the particle has more energy that Veff(rmin), as shown in the

plot above, we will have bound periodic motion of r between two

radii ra and rb, meaning the actual motion is bounded by an upper

and lower circle on the cone. Given the potential diverges for

r → 0 and r → ∞, there are no unbound motions. As with the

pendulum, we cannot compute the second integral analytically for

a full closed solution for motion in a cone. However, if the motion

is a small perturbation from the circular orbit r = r0 + δr, we can

again use a small vibration analysis to show that it will perform a

simple harmonic motion of the form

mδ̈r = −V ′′

eff(rmin)δr =⇒ δr = a0 cos





√

V ′′

eff (rmin)

m
t+ φ



 .
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7 EFFECTIVE POTENTIAL 7.1 Motion in a central potential

At the magic cone angle the

motion closes.

To evaluate the frequency of the oscillation, we need

V ′′(r) =
3h2 sin2 θ

mr4
,

which, if we substitute in r3min = h2 tan θ
gm2 for h gives us

V ′′(rmin) =
3gm cos θ sin θ

rmin

,

so the angular frequency of the radial vibration

√

1

m
V ′′(rmin) =

√

3g cos θ sin θ

rmin

At other cone angles the

motion precess.

differs from the angular velocity of the underlying circular orbit

by a factor of
√
3 sin θ. For one magic cone angle,

θ = sin−1 1√
3
≈ 35 deg

this ratio is one and the orbit closes. For a cone close to this value,

the orbit will nearly close, but get back to the original φ value

just before/after getting back to the original r value. This creates

an orbit that precesses in time, with the ellipse of the orbit ro-

tating a little between revolutions. A motion like this, with two

periodic components that have incommensurate frequencies never

perfectly repeats, and is called quasiperiodic.

Notice that, although we haven’t been able to solve the motion

completely, we have been able to capture its key features through a cunning combination of

stability analysis and effective potential.
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7.2 Bead on a freely rotating hoop �

a

m
�

The effective potential idea is not limited to central potentials: it

is often useful in other situations where angular momentum (or

indeed some other quantity) is conserved. For example, consider

a bead that can slide around a hoop, which in turn is free to spin

around a diameter, as shown on the right.

Unlike last time we looked at a bead on a spinning hoop, this is a

two-degree of freedom mechanism, since the hoop is free to rotate

rather than being spun at fixed angular velocity. However, like last

time, the Lagrangian is entirely kinetic energy:

L(θ, φ, θ̇, φ̇) = 1

2
m
(

a2θ̇2 + a2 sin2 θφ̇2
)

.

The generalized momenta and forces are

pθ =
∂L
∂θ̇

= ma2θ̇ Fθ =
∂L
∂θ

= ma2 sin θ cos θφ̇2

pφ =
∂L
∂φ̇

= ma2 sin2 θφ̇ Fφ =
∂L
∂φ

= 0.

As we expect, L does not depend on φ, so the equation of motion for φ says that pφ is conserved:

d

dt

(

ma2 sin2 θφ̇
)

= 0 =⇒ ma2 sin2 θφ̇ ≡ h is constant.

-π -
π

2
0

π

2
π

�

Veff(�)

E

Angular effective potential.

The total energy is then

E =
1

2
ma2θ̇2 +

h2

2ma2 sin2 θ
,

so the θ motion of the particle is equivalent to a body

with moment of inertia ma2 moving in an angular po-

tential

Veff(θ) =
h2

2ma2 sin2 θ
.

The minima of this potential is at θ = ±π/2, so the equilibrium

solutions are the mass sitting at ±π/2 and going in circles.

The effective potential has infinite energy barriers at θ = 0, π, so

no matter how much energy the bead has, it will bounce back and

forth between two intermediate symmetric values of θ staying on

one side of the hoop.

As the bead approaches θ = 0, π, it also approaches the vertical

axis, so the hoop must spin faster to conserve angular momentum. The overall motion is thus a

lumpy sort of rotation for the hoop, with the hoop spinning slower when the mass is at π/2 and

faster when it gets closer to the axis. This effect — spinning faster when mass moves towards the

rotation axis — is exploited by ice skaters to achieve high spin rates by pulling their arms in.
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8 TWO BODY PROBLEMS

8 Two body problems

A second case where a complicated problem can be reduced a one-degree of freedom problem is

the case of two interacting particles, known as the two body problem.

Consider two particles, m1 and m2, with positions r1 = (x1, y1, z1) and r2 = (x2, y2, z2). If the

two exert force on each other, the potential will be a function of their separation r = |r1 − r2|).
For example, if we have two stars, the potential energy would be −Gm1m2/r, and if we have two

masses connected by a spring, the potential will be (1/2)k(r − l)2. The Lagrangian is simply

L (r1, r2, ṙ1, ṙ2) =
1

2
m1|ṙ1|2 +

1

2
m2|ṙ2|2 − V (|r1 − r2|).

Following our previous work on conservation of total momentum, we change generalized coor-

dinates to the center of mass rG = (m1r1 +m2r2)/(m1 +m2),and the vector separation of the

particles rS = r2 − r1. In terms of these new coordinates, the actual particle positions are

r1 = rG − m2

m1 +m2
rS r2 = rG +

m1

m1 +m2
rS.

In terms of the new coordinates, we can calculate the kinetic energy exactly as we did in the

momentum conservation section

T =
1

2
m1|ṙ1|2 +

1

2
m2|ṙ2|2 =

1

2
(m1 +m2)|ṙG|2 +

1

2

m1m2

m1 +m2

|ṙS|2,

so, in terms of these new coordinates, the Lagrangian is simply:

L =
1

2
(m1 +m2)|ṙG|2 +

1

2

m1m2

m1 +m2

|ṙS|2 − V (|rS|).

This Lagrangian is now the sum of two independent sub-Lagrangians, one for each coordinate, so

the motions of the two coordinates are completely uncoupled. We essentially have two separate

Lagrangians:

LG =
1

2
(m1 +m2)|ṙG|2 LS =

1

2

m1m2

m1 +m2
|ṙS|2 − V (|rS|).

The first tells us the equation of motion for the center of mass which, as expected, is the equation

of conservation of total momentum:

d

dt
((m1 +m2)ṙG) = 0.

This implies that the center of mass moves in a straight line at a constant velocity.

The motion of the separation coordinate is in the general form of a particle moving in a central

potential V (r), but with a modified mass µ = m1m2

m1+m2
known as the reduced mass. If we can solve

the problem for a particle moving in a central potential V (r), we can also solve the corresponding

two body problem. For example, with gravity, since we can solve the problem of a satellite

orbiting Earth (a one body central potential problem) we can also solve the motion of binary

stars.

This is quite the achievement. We started with a six degree of freedom problem, (x1, y1, z1, x2, y2, z2),
but by carefully explotiting conservation laws (linear momentum, angular momentum and energy)

we can reduce the problem to an energy conserving motion in a 1-D effective potential. The three

body problem is a whole different kettle of fish: you start with nine degrees of freedom, and you

need to use a computer.
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9 STABILITY AND NORMAL MODES

9 Stability and Normal Modes

Unfortunately, most complex mechanisms cannot be reduced to Lagrangians with a single degree

of freedom, so we need some strategies for for understanding n dimensional motion. Taking

inspiration from the one d.o.f case, a good starting point is to find equilibrium states of such

mechanisms and then ask what happens if the system is in such a state and you give it a little

kick. The motion of many engineering systems is described by small movements around an

equilibrium state, and in fact you learnt the first part of the solution from last years multi-degree

of freedom mechanical vibrations content.

9.1 Mass and spring example

x

m m

y

3l

Before we think about the general case, it is helpful to run thorough a simple example. Consider

the 2 d.o.f. system of two masses m and three springs, all with length l and constant k. The

Lagrangian for this system is:

L(x, y, ẋ, ẏ) = 1

2
mẋ2 +

1

2
mẏ2 − 1

2
k(x− l)2 − 1

2
k(3l − y − l)2 − 1

2
k(y − x− l)2.

The generalized momental and forces are, in this case, the actual momenta and forces:

px =
∂L
∂ẋ

= mẋ, Fx =
∂L
∂x

= −k(x− l) + k(y − x− l)

py =
∂L
∂ẏ

= mẏ, Fy =
∂L
∂y

= k(2l − y)− k(y − x− l).

The first thing to do is find an equilibrium state of the system. The equations of motion are

d

dt
(px) = Fx

d

dt
(py) = Fy

so, to find an equilibrium state, we need a configuration where these forces vanish. This is two

linear equations in two unknowns (x and y), so we expect one solution, which is naturally at

x0 = l and y0 = 2l. In this state all the springs are their natural length, so this is the minimum

potential energy state.

We next imagine the system is displaced a small distance from this equilibrium state, and ask how

it then moves. To do this mathematically, we set

x = l + δx, y = 2l + δy,
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9.1 Mass and spring example 9 STABILITY AND NORMAL MODES

which makes the forces

Fx = −2kδx+ kδy

Fy = −2kδy + kδx,

and the equations of motion

mδẍ = −2kδx+ kδy

mδÿ = −2kδy + kδx.

It isn’t immediately obvious how to solve this pair of equations, but, as you learnt last year, the

trick is to search for “normal modes” of vibration, in which all parts of the system vibrate at the

same frequency. Following last years mechanical vibrations course, we store our unknowns in a

vector (δx, δy), and try an oscillatory trial solutions which, using complex notation, looks like:
(

δx
δy

)

=

(

A
B

)

eiωt →
(

δẋ
δẏ

)

= iω

(

A
B

)

eiωt →
(

δẍ
δÿ

)

= −ω2

(

A
B

)

eiωt.

Substituting this solution into the equations of motion, the eiωt cancels everywhere, and the dif-

ferential equations turn into algebraic equations for the constants A, B and ω which have the

convenient matrix representation

−mω2

(

A
B

)

= −
(

2k −k
−k 2k

)(

A
B

)

.

This equation actually an eigenvector equation for (A,B), which we can solve by inspection, to

find two eigenvectors:
(

A1

B1

)

=
1√
2

(

1
1

)

, ω2
1 =

k

m

(

A2

B2

)

=
1√
2

(

1
−1

)

, ω2
2 =

3k

m
.

These eigenvectors are solutions to the motion of the system, in which the entire system vibrates

at a single frequency — normal modes of oscillations. We have found two different modes, with

different frequencies and different spatial patterns of vibration. In the first the two masses move

together and the central spring is never stretched. In the second, the two masses move in opposite

directions, and all three springs are active.

m m m m

The equations of motion are linear, so we can add (superpose) solutions to get more solutions:

(

δx
δy

)

=
C1√
2

(

1
1

)

cos

(
√

k

m
t+ φ1

)

+
C2√
2

(

1
−1

)

cos

(
√

3k

m
t+ φ2

)

where I have returned to purely real notation, since the positions of the masses are real quantities.

We know this is the most general solution because it contains four constants of integrations, C1,

C2, φ1 and φ2, as expected for a system of two second order differential equations. The four

constants will be determined by four initial conditions: the initial position and velocity of each

mass. This means the motion of the system is completely described by a superposition of its two

normal modes. The equilibrium point is stable, since if we give it a kick, the system vibrates but

remains close to the equilibrium.
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9.2 General Normal Mode Treatment

Let us now consider a general n degree of freedom mechanism, with coordinates q1, q2....qn,

which, following our experience in the simple case above, we store in a vector q = (q1, q2....qn).
Last year in vibrations, you learnt to formulate the equations of motion, then expand (linearize)

them around an equilibrium point, q = q0+δq, identify a mass (M) and stiffness (K) matrix, and

then use an eigenvector approach to find the modes and frequencies. The same approach works

with equations of motion from Lagrangian mechanics. However, here we will do something

slightly more sophisticated, and expand the Lagrangian itself rather than waiting until we have

equations of motion. As a rule of thumb, the earlier you expand the less the algebra, so this

approach tends to be a little easier to implement. Returning to our general Lagrangian, since the

kinetic energy ultimately comes from (1/2)mv2, it is quadratic in the q̇i, so the kinetic energy

will always have the form

T =
∑

i,j

1

2
Mij(q)q̇iq̇j =

1

2
q̇TM(q)q̇,

where M(q) is a matrix of mass like quantities with elements Mij . We have kept the possibility

of qi dependence in the “masses” because, for example, in polar coordinates a mass has T =
1
2
mṙ2 + 1

2
mr2θ̇2, which, in terms of an M matrix is

T =
1

2
(ṙ, θ̇)

(

m, 0
0, mr2

)(

ṙ

θ̇

)

.

You can (and should) always choose M to be symmetric, as an antisymmetric part would make

no contribution to T .

In general, the potential energies will not be quadratic, but it won’t depend on velocity, so the

Lagrangian of our n d.o.f system will have the form:

L(q, q̇) = 1

2
q̇TM(q)q̇− V (q).

The generalized force for qk is potentially complicated because of the q dependence in M :

Fk =
∂L
∂qk

=
∑

i,j

1

2

∂Mi,j

∂qk
q̇iq̇j −

∂V

∂qk
.

We first search for equilibrium states where the system can just sit in a constant configuration with

q = q0, meaning all the velocities are zero, q̇ = 0. For this to occur, we need the generalized

forces to all vanish. Fortunately, since we are searching for a state where the velocities are all

zero, the first (complicated) term in the generalized force vanishes, so the generalized forces will

all vanish if
∂V

∂qi
= 0

for each coordinate, i.e. we need that the configuration is a stationary point in the potential energy.

We next consider giving the system a kick, so that its coordinates are a little removed from the

equilibrium state. Mathematically, we write:

q = q0 + δq, q̇ = δq̇, q̈ = δq̈.
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9.3 Back to the mass and spring example 9 STABILITY AND NORMAL MODES

If we substitute these into the Lagrangian itself, and Taylor expand assuming δq and δq̇ are small,

we get, to second order:

L(δq, δq̇) ≈ V (q0) +
1

2
δq̇TMδq̇− 1

2
δqTKδq

where M and K are constant symmetric matrices given by:

Mij =
∂2T

∂q̇i∂q̇j

∣

∣

∣

∣

q=q0

=Mij(q0), Kij =
∂2V

∂qi∂qj

∣

∣

∣

∣

q=q0

.

It is important to unpack why there are no linear terms in the expansion of L. There are no linear

q̇i terms because T itself is quadratic in q̇i. There are no linear qi terms because we are expanding

around a stationary point in the potential energy, q0.

If we store the full set of generalized momenta and forces in vectors, p and F, as we did for the

coordinates, then, in terms of the new, Taylor expanded, Lagrangian, they evaluate to:

p =
∂L
∂δq̇

=Mδq̇, F =
∂L
∂δq

= −Kδq,

and the full set of equations of motion can be written compactly as

Mδq̈ = −Kδq.

To search for normal mode solutions, we try solutions where all the coordinates vibrate at ω,

δq = Aeiωt,

where A = (A1, A2....An) is a constant vector giving the “shape” of the mode. Substituting this

into the equation of motion, we get

− ω2MA = −KA (1)

which is known as a generalized eigenvalue problem for A and ω. It is a generalized problem

because there is a matrix on both sides of the equation. There are two approaches to solving

this problem. One is simply to spot solutions. The second, more methodical way, is to note the

equation will have solutions if and only if

det
(

K − ω2M
)

= 0,

which is an nth degree polynomial for ω2 with, in general, n roots corresponding to n different

normal modes. Once you have solved this determinant equation for the frequencies ωi you must

go back to the full generalized eigenvalue matrix equation for the mode shapes Ai. The full form

for the general motion will then be the sum of these different normal modes:

δq =
n
∑

i=1

CiAi cos(ωit+ φi),

where the constants Ci and φi in the motion will be set by the initial conditions. Therefore, the

full behavior of the system will be a sum of n different vibrations, each with a particular shape

and frequency.
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x

m m

y

3l

9.3 Back to the mass and spring example

In this case, if we expand the Lagrangian

L((x, y), (ẋ, ẏ)) = 1

2
mẋ2 +

1

2
mẏ2 − 1

2
k(x− l)2 − 1

2
k(3l − y − l)2 − 1

2
k(y − x− l)2.

around the equilibrium position,

(

x
y

)

=

(

l
2l

)

+

(

δx
δy

)

we get

L =
1

2
mδẋ2 +

1

2
mδẏ2 − 1

2
kδx2 − 1

2
kδy2 − 1

2
k(δx− δy)2.

In this case, we didn’t have to do any Taylor expanding to get a quadratic Lagrangian because

springs actually have quadratic potential energies, but it won’t always be so simple. We can

immediately write the Lagrangian in matrix form as

L =
1

2
(δẋ, δẏ)

(

m 0
0 m

)(

δẋ
δẏ

)

− 1

2
(δx, δy)

(

2k −k
−k 2k

)(

δx
δy

)

and therefore read off the M and K matrices as:

M =

(

m 0
0 m

)

K =

(

2k −k
−k 2k

)

,

which explains why they are called M and K.

We now know we are searching for two normal modes in the form (δx, δy) = Aeiωt, which solve

−ω2MA = −KA =⇒ − ω2

(

m 0
0 m

)(

Ax

Ay

)

= −
(

2k −k
−k 2k

)(

Ax

Ay

)

.

We can now either simply guess the mode shapes (1, 1) and (−1, 1) and evaluate the frequencies

directly from this equation to get ω2 = k
m
, 3k
m

, or we can use the determinant method to solve

det
(

K − ω2M
)

= 0 =⇒ (2k − ω2m)2 − k2 = 0 =⇒ ω2 =
k

m
,
3k

m

and then solve the upper equation for the mode shapes to get (1, 1) and (−1, 1). Either way, we

get the same solution as we did before.
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9.4 Normal modes of the double pendulum

θ

θ

1

2

x
y

l

l

m

m

g

T

T1

2
(x ,y )1 1

(x ,y )2 2

Let us now consider, again, the double pendulum, which has La-

grangian:

L(θ1, θ2, θ̇1, θ̇2) =
1

2
ml2

(

2θ̇21 + θ̇22 + 2θ̇1θ̇2 cos(θ2 − θ1)
)

+mgl(2 cos θ1+cos θ2).

The equilibrium position is as θ1 = θ2 = 0, so we expand the Lagrangian to second order around

this position, setting
(

θ1
θ2

)

=

(

0
0

)

+

(

δθ1
δθ2

)

.

The expanded Lagrangian is:

L((δθ1, δθ2), (δθ̇1, δθ̇2)) =
1

2
ml2

(

2δθ̇21 + δθ̇22 + 2δθ̇1δθ̇2

)

+mgl

(

3− δθ21 −
δθ22
2

)

,

which we can write in matrix form as

L((δθ1, δθ2), (δθ̇1, δθ̇2)) =
1

2

(

δθ̇1, δθ̇2

)

(

2ml2 ml2

ml2 ml2

)(

δθ̇1
δθ̇2

)

−1

2
(δθ1, δθ2)

(

2mgl 0
0 mgl

)(

δθ1
δθ2

)

.

To find the normal modes of oscillation, (δθ1, δθ2) = (Aθ1, Aθ2)e
iωtwe now need to solve

det (K − ω2M) = 0. It is very helpful to cancel out a factor of ml2 from, which gives us

∣

∣

∣

∣

(

2g/l− 2ω2 −ω2

−ω2 g/l − ω2

)∣

∣

∣

∣

= 0 →
(

2g

l
− 2ω2

)

(g

2
− ω2

)

−ω4 = 0 → ω2
±
=
g

l

(

2±
√
2
)

.

To find the mode shapes, we return to

ω2M

(

Aθ1

Aθ2

)

= K

(

Aθ1

Aθ2

)

.

Substituting in the expected frequencies, and the M and K matrix,

g

l

(

2±
√
2
)

(

2ml2 ml2

ml2 ml2

)(

Aθ1

Aθ2

)

=

(

2mgl 0
0 mgl

)(

Aθ1

Aθ2

)

,

we see the two solutions are

(

Aθ1±

Aθ2±

)

=

(

−1∓
√
2

2±
√
2

)

≈
(

0.414214
0.585786

)

,

(

2.41421
−3.41421

)

.

As we might have guessed, the two modes are a low frequency in-phase mode, where the two

masses swing in the same sense, and a a high frequency out-of-phase mode where the two masses

move in opposite directions. However, we needed to do the whole calculation to get the actual

frequencies and mode shapes, they aren’t as simple as (1, 1) and (1− 1) for the spring problem.
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9.5 Zero frequency modes

On some occasions, one of the normal modes has ω2 = 0. This means that when we substituted

δq = Aeiωt into the equation of motion:

Mδq̈ = −Kδq → − ω2MA = −KA

we found a mode shape with KA = 0, and hence concluded ω2 = 0. In this case, we really have

δq̈ = 0 so the correct solution is not oscillatory, but rather

δq = (C1 + C2t)A.

Such a mode is known as a translational mode, and, stereotypically, involves the entire system

moving through space at constant velocity.

9.5.1 Two masses connected by a spring

x1 x2x

m
m

Consider two masses, m, in 1D and connected

by a spring k. The Lagrangian is

L(x1, x2, ẋ1, ẋ2) =
1

2
m
(

ẋ1
2 + ẋ2

2
)

− 1

2
k (x2 − x1 − l)2 .

There is an equilibrium state at x1 = 0, x2 = l, so we consider moving a small distance from this

state x1 = 0 + δx1, x2 = l + δx2. Expanding the Lagrangian, we get

L(δx1, δx2, δẋ1, δẋ2) =
1

2
m
(

˙δx1
2
+ ˙δx2

2
)

− 1

2
k (δx2 − δx1)

2 ,

from which we can read off

M =

(

m 0
0 m

)

, K =

(

k −k
−k k

)

.

The generalized eigenvalue problem for the normal modes is

−ω2

(

m 0
0 m

)

A = −
(

k −k
−k k

)

A.

By inspection, one eigenvector is A1 = (1, 1), which has ω2 = 0, and the second is (1,−1),
which has ω2 = 2k/m. Since one of these modes is a zero frequency “translational” mode, the

general solution for free motion of the system is:

(

δx1
δx2

)

= (C1 + C2t)

(

1
1

)

+ C3

(

1
−1

)

cos

(
√

2k

m
t+ φ

)

.
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9.6 “Orthogonality” of modes

You may have noticed that the mode shapes in the two-mass three-spring problem are A1 = (1, 1)
and A2 = (1,−1), which are orthogonal (aka “normal”) to each other, A1.A2 = 0, whereas in

the double pendulum problem the modes were not orthogonal.

This leads us to wonder when normal modes are orthogonal. We recall that normal modes satisfy

the generalized eigenvalue problem:

ω2MA = KA,

where M and K are symmetric matrices. In the two-mass three-spring problem, we actually had

something more, which is that the mass matrix is a multiple of the identity matrix, M = mI .

This turns the problem into:

KA = mω2A,

so A is a regular eigenvector of K. Since K is symmetric, its eigenvectors are orthogonal. A

similar thing happens if K is a multiple of the identity matrix instead: then A is an eigenvector

of the symmetric matrix M .

In such cases, realizing the modes are orthogonal is extremely useful, as it allows us to “spot”

modes by looking for modes orthogonal to existing solutions. For example, having found A1 =
(1, 1), if we know the modes are orthogonal, we immediatly know the other mode is going to

be A2 = (1,−1). It is then very useful to represent the modes in normalized form, so that the

length of each vector is one and the modes form an ortho-normal set of vectors. In the two-mass

three-spring case, this would entail setting

A1 =
1√
2

(

1
1

)

A2 =
1√
2

(

1
−1

)

.

The usefulness comes when we want to fit the initial conditions of the motion. Suppose we know

that the system starts at rest, but from position (δx, δy) = (1, 3). Given we are starting at rest, the

general form for the solution will be
(

δx
δy

)

= C1A1 cos(ω1t) + C2A2 cos(ω2t),

so the initial position is simply
(

δx
δy

)

= C1A1 + C2A2 =

(

1
3

)

.

This is equivalent to representing the vector (1, 3) in the orthonormal basis A1 A2, so all we need

to do take dot both sides with A1 and A2 to find C1 = A1.(1, 3), C2 = A2.(1, 3), and we have a

full solution to the problem.

More generally, neither K nor M is a multiple of the identity matrix, the modes are not orthogo-

nal, and fitting initial conditions is more work. For example, in the two-mass one-spring problem,

we considered two different masses, so M was not a multiple of identity (and nor was K) and

the modes are indeed not orthogonal. We might wonder whether there is any equivalence of

orthogonality for the generalized eigenvalue problem. If you step through the normal proof of

orthogonality, but with symmetric matrices on both sides of the equation, you will discover that,

in general,

AT
i MAj = 0 and AT

i KAj = 0,

i.e. the modes are “orthogonal” if you put either the M or K matrix in the middle of the dot

product. This is much less useful.

42



9 STABILITY AND NORMAL MODES 9.7 Normal coordinates (Non examinable)

9.7 Normal coordinates (Non examinable)

Once we have found our normal modes, Ai, and their frequencies ωi, the general solution for free

vibration of the system is:

δq =
∑

i

CiAi cos(ωit + φi),

where Ci and φi, the amplitude and phase of each normal mode, are determined by the initial con-

ditions of the motion. In this solution we see that the individual modes have constant amplitude

during the motion: the modes are independent, with no transfer of amplitude or energy from one

mode to another.

A good plan is to change to new generalized coordinates Qi, where each mode is captured by

exactly one of the new coordinates. This means that, when Qi is varied, the system moves in the

ith mode, so we need to write:

δq =
∑

i

QiAi.

These are linear equations for qi in terms of Qi, but if we wish, we can also invert them to find

Qi(δq). If we work with these new coordinates, the equation of motion for each Qi, must be

simply

Q̈i = −ω2
iQi,

the equation of motion for a single degree of freedom harmonic oscillator. It follows that if we

make this coordinate change in our Lagrangian we must get the from

L(Q, Q̇) =
∑

i

1

2
mi

(

Q̇2
i − ω2

iQ
2
i

)

with some set of mass values mi. This, again, is simply the Lagrangian for a set of independent

one degree of freedom harmonic oscillators. We have already seen an example of this: for the

case of two masses connected by a spring, we originally wrote the Lagrangian in terms of the

displacements of the masses, x1 and x2, but the shapes of the normal modes turned out to be

(1, 1) and (1,−1), corresponding to Q1 =
1
2
(x1+x2), which is the position of the center of mass,

and Q2 = (x1 − x2) which is the separation of the masses. We have already seen that, if we write

this Lagrangian in terms of the center of mass and the separation, it does indeed turn into two

separate Lagrangians.

More generally, from this we see that the normal modes analysis actually boils down to finding

a coordinate set Qi for which our n degree of freedom system Lagrangian turns into a sum of n
one degree of freedom Lagrangians. We have in fact, again, managed to reduce a complicated

problem back into a (set of) one degree of freedom problems, we just had to do rather more work

this time.

9.8 Unstable equilibria

In general, there is no guarantee that the equilibrium we are expanding around will be a minimum

in the potential energy. If it is a maximum, we will find that the ω2 values we get are negative,

implying that ω = ±i/τ is imaginary.
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9.8 Unstable equilibria 9 STABILITY AND NORMAL MODES

In this case, as in the one degree of freedom case, the solutions change from being vibrations to

being exponentially growing and decaying with time constant τ :

Aeiωt → Ae±t/τ .

This corresponds to the equilibrium solutions being unstable as, given a small perturbation, the

perturbation will grow exponentially over the time scale τ . As in the one d.o.f. case, it is useful

to calculate τ to get a sense of how long you have before a small perturbation becomes a very big

one.

In general, you will be at a saddle point in potential energy, where some ω will be real and

others imaginary. Such a state is still unstable, as any small perturbation involving the unstable

mode will then grow exponentially. This is much like a ball resting at an actual saddle point in a

mountain range: it is certainly unstable to rolling off in the downhill direction.
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10 Using a computer

Having found the equilibrium points and the normal-modes/growth-rates near these equilibria

we have learnt a lot about motion of the double pendulum. To go further, we must resort to a

computer. In this section, we will discuss some strategies for numerically integrating dynamics

equations, and then deploy them to study the motion of the double pendulum.

Lagrangian mechanics produces second order equations of motion which take the form:

q̈ = f(q̇,q).

For example, for the mass-string double pendulum, we can write the equations of motion as:

θ̈1 =
g(sin(θ1 − 2θ2) + 3 sin(θ1)) + 2l sin(θ1 − θ2)

(

θ̇21 cos(θ1 − θ2) + θ̇22

)

l(cos(2(θ1 − θ2))− 3)

θ̈2 = −
2 sin(θ1 − θ2)

(

2g cos(θ1) + 2lθ̇21 + lθ̇22 cos(θ1 − θ2)
)

l(cos(2(θ1 − θ2))− 3)
.

For clarity we will initially focus on a 1-D particle moving with the traditional Newtonian equa-

tion of motion:

ẍ =
F (x, ẋ, t)

m
,

which, for the important case of motion in a potential energy, simplifies to

ẍ = − 1

m
F (x) = − 1

m
V ′(x).

However, as we will see at the end of the section, the same approaches also work for integrating

general Lagrangian systems such as the double pendulum.

The detailed integration algorithms provided in this section are for reference only. In the exam,

you might be asked to describe a forward Euler integrator for a Lagrangian system, or to show an

awareness of errors, orders, stability, and chaos, but you will not be asked to reproduce the more

complicated integration schemes from memory.

10.1 Computing integrals

v(t)

tt ta b

Before we consider integrating equations of motion, we recall how

to calculate a regular “quadrature” integral numerically, as we

might need to do for the second-integral in one d.o.f. dynamics.

Suppose we know the function v(t) and wish to calculate

x =

∫ tb

ta

v(t)dt.

The integral is equivalent to the area under a curve. To calculate the integral, we first break it into

much N small time intervals, each of duration ∆t = (tb − ta)/N . Defining the set of boundary

times tn+1 = tn +∆t, the integral becomes a sum of little integrals:

x =

∫ tb

ta

v(t)dt =

N−1
∑

n=0

∫ tn+1

tn

v(t)dt.
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10.1 Computing integrals 10 USING A COMPUTER

v(t)

tt ta b

Left Riemann sum.

We next need to calculate a value for each of these little ar-

eas/integrals. The simplest approximation replaces each little area

with a rectangle. We might take the height of the rectangle as the

height of the function at the left hand side:

∫ tn+1

tn

v(t)dt ≈ v(tn)∆t,

which is an approximation known as the “left Riemann sum.” Intuitively, if we make ∆t small

enough, this sum will produce a very good approximation for the real integral. To make this

notion more precise, we can estimate the error we make in approximating each little rectangle by

using a Taylor expansion in t around tn:

v(t) = v(tn) + (t− tn)v
′(tn) + ...

If we now do the integral

∫ tn+1

tn

v(t)dt =

∫ tn+1

tn

v(tn) + (t− tn)v
′(tn) + ...dt = v(tn)∆t+

1

2
v′(tn)∆t

2 + ....

we can see that we are throwing away a term of size O(∆t2) in each rectangle approximation,

which corresponds to the little white triangle between each rectangle and the true curve. However,

the whole integral containsN = (tb−ta)/∆t rectangles, so the total error will be of sizeN∆t2 ∼
∆t. This approximation is called a “first order” integration method: if we want to reduce the error

in our answer by a factor of 100, we need to reduce ∆t by a factor of 100, and therefore use 100

times more rectangles in the sum. In principle, if we make ∆t small enough, we can get as close

as we like to the right answer. In practice, computers store numbers with a finite number of

significant digits, so the answer will eventually stop improving once the computer can’t resolve

the change in function value from one rectangle to the next.

v(t)

tt ta b

Right Riemann sum.

We could also use a “right Riemann sum” method:

∫ tn+1

tn

v(t)dt ≈ v(tn+1)∆t

which is also a first order method.

Alternatively, we could be much smarter, and use the function

value at the mid-point as the height of the rectangle:

∫ tn+1

tn

v(t)dt ≈ v(tn +∆t/2)∆t. v(t)

tt ta b

Mid point method.

From the diagram, we can see the mid-point method gives a much

better approximation. Again, we can examine the error by using a

Taylor series, this time around the mid-point tn +∆t/2:

∫ tn+1

tn

v(t)dt =

∫ tn+1

tn

v(tn +∆t/2) + v′(tn +∆t/2)(t− (tn +∆t/2)) +O(∆t2)dt

= v(tn +∆t/2)∆t+O(∆t3),
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so the error on each rectangle is O(∆t3), and the error on the whole integral is NO(∆t3) ∼
O(∆t2). We call this a second order method. To reduce error by a factor of 100, we only need

ten times as many points in the sum.

In practice, you should never use the forward or backwards rectangle methods, as the mid-point

method is no more work and is much more accurate. The forward and backward methods only

produce exactly the right answer if the function is a constant, whereas the mid-point method is

also exact if for all straight lines.

Other methods also exist. A close relative of the mid-point method is the trapezoidal method,

where each integral is approximated by a trapezium based on the function values at tn and tn+1.

This method is also second order, but tends to produce bigger errors. An even higher order method

is Simpson’s method, which uses the function value at the start, middle and end of the range to

make the approximation

∫ tn+1

tn

v(t)dt ≈ 1

6
(v(tn) + 4v((tn + tn+1) /2) + v(tn+1))∆t.

This is clearly more work, but in return we get an answer up to O(∆t5) for each mini integral, and

hence a total error O(∆t4) for the whole integral. To make the answer 100 times more accurate,

we only need 1001/4 ≈ 3 times as many points.

10.2 Euler Method

10.2.1 Forward Euler

In mechanics we need to integrate a differential equation for the motion, rather than just comput-

ing a standard area integral. A simpler intermediate problem would be to find y(t) that satisfies

the first order differential equation:
dy

dt
= f(y, t).

If f(y, t) = f(t) doesn’t depend on y then this would be a simple case of doing an integral.

Applying the “left Riemann sum” rectangle method would give

y(tn+1) ≡ y(tn +∆t) ≈ y(tn) + f(tn)∆t.

The forward Euler method for solving first order differential equations simply applies this same

approach, but allowing y dependence in f(y, t)

y(tn+1) = y(tn) + f(y(tn), tn)∆t.

This approach is very intuitive: we step y forward in time from y(tn) to y(tn+1) by assuming it

moves at a rate evaluated at tn. If ∆t is small enough, this the rate will hardly change between tn
and tn+1, so this will be a very good approximation. We can analyze the error in this method by

Taylor expanding y around tn:

y(tn+1) = y(tn) + f(y(tn), tn)∆t+O
(

∆t2
)

,
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which shows that the method commits a O(∆t2) error each time step, and hence, like the “right

Riemann sum,” is a first order method producing an O(∆t) error over the whole motion.

To use this method in mechanics, there is an immediate problem. Our equations of motion, like

F = ma, are second order differential equations, not first order. The trick is to treat the velocity

itself as a second variable, so the second order equation

d2x

dt2
=
F (x, ẋ, t)

m
,

becomes two first order equations,

ẋ = v(t)

v̇ =
F (x, v, t)

m
≡ a(x, v, t).

We can then apply the forward Euler method to both equations at once, leading to the update rule:

x(tn+1) = x(tn) + v(tn)∆t

v(tn+1) = v(tn) + a(x(tn), v(tn), tn)∆t.

The forward Euler method has the advantage that it is intuitive, easy to code, and can be used

on any equation of motion. However, there are two big problems. Firstly, it is only an O(∆t)
method, so you need a very small ∆t to be accurate. The second problem is more subtle: when

you make a small error in position, you end up in the wrong location, and therefore calculate the

wrong force. This wrong force makes the subsequent positions even more wrong, and the forces

even more wrong. For many mechanical systems, this problem makes the forward Euler method

horribly unstable and, over time, the system often goes haywire. This kind of problem is the

key difference between integrating a differential equations, dy
dt

= f(y, t) and computing a simple

integral like dy
dt

= f(t), and makes the forward Euler method a poor choice for most mechanics

problems. Intuitivley, the particle has a tendency to overshoot its real position, and hence get to

higher force/potential energy regions, which then causes the particle to overshoot even more, and

over time the energy/velocity/position start to diverge.

10.2.2 Backward Euler or Implicit Euler

If the forward Euler is the equivalent of the right Riemann sum, backward Euler is the equivalent

of the left Riemann sum. It works in the same way, but approximating the acceleration and

velocity at the end of each time step rather than the begining

y(tn+1) = y(tn) + f(y(tn+1), tn+1)∆t.

This is still committing a first order method. However, now the updated positions y(tn+1) appear

on both sides of the above equation, so rather than simply computing y(tn+1), we have to solve

for y(tn+1) numerically. For this reason, this is called the implicit Euler method. This method

is no more accurate than forwards Euler, and is much more work for both the programmer and

the computer. However, it turns out to be far more numerically stable than forward Euler, so it is

occasionally used when numerical stability is a problem.

For a dynamics problem, again writing F = ma as two first order equations, we have

x(tn+1) = x(tn) + v(tn+1)∆t

v(tn+1) = v(tn) + a(x(tn+1), v(tn+1), tn+1)∆t,

which have to be solved, at each time step, for x(tn+1) and v(tn+1).
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10.2.3 Semi-implicit Euler (Non examinable)

The semi-implicit Euler method (also known as symplectic Euler, semi-explicit Euler and Euler-

Cromer) is half way between the forward and backwards methods: you update the velocities in a

forward Euler way, but then update the positions using the updated velocities, i.e. in a backward

Euler way:

v(tn+1) = v(tn) + a(x(tn), v(tn), tn)∆t

x(tn+1) = x(tn) + v(tn+1)∆t.

Although this is called “Semi-implicit,” in fact these equations are explicit equations for v(tn+1)
and x(tn+1) so no solving is required.

You can also do this the other way round, and first update the positions in a forward way then

the velocities in a backwards way. In general this does lead to implicit equations for v, but if the

forces are not velocity dependent one gets simple explicit equations:

x(tn+1) = x(tn) + v(tn)∆t

v(tn+1) = v(tn) + a(x(tn+1), tn+1)∆t.

The semi-implicit Euler method is no harder to code or run than forward Euler, and is much more

stable. In particular, semi-implicit Euler conserves energy (almost) perfectly, which prevents

solutions from diverging wildly from the correct trajectory. Even though it is a first order method,

this energy conserving property tends to keep the solutions looking reasonable (even if they aren’t

terribly accurate) and for this reason, semi-implicit Euler is the standard choice in physics engines

for games and graphics.

10.3 Second order methods

However, in engineering, we often need precise solutions, not just solutions that aren’t obviously

nonsense. This motivates us to look for an equivalent of the mid-point method, where the error

scales as O(∆t2). There are three almost identical mid-point like algorithms that are used for this

task. They are all restricted to dynamics problems where the forces depend only on position:

ẋ = v(t)

v̇ =
F (x, t)

m
= a(x, t).

10.3.1 Leapfrog

The leapfrog method works by interleaving our time points tn with mid-point times tn+1/2 =
tn + ∆t/2. The idea is then to evaluate velocities at the mid-points, and positions at the integer

points:

x(tn+1) = x(tn) + v(tn+1/2)∆t

v(tn+3/2) = v(tn+1/2) + a(x(tn+1), tn+1)∆t.
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By doing this, the position and velocity are both updated by a whole time step based on their rate

of change at the mid-point of their time increment. The error in the method can be analyzed in

the exact same way as the regular the mid-point method, i.e. by Taylor expanding around the

mid-point:

x(tn+1) = x(tn) +

∫ tn+1

tn

v dt

= x(tn) +

∫ tn+1

tn

v(tn+1/2) + v′(tn+1/2)(t− tn+1/2) +
1

2
v′′(tn+1/2)(t− tn+1/2)

2 + ... dt

= x(tn) + v(tn+1/2)∆t+O(∆t3)

and similarly for v(t). The leapfrog approach commits a O(∆t3) error every time step, and hence

accumulates a total error O(∆t2).

10.3.2 Velocity-verlet (Non examinable)

The leapfrog method is a little inconvenient, as it doesn’t tell you the position and velocity at the

same time point. To get round this, one can break the velocity update rule into two steps, one

which updates from v(tn+1/2) to v(tn+1), and second which updates from v(tn+1) to v(tn+3/2).

x(tn+1) = x(tn) + v(tn+1/2)∆t

v(tn+1) = v(tn+1/2) + a(x(tn+1), tn+1)∆t,

v(tn+3/2) = v(tn+1) + a(x(tn+1), tn+1)∆t.

This looks confusing, but if you think the step immediately prior was

v(tn+1/2) = v(tn) +
1

2
a(x(tn), tn)∆t

and you can then substitute this expression for v(tn+1/2) into the two two stages above to eliminate

the appearance of half steps altogether:

x(tn+1) = x(tn) + v(tn)∆t +
1

2
a(x(tn), tn)∆t

2

v(tn+1) = v(tn) +
1

2
(a(x(tn), tn) + a(x(tn+1), tn+1))∆t,

which is known as the velocity-Verlet algorithm.

This algorithm looks sensible and intuitive: we have a trapezium like rule for updating velocities,

and a second order Taylor series rule for updating position. Deriving it this way makes clear it is,

in fact, equivalent to the Leapfrog algorithm, so it is also a O(∆t2) method.
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10.3.3 Traditional Verlet (Non examinable)

If we Taylor expand the position around tn to estimate x(tn+1) and x(tn−1) we get:

x(tn+1) = x(tn) + v(tn)∆t +
1

2
a(tn)∆t

2 +
1

6
ȧ(tn)∆t

3 +O(∆t4)

x(tn−1) = x(tn)− v(tn)∆t+
1

2
a(tn)∆t

2 − 1

6
ȧ(tn)∆t

3 +O(∆t4).

Adding these two results together and taking x(tn−1) onto the left hand side gives the traditional

Verlet update rule for position:

x(tn+1) = 2x(tn)− x(tn−1) + a(x(tn), tn)∆t
2,

which should be familiar from the Mars lander project. This argument leads to the (wrong)

impression that traditional Verlet is a third order method, but actually it is exactly equivilent to

leapfrog and velocity-Verlet, so it is a second order method. (Showing this is left as an exercise for

the reader: consider three consecutive leapfrog steps, x(tn), v(tn+1/2), x(tn+1), and algebraically

eliminate the velocities.) Our (subtle) mistake is that we are now effectively integrating a second

order differential equation in one go, which requires two integrations (the clue is in the two in

front of x(tn)), and increases the accumulated error by two orders rather than one, giving a final

error O(∆t2).

Traditional Verlet is the oldest of this family of integrators, and rarely used in practice because it

is generally useful to know velocities!

10.3.4 Stability of Verlet like methods (Non examinable)

The three Verlet-like methods are equivalent, and commonly used in practical dynamics integra-

tors

In addition to being second order, they all share the important property of being very stable (unlike

forward Euler), as they (almost exactly) conserve energy, momentum, angular momentum and

other conserved quantities, which stops the system diverging into unphysical behaviour.

A key property of motion in a potential is that it is time-reversible. If the trajectory x(t) is a

solution, then so is x(−t) in which the particle reverses along the same path. The stability of

Verlet methods comes from the fact that they exactly respect this time reversibility: if, when

you integrate forward in time you get a sequence of positions and velocities x(t0)...x(ti)...x(tN ),
v(t0)...v(ti)...v(tN ) then, if you start from x(tN ) −v(tN ) and run the same integrator, you will

get back the exact same set of points, finishing at x(t0), −v(t0). This exact property is because,

in each time step, the update uses rate of change data at the mid-point, which is symmetric with

regards to the two ends of the time step, so going forwards is the same as going backwards. We

can show this symmetry exactly if we rearrange leapfrog method to tell us how to run backwards:

x(tn) = x(tn+1)− v(tn+1/2)∆t

v(tn+1/2) = v(tn+3/2)− a(x(tn+1), tn+1)∆t,

51



10.4 Fourth order Runge Kutta (Non examinable) 10 USING A COMPUTER

which is exactly the original leapfrog forward rule but with negative velocity.

This reversibility/symmetry in time makes the algorithms very stable. If numerical instabilities

such as increasing energy appear in the forward integration, they must also appear when inte-

grating backwards, since forward and backward integrations are the same. However, since the

backward integration gets back to the original starting position, the only possibility is that neither

are unstable.

Numerical schemes that conserve quantities correctly are called symplectic. As the name suggest

semi-implicit Euler (aka symplectic Euler) is another example, but this time the time reversibility

is more subtle: if you run dynamics forwards with one flavour, you can run back exactly over the

same points with the other flavour.

10.4 Fourth order Runge Kutta (Non examinable)

Just as forward Euler is the equivalent of the right Riemann sum (O(∆t)), and Verlet integration

is the equivalent of midpoint integration (O(∆t2)) there is also an equivalent of Simpson’s rule

(O(∆t4). This method is known as fourth-order Runge Kutta, RK4 or, often, just Runge Kutta,

and is the default choice for dynamics integration in science and engineering if high accuracy is

required. Like forward Euler method, RK4 is for first order differential equations,

ẏ = f(t, y).

and integrates them by applying the update rule

y(tn+1) = y(tn) +
1

6
(k1 + 2k2 + 2k3 + k4)∆t +O(∆t5),

where the ki are estimates for the ẏ at various points in the interval between tn and tn+1. More

precisely, they are calculated as

k1 = f(tn, y(tn))

k2 = f(tn +∆t/2, y(tn) + k1∆t/2)

k3 = f(tn +∆t/2, y(tn) + k2∆t/2)

k4 = f(tn +∆t, y(tn) + k3∆t).

Intuitively, k1 is the value of ẏ at the start of the time step, k2 is the value at the mid-point (with

the value of y estimated using forward Euler and k1) k3 is also the value at the mid point (with

y estimated using backward Euler and k2) and k4 is the value at the end of the time step, using

y estimated with a mid-point rule and k3. If f is independent of y, this reduces to evaluating the

integrand at the start (k1) mid-point (k2 and k3) and end (k4) of the integration range, and exactly

reproduces Simpson’s rule.

To solve dynamics problem, we again F = ma as two first order equations.

ẋ = v(t)

v̇ = a(x, v, t),
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and apply RK4 to them individually. More generally, in a multi degree of freedom Lagrangian

dynamics problem, we will have a whole vector of first order differential equations rather than

just two,

ẏ = f(t,y),

which we solve by applying RK4 to each component equation individually. To do this, we simply

follow exactly the RK4 method above, except now ki are also vectors. This general approach is a

much more compact way of writing (and coding) the algorithm than writing out separate update

rules for x and v as we did in the forward Euler section. As the name suggests, RK4 is a member

of a whole family of Runge-Kutta integrators with different levels of complexity, and different

orders or errors, but it is RK4 that is ubiquitous in practice.

10.5 Integration of the double pendulum (non examinable)

10.5.1 Implementation

In this section, as on the question sheet, we will consider a double pendulum governed by the

generic double pendulum Lagrangian

L(θ1, θ2, θ̇1, θ̇2) =
1

2

(

Aθ̇21 +Bθ̇22 + 2Cθ̇1θ̇2 cos (θ1 − θ2)
)

+D cos θ1 + E cos θ2,

where the values of A, ..., E depend on the details of double pendulum in question. As you

showed examples paper 3, the Lagrangian equations of motion for θ1 and θ2 are

Aθ̈1 + Cθ̈2 cos (θ1 − θ2) + Cθ̇2
2
sin (θ2 − θ1) = −D sin θ1,

Bθ̈2 + Cθ̈1 cos (θ1 − θ2)− Cθ̇1
2
sin (θ2 − θ1) = −E sin θ2,

which we can rearrange to make the accelerations the subjects, giving

θ̈1 =
−C sin(θ1 − θ2)

(

Bθ̇22 + Cθ̇21 cos(θ1 − θ2)
)

− BD sin(θ1) + CE sin(θ2) cos(θ1 − θ2)

AB − C2 cos2(θ1 − θ2)

θ̈2 =
C sin(θ1 − θ2)

(

Aθ̇21 + Cθ̇22 cos(θ1 − θ2)
)

− AE sin(θ2) + CD sin(θ1) cos(θ1 − θ2)

AB − C2 cos2(θ1 − θ2)
.

RK4 is the natural choice to numerically integrate these equations of motion, as we want accu-

rate results (hence a high order method) and the equations clearly involve both acceleration and

velocity. Our first task is to write these two second order differential equations as a vector of

four first order equations. Using the notation of the previous section, we introduce the vector

y = (θ1, θ2, θ̇1, θ̇2) which stores the state of the system. The rate of change of the system state,

ẏ = (θ̇1, θ̇2, θ̈1, θ̈2) is then given by:

ẏ = f(y) =













θ̇1
θ̇2

−C sin(θ1−θ2)(Bθ̇2
2
+Cθ̇2

1
cos(θ1−θ2))−BD sin(θ1)+CE sin(θ2) cos(θ1−θ2)

AB−C2 cos2(θ1−θ2)
C sin(θ1−θ2)(Aθ̇2

1
+Cθ̇2

2
cos(θ1−θ2))−AE sin(θ2)+CD sin(θ1) cos(θ1−θ2)

AB−C2 cos2(θ1−θ2)













,
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which are four first order equations, written in the form for using RK4 integration. The first step

in writing an RK4 integrator is to program this function f into the computer, so that the computer

can evaluate ẏ from a given value of y. Then, at a given moment tn during the integration, the

computer is storing the current system state, y(tn). To calculate the state at tn+1, the computer

must first calculate the four ki

k1 = f(y(tn))

k2 = f(y(tn) + k1∆t/2)

k3 = f(y(tn) + k2∆t/2)

k4 = f(y(tn) + k3∆t),

and then apply the RK4 integration rule to compute y(tn+1).

y(tn+1) = y(tn) +
1

6
(k1 + 2k2 + 2k3 + k4)∆t.

The initial conditions for the integration are supplied by the initial choice of

y(0) = (θ1(0), θ2(0), θ̇1(0), θ̇2(0)), which encodes the initial position and velocity of both rods

of the double pendulum.

An RK4 integrator for the double pendulum, written in python, is supplied as part of Q6 on

examples sheet 4. In the code, the vector y is referred to as state, the function f is implemented

as accels, the k points are calculated and assembled in the function RK4 grad, and the actual

updating of state is done in the function integrate. Using this code, as long as we choose a small

enough value of ∆t, we can integrate forward and calculate the motion of the double pendulum

10.5.2 Initial results

On the question sheet, you will integrate the equations of motion withA, ..., E chosen to represent

the lab double pendulum. In this section we will focus on a double pendulum consisting only of

two uniform rigid rods of length l and massm (for which, as you showed on examples paper 3, the

values of A, ..., E are A = 4ml2/3, B = ml2/3, C = ml2/2 , D = 3mgl/2 and E = mgl/2).

The equations of motion only depend on m, g and l via the ratio g/l, which we set to 1, meaning

we are measuring time in units of
√

l/g.
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We start by integrating the equations of motion from a range of initial conditions of the form

(θ1(0), θ2(0), θ̇1(0), θ̇2(0)) = (θ1(0), θ2(0), 0, 0), corresponding to releasing the system from rest.

The first motion we integrate starts from small angles, θ1(0) = 0.3rad θ2(0) = −0.1rad. To

visualize the result, we make a pair of plots: the left hand plot show θ1 and θ2 as a function of

time, and the right hand plot shows the position traced out by the end of the pendulum.
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y
/l

The above motion is complicated and difficult to interpret. However, we know that such low-

amplitude motion follows a small-vibration “normal mode” solution which, in the case of the

rigid-rod double pendulum, takes the form:

(

θ1
θ2

)

= C1

(

0.57...
0.819...

)

cos

(

0.85...

√

g

l
t+ φ1

)

+ C2

(

0.43...
−0.90...

)

cos

(

2.29...

√

g

l
t+ φ2

)

.

The above plot is a mixture of both modes (i.e. both C1 and C2 are non zero) which makes it look

confusing, but it is in fact an almost perfect match to the theoretical small amplitude motion. If

we choose our initial conditions more carefully, we can see motions with only one normal mode

active, which then produce a simple sinusoidal motion.
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θ1(0) = 0.300, θ2(0) = 0.429: In phase normal mode with lower frequency.
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θ1(0) = 0.300, θ2(0) = −0.629: Out of phase normal mode with higher frequency.
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However, as we increase the initial angles further, and move out of the linearized regime, the

motion becomes extremely complicated, especially once there is enough energy for the second

pendulum to flip. The motion doesn’t appear to be periodic or regular at all: the double pendulum

keeps swinging in similar sorts-of ways, but doesn’t strictly repeat.
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θ1(0) = 0.6, θ2(0) = −0.2: still looks like the sum of two normal modes.
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θ1(0) = 1.2, θ2(0) = −0.4: something much more complicated.
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θ1(0) = 1.8, θ2(0) = −0.6: lower rod starts to flip.
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θ1(0) = 2.4, θ2(0) = −0.8
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10.5.3 Poincare sections

Inspired by the simple pendulum, we would like to make a “phase-portrait” for the double pendu-

lum, to completely characterize all its possible motions. In principle this is a great idea, in practice

there is a problem: the phase portrait would live in four dimensions (θ1, θ2, θ̇1, θ̇2) whereas these

notes are on two dimensional paper.

s%&

mercury

Poincare
section

The next best thing is a Poincare section. It helps to

think about a simple problem first. Consider the orbit

of Mercury around the Sun. Here a full phase-portrait

would also be four dimensional (r, θ, ṙ, θ̇). To make a

Poincare section, we consider the actual orbit of Mer-

cury, and look at a plane (or “section”) through the orbit as shown in the diagram. Mercury

passes through this section twice every orbit, and we mark a dot on the section every time it

passes through. Within the two-body theory of orbits, the orbit is a periodic ellipse, so it will al-

ways intersect the section at the same two points, and our Poincare section will be a pair of dots.

In general, a section consisting of isolated dots is the hallmark of periodic motion. However, in

reality the ellipse of Mercury’s orbit itself rotates (or precesses) by a fraction of a degree a cen-

tury (574 arc second per Julian century to be precise) because of gravitational tugs from the other

planets. This “precession” will cause subsequent dots on our Poincare section to not exactly line

up: instead, over time, the points will trace out a out a line spanning Mercury’s largest and small-

est approaches to the Sun. A Poincare section that traces a line is the hallmarks of quasi-periodic

motion.

Applying a similar idea to the double pendulum, we consider a single trajectory, and whenever

θ1 = 0 we plot its 2-D state θ2 and θ̇2. This gives us a 2-D plot (θ2, θ̇2) which gets a dot every time

the motion passes through θ1 = 0. There are many such Poincare sections, as we get one for each

possible motion of the pendulum. Here we show a range for motions with the initial conditions

(θ1(0), θ2(0), θ̇1(0), θ̇2(0)) = (θ0, θ0, 0, 0).

For small θ0 the section contains just two small loops. Lines on a Poincare section are the hall-

mark of quasiperiodic behavior, as we would expect for a combination of two incommensurate

normal modes. The lines indicate the system isn’t quite periodic (otherwise it would always come

back to the same point, and we would just have dots) but is nevertheless doing something rather

simple and predictable. As θ0 increases, the loops get bigger and more complicated. Then, quite

suddenly, when θ0 increases further, beyond around θ0 = 1.27 the lines and loops suddenly com-

pletely break down and the Poincare section becomes a messy dense set of points with no obvious

structure. This indicates a motion that isn’t even quasiperiodic: the pendulum keeps swinging in a

complex non repeating motion. This motion is called “chaotic” although there is nothing random

about it: the pendulum is moving on a completely pre-defined and computable trajectory, it just

happens to be very complicated.
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Poincare sections for the double pendulum, showing the onset of chaos around θ0 = 1.27.
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10.5.4 Flip time

A different way to get a handle on the pendulum’s motion is to plot the “flip time” Tflip as a

function of θ1(0) and θ2(0), defined as the time from the start of the motion for the lower rod to

flip, or pass through θ2 = ±π. If we run many RK4 integrations for different values of θ1(0) and

θ2(0), and in each case run until the first flip to compute Tflip, we can construct the plot overleaf.

The key message of this plot is how complicated it is: the value of Tflip can vary by orders of

magnitude with a tiny change in θ1(0) and θ2(0). This rapidly varying property is particularly

obvious in the large central black section with Tflip = ∞, where the pendulum never flips. This

region includes the simple eye-shaped region

3 cos(θ1(0)) + cos(θ2(0)) < 2,

where (as you showed on examples sheet 3) the total energy of the pendulum is insufficient to flip.

However, the full Tflip = ∞ region is bigger than this, and a much much more complicated shape.

Indeed, if you zoom in on the boundary, you discover that the shape is unbelievably complicated,

with more and more fine detail and roughness the more you zoom in. Without going into too

many details, the shape of the Tflip = ∞ region is a fractal, which remains complicated and

detailed no matter how far you zoom in.

A much more famous fractal is the iconic Mandelbrot set, which is a set of complex numbers

occupying a region of the complex plane. To test whether a given number c is in the set, you set

z0 = 0, then iterate with the rule

zn+1 = z2n + c.

If the result of this iteration diverges as you iterate, c is not in the Mandelbrot set; if it remains

bounded, c is in the Mandelbrot set. This is evidently analogous to the double pendulum, with the

iteration being like the computed motion, and divergence corresponding to flipping. Most images

of the Mandelbrot set colour the set itself black, and then color points not in the set according

to how quickly their iterations diverge. As is clear from the image (doubly overleaf), the black

central region (the set itself) has a rough fractal boundary, containing smaller copies of the entire

set, which themselves contain even smaller copies on their boundaries.
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Flip time of the double pendulum when released at rest from θ1(0) and θ2(0).
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Mandelbrot set (black) is a fractal region of the complex plane. The remainder of the plane is

colored by divergence rate. Images from Wolfgang Beyer via wikipedia: CC BY-SA 3.0,

https://creativecommons.org/licenses/by-sa/3.0/
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10.6 Chaos!
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Two trajectories for the double pendulum, which start very similar but quickly diverge.

A consequence of the rough fractal nature of the Tflip = ∞ region is that there is an extended

region around this boundary where, even if you know exactly the value of Tflip for a given starting

conditions, you don’t know much at all about the value of Tflip for even very slightly different

starting conditions. If you have any uncertainty about the exact starting conditions, you have no

hope of making any sensible prediction for Tflip. This incredible sensitivity to initial conditions

is the defining feature of “chaotic” behavior. Indeed, even away from the boundary, if we plot

the θ1(t) trajectories for two motions with almost identical starting conditions (above) we see that

they quickly diverge and look completely different.

This type of behavior was first noticed in weather prediction by Edward Lorenz, an American

meteorologist. He was using a computer to integrate a complicated set of differential equations

to forecast the weather. One day he decided to run his weather prediction algorithm a second

time, starting at a mid-point from an initial run, and was shocked to discover that, after a couple

of simulation months, the predicted weather pattern was completely different. He realized his

mistake was that he had only entered the mid-point starting state to the rounded off accuracy of

his printer, rather than the full internal precision of his computer, and this initial discrepancy had

grown, in his words “the differences more or less steadily doubled in size every four days or so,

until all resemblance with the original output disappeared somewhere in the second month.” He

summarized chaotic behavior as being:

“When the present determines the future, but the approximate present does not approximately

determine the future. ”

This observation is very troubling. It suggests that if we don’t know the initial conditions exactly,

long term forecasting in chaotic systems is impossible. To use the traditional poetic language,

it seems “the flap of a butterflys wings in Brazil set off a tornado in Texas.” In general, it is

hard to predict which equations of motion will produce chaotic motion, but chaotic motion is not

uncommon in systems with non-linear dynamics equations: other examples include the damped

driven pendulum, the three-body gravity problem and financial models of the economy. The

general message is, when integrating such equations, it isn’t enough to start from a single initial

condition and see what happens, you must also start from a few nearby initial conditions and see

if they give similar answers.
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11 Time variation

A key advantages of Lagrangian mechanics is that it allows us to calculate the equations of mo-

tion for a mechanism even when the constraints are changing in time. There are no adaptations

required: one still simply forms L = T − V in terms of suitable coordinates qi and then calcu-

lates the equations of motion in the same way as before: indeed right from the start we included

notationally the possibility that L depends on t (time), but in this section we are actually going to

look at some real examples. The only thing to be aware of is that, if L explicitly depends on time,

this indicates the system is externally driven in some way, and we then do not expect the total

energy, E = T + V , to be conserved during the motion. This expectation matches the Noether

theorem result that time invariance leads to energy conservation.

11.1 Simple example: mass on an accelerating wedge

g

θ45
z

x=z/t67θ

Consider a mass sliding on a wedge, which makes an angle

θ with the horizontal. The wedge itself is accelerating in the

horizontal direction at velocity vw = at. What value of a
is needed for the mass to remain stationary relative to the

wedge?

The mass has one degree of freedom, which we describe via

its height z. As shown in the diagram, in Cartesian coordi-

nates centered on the wedge tip, the position of the mass is (x, z) = (z/ tan θ, z), so its velocity

relative to the tip (vx, vz) = (ż/ tan θ, ż). Since the wedge is moving horizontally at vw = −at,
the inertial horizontal velocity of the mass is ż/ tan θ − at, and the Lagrangian is

L(z, ż, t) = 1

2
m

(

ż2 +

(

ż

tan θ
− at

)2
)

−mgz,

which does indeed explicitly depend on time. We work out the generalized force and momentum

in the normal way,

pz =
∂L
∂ż

= mż +m

(

ż

tan θ
− at

)

1

tan θ
Fz =

∂L
∂z

= −mg

so the equation of motion is

m
d

dt

(

ż +

(

ż

tan θ
− at

)

1

tan θ

)

= −mg =⇒ z̈

sin θ2
− a

tan θ
= −g.

The only new subtlety here is that we have to remember the explicit time dependence in pz when

applying the d
dt

. We see the mass will remain stationary relative to the wedge if a = g tan θ, i.e.

if the total vector acceleration a− g has no component down the slope. If the wedge accelerates

faster than this, the mass will actually go up the slope.
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11.2 Forced Oscillations

11.2.1 Mass on a spring: how to incorporate external forces

In our first example, the time dependence in the Lagrangian arose because the wedge was ac-

celerating, meaning the constraints on the particle were changing in time. A second way the

Lagrangian can have time dependence is if the potential energy of the system is a function of

time. This arrises naturally if the system is subject to external forces which vary in time.

For example, if we have a 1-D mass on a spring, the Lagrangian is

L(x, ẋ) = 1

2
mẋ2 − 1

2
kx2,

and the equation of motion is

mẍ = −kx.
If the spring is subject to a time varying external driving force f(t), we know this should appear

in the equation of motion as

mẍ = −kx+ f(t),

which will happen naturally if we modify the Lagrangian to

L(x, ẋ, t) = 1

2
mẋ2 − 1

2
kx2 + xf(t).

We can understand this as follows. If a mass is subject to a constant force in the x direction

F , the force does work xF when the mass moves from the origin to x, and is associated with a

potential energy −xF . These formula are particularly familiar when the constant force is gravity,

giving F = −mg and V = mgz. Now the potential energy function associated with f(t) is

V = −xf(t), which is a function of time because the underlying force is a function of time.

Time varying potential energy is the second way time dependence can enter into a Lagrangian.

If we have a sinusoidal applied force, f(t) = a0 cos(ωt), the equation of motion becomes:

mẍ = −kx + a0 cos(ωt) =⇒ ẍ+
k

m
x =

a0
m

cos(ωt).

You studied this equation at length in the vibrations course last year. To solve it, we write the

physical equation as the real part of the complex equation

z̈ +
k

m
z =

a0
m
eiωt,

and find the corresponding complimentary function and particular integral. In more detail, to find

the complimentary function, we try substituting the form zCF = Aeipt which gives

A

(

−p2 + k

m

)

= 0,
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so our trial solution works provided p = ±
√

k/m. To find the particular integral, we try the same

form but with p = ω to match the right hand side. Substituting, we see this works provided

A

(

−ω2 +
k

m

)

= a0 =⇒ A =
a0

k
m
− ω2

.

The complete solution is then the sum of the complimentary function and the particular integral:

z = C1e
i
√

k
m
t + C2e

−i
√

k
m
t +

a0
k
m
− ω2

eiωt,

which, returning to the real form, requires

x = C3 cos

(
√

k

m
t + φ

)

+
a0

k
m
− ω2

cos (ωt) ,

where the constants of integration in the complimentary function, C3 and φ, will be fixed by the

initial conditions. Critically, the particular integral diverges if ω =
√

k/m indicating the system

resonates if the frequency of the driving force matches the natural frequency of oscillation. This

resonance is associated with a change in sign of the particular integral, as the motion shifts from

being exactly in phase to exactly out of phase with the driving force. In this resonant case,

our maths has run into difficulty because the function form of our particular integral is in the

complimentary function: we know from IA maths that in this case we should use zCF = Ateiωt,
which will result in a solution that grows linearly in time.

11.3 Parametric Resonance

Many important instances of resonance are not caused by a periodic external driving force, but

by a periodic change in the resonating system itself. The classic example is a child swinging: if

the child is pushed by a parent we have an external driving force, but a child can also drive their

swing themselves by periodically moving their legs. The simplest model to understand this type

of behavior is a mass on a spring where the spring constant is a function of time k(t). In practice

this could be achieved by having a periodic temperature cycle that changes the underlying elastic

properties of the spring material.

k89:

The Lagrangian for this system is

L(x, ẋ, t) = 1

2
mẋ2 − 1

2
k(t)x2,

so the generalized momentum and force are

px =
∂L
∂ẋ

= mẋ fx =
∂L
∂x

= −k(t)x,

and the equation of motion, as expected, is simply

ẍ = −k(t)
m

x,
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which is a particular example of the general form

q̈ = −ω2(t)q.

To keep things simple we focus on systems where ω2(t) = ω2
0(1 + h cos(ωt)), where h ≪ 1 is

small, so the variations in the spring stiffness are rather small, and the equation of motion,

q̈ = −ω2
0(1 + h cos(ωt))q

is almost the regular simple harmonic oscillator equation with natural angular frequency ω0 and

solution q = a cos(ω0t+ φ).

This equation of motion is known as Mathieu’s equation, and does not admit a simple closed

solutions. However, it is easy to integrate on a computer, to get a sense of how the system

behaves.

The first important observation is that if we start from q = 0, q̇ = 0, then the solution is trivial

q(t) = q̇(t) = 0, and nothing happens. This is very different to the externally driven oscillator

from the previous section.

To see anything at all, we thus try numerical integration starting at q(0) = 1, q̇(0) = 0 and, for

definiteness, take h = 0.1. As shown below, we quickly discover that, at most values of ω the

solution strongly resembles q(0) cos(ω0t), which would be the motion of the system without the

h cos(ωt) time varying term being present at all: most of the time the new term is unimportant.

This is even true at ω = ω0 where we might have expected something interesting like resonance.

However, at ω = 2ω0, we see something quite different: the motion becomes an oscillation with

exponentially increasing amplitude.
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Motion or a parametric oscillator for different driving frequencies. Resonance occurs when the

driving frequency is twice the natural frequency.

Resonance when the driving is at twice the natural frequency is the hallmark of parametric res-

onance. In hindsight, we can understand this result by writing the equation of motion for the

system in the form

q̈ + ω2
0q = hω2

0 cos(ωt)q, (2)
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11 TIME VARIATION 11.3 Parametric Resonance

which is the standard form for a driven oscillator, but with the driving force f(t) = hω2
0 cos(ωt)q

which is proportional to q. If the system is oscillating at its natural frequency q = A cos(ω0t),
then this driving force term looks like

hω2
0 cos(ωt)A cos(ω0t) =

hA

2
(cos ((ω0 − ω) t) + cos ((ω0 + ω))t) .

If we have ω = 2ω0 then one of these two terms looks like a driving force at the resonant fre-

quency, ω − ω0 = ω0, which causes the amplitude to grow. Since the size of this force is propor-

tional to amplitude, we get an exponential increase in amplitude. The ω + ω0 = 3ω0 term is off

resonance, and has little impact on the motion.

In contrast, if we drive at the natural frequency, ω = ω0, neither term would be on resonance,

and the system does not resonate. Resonance at 2ω0 and exponential growth of amplitude are the

hallmarks of “parametric” resonance. In contrast, in traditional resonance with a driving force,

one finds resonance at ω0, and the amplitude grows linearly in time.

If one thinks through a cycle of oscillation for a mass on a spring, one can see why having stiffness

variation at 2ω0 leads to a growing amplitude response. In this scenario, the mass feels a lower

spring force when it is moving away from the equilibrium point, and a larger spring force when it

is being pulled back, which pumps energy into the system and causes the amplitude to increase.

The work done by the varying force on the mass in one cycle,
∫

h cos(2ω0t)ω0A sin(ω0t)dt is

positive, showing the variation pumps energy into the system. In contrast, if the spring varies at

ω0, it pushes harder for a half cycle, then softer for a half cycle, so the net work done
∫

h cos(ω0t)ω0A sin(ω0t)dt, vanishes and the amplitude does not grow.

11.3.1 Pendulum with changing length (non examinable)

Consider a pendulum whose length L(t) is a function of time, as might occur if the string winds

over a pulley at the pivot and then connects to a motor. In this case, the Lagrangian will be

L(θ, θ̇, t) = 1

2
m(L(t)2θ̇2 + L̇(t)2) +mgL(t) cos θ,

the generalized momenta and force are

pθ =
∂L
∂θ̇

= mL(t)2θ̇, Fθ =
∂L
∂θ

= −mgL(t) sin θ,

and the equation of motion is

d

dt

(

L(t)2θ̇
)

= −gL(t) sin θ → L(t)2θ̈ + 2L(t)L̇(t)θ̇ = −gL(t) sin θ.

This is more complicated than the basic parametric resonance equation, but the motion in fact

behaves in an almost identical way. If we write L(t) = l(1+h cosωt) and expand assuming h, θ,

θ̇ and θ̈ are all small then, to first order we get the equation of a simple pendulum, which produces

simple harmonic motion for θ:

l2θ̈ = −glθ, → θ = θ0 cos

(
√

g

l
t + φ

)

.
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If we continue expanding, to second order we get

l2θ̈ + 2l2h cosωtθ̈ − 2θ̇l2hω sinωt = −gl(1 + h cosωt)θ.

This equation has three new “driving” terms, that are individually very similar to the para-

metric driving term in eqn. (2). In particular, if the pendulum is undergoing a motion close

to θ = θ0 cos
(√

g
l
t
)

then each driving term is proportional to hθ0, and contains a product

of a trig term at ω and a trig term at
√

g
l
. Each trig product breaks down into components

at the sum and differences of the two frequencies, (via trig identities such as cosA cosB =
1
2
(cos (A−B) + cos (A+B))) so each term produces a difference component that will drive a

resonance when ω = 2
√

g
l
. Thus the variable length pendulum also resonates at twice its natural

frequency and, since these driving terms are proportional to θ0, the resonance amplitude will grow

exponentially: the motion has both the hallmarks of simple parametric resonance.

This leads to an interesting effect in a carefully tuned “spring-pendulum” (pendulum consist-

ing of a mass on a spring). As you showed on the examples sheet, this system has two normal

modes, a bouncing spring mode and a swinging pendulum mode. Imagine tuning the system

so that the bouncing mode has twice the frequency of the swinging mode. If you then start the

mass bouncing, the bounce causes the pendulum to change length at twice its natural frequency,

driving a parametric resonance of the swinging mode. As I will demonstrate in lectures, as time

progresses, the energy of the motion will swop from the bouncing mode to the pendulum mode,

until the system is purely swinging without bouncing. If you wait long enough, the energy will

then swop back to the bouncing mode. We see that the two modes of vibration are coupled, and

our typical analysis of independent normal modes has failed. Generically, this type of effect is

driven by higher-order (non linear) terms in the equations-of-motion that we discard in a normal

mode analysis, and these higher order terms lead to many interesting effects: mode-coupling,

multi-stability, self oscillation, chaos, amplitude-death, solitons, limit-cycles and much more be-

sides. Much of this goes under the general heading of “nonlinear vibrations”, which is also the

title of 4C7.
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