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1 COURSE DETAILS

1 Course Details

1.1 Synopsis

Simple harmonic motion (SHM): equation of undamped oscillation for a mass on a spring,
its solution, relative phases of displacement, velocity and force. Approximations of oscillating
systems to SHM: simple pendulum, torsional pendulum. Energy in SHM: vibration of two masses
joined by a spring, quantum well.

Phasor diagrams:superposition of oscillations, beats, amplitude modulation.

SHM using complex numbers: Curves of time-dependence for an oscillator, amplitude, fre-
quency, angular frequency and phase.

Damped oscillations:amplitude, energy decay. quality factor.

Forced oscillations:qualitative frequency response and resonance.

Revision of electrical circuits: voltage, current and charge in circuits, electrical resistance,
Kirchhoff’s Laws, resistors in series and parallel. Inductors and capacitors. Circuits with ex-
ponential decays: charge and discharge of a capacitor through a resistor, decay of current through
an inductor.

Oscillations in electrical circuits and complex impedance: Oscillation in an LC circuit, relative
phases of voltages, charge and currents, energy in an LC circuit. Complex current and voltage in
resistors, capacitors and inductors. Complex impedance. Electrical resonance in an LCR circuit,
simple filters, bandwidth, Q factor. Relationship of behaviors seen in electrical systems to those
of mechanical systems. Concept of mechanical impedance.

1.2 Resources

“Understanding Physics”, Mansfield M & O’Sullivan,(2nd edition), (Wiley).
“Physics for Scientists and Engineers”, Tipler P A & Mosca G,(6th Edition, Extended version),
(Freeman 2008).
“Fundamentals of Physics”, Halliday D, Resnik R & Walker J,(Extended (8th) Edition), (Wiley).

“A Cavendish Quantum Mechanics Primer”, Warner M, Cheung ACH, &(Periphyseos Press).
Useful discussion of simple harmonic motion and relevant mathematics, including complex num-
bers, and accessible quantitative treatment of quantum mechanics using very similar equations.

Lots of extra questions and resources athttps://isaacphysics.org, a Cambridge de-
signed website with maths content on vectors, trigonometry, complex numbers and differential
equations, and physics content on simple harmonic motion, motion in a circle and (soon!) circuits.
Designed to help bridge the gap between school and university level physics and mathematics.

vi
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1 COURSE DETAILS 1.3 Practicalities

1.3 Practicalities

There are twelve lectures in the course on Oscillating Systems which will take place during the
second half of the Michaelmas term. They will take place during weeks 5-8 inclusive, on Fridays,
Mondays and Wednesdays, between 09:00 and 09:50.

There will an Example Sheet containing 23 problems issued tocover this course.

The examples sheet and notes can be downloaded from the NSTIAPhysics Teaching information
Service website at:

http://www-teach.phy.cam.ac.uk/

Hardcopies of the examples sheets and notes are also available from the filing cabinets outside
the Pippard Lecture Theatre in the Cavendish.

For those who are interested, there are somestrictly optional additional problems – less struc-
tured and usually of a slightly more mathematical nature – which can also be downloaded from
the NSTIA Physics TiS website.

If you find any errors please contact the lecturer
Dr John Biggins (jsb56@cam.ac.uk).

vii
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2 OSCILLATIONS

2 Oscillations

2.1 Periodicity, Frequency and Angular Frequency

A system is said to be oscillating if it varies its state in a repetitive way. Examples abound, not
just in science, but in every walk of life: the UK could be saidto oscillate between day and night,
winter and summer or between cloud and sunshine. Many oscillations are not just repetitive
but periodic, meaning that the repetitions happen with a regular time interval. The oscillations
between day and night, or between winter and summer are periodic, repeating every 24 h and
every 1 yr respectively. The weather is rather less predictable. More formally, imagine a system
characterized byx(t) which varies in time as plotted in fig. 1. The system is periodic if, for some
timeT , x(t) = x(t + T ) for all timest. Of course, if this is true forT it is also true for2T , 3T ,
4T and so on, so we useT to denote the shortest time-period for for whichx(t) = x(t + T ) and
call it the fundamental period.

t+Tt
t

x(t)

Figure 1: Periodic motion with fundamental time pe-
riod T .

π π/2 /23 2π /2 π π             θ

cosθ

sinθ

0

θ

1

-1

1

-1

Figure 2: The sin andcos functions.

Instead of period, we often think of an oscillation’s frequency, ν = 1/T . If T is in seconds
thenν is in s−1, known as Hertz (Hz) but best though of as “per-second”. If anoscillation has
a time periodT =0.1 s, it has frequencyν = 1/0.1 = 10 Hz because it repeats ten times per-
second.

To think about oscillations we need periodic functions. Twosuch functions,sin(θ) andcos(θ),
plotted in fig. 2, are already familiar. Both repeat whenθ increases by2π because the argument,
θ, is an angle and adding a whole turn (2π) to an angle brings you back to where you started.
A particle whose position is given byx = cos(ωt) is oscillating in time betweenx = ±1.
The oscillation will repeat wheneverωt increases by2π, so the time period isT = 2π/ω and
the frequency isν = ω/(2π). The quantityω is called the angular frequency and has units of
radians/second. It is closely linked to angular velocity since, if we interpretωt as an angle,ω is
its velocity.

2.2 Why study oscillations?

We study oscillations in such detail because they are ubiquitous. Below is a list of oscillators from
many sectors of physics and engineering and with frequencies spanning 37 orders of magnitude.

1



3 SIMPLE HARMONIC MOTION

Oscillator Frequency /Hz
Deformed nuclei 1021

Light emitting atom 1015

Molecular vibrations 1014

Mobile Phone transmissions 109

TV transmitter 108

Radio (medium wave) 106

Musical instruments 102→4

Heart Beat 100

Old Faithful Geyser 10−4

Tides 10−5

Solar Activity Cycle 10−9

Axial precession of the Earth10−12

Solar galactic rotation 10−16

Cyclic Universe(!????) ?

Amazingly, much of this oscillatory behavior can be described by a handful of ideas encoded in
simple equations. Obviously such ideas are worth studying in detail.

3 Simple Harmonic Motion

3.1 Mass on a spring

x

x=0

spring constant k
m

equilibrium
position

F kx= -

Figure 3: A mass on a horizontal spring.
Top: The mass in it’s equilibrium posi-
tion with the spring unstretched. Bottom:
The mass is displaced from equilibrium by
an amountx, leading the spring to exert
a force−kx pulling it back towards the
equilibrium point.

We start with a very simple oscillating system, a mass on
a horizontal spring, sketched in fig. 3. We assume that
the surface is frictionless and the motion horizontal, so
the only force on the mass we need consider is that from
the spring. If we displace the mass byx from its equi-
librium position the spring pulls it back and, the further
we pull it, the harder the spring pulls back. This spring
behavior is encoded in Hooke’s law, which states that a
stretched spring exerts a restoring force proportional to
its extension:

F = −kx. (1)

The constant of proportionality,k, depends on the
spring. The minus sign encodes that the force acts to
reducex, that is, the spring pulls the mass back towards
the equilibrium point.

We now ask what happens if we draw the mass out
to a positionx = a0 and release it. What happens next
is determined by Newton’s second law,

F = ma, (2)

whereF is the force on an object,m is its mass anda is its acceleration. Applying this law
qualitatively to the mass on a spring gives the sequence of events shown in fig. 4. Initially the
mass is at rest but the spring is pulling it back towards the equilibrium point, causing it to accel-
erate towards the equilibrium point. As the mass moves towards the equilibrium point the spring

2



3 SIMPLE HARMONIC MOTION 3.2 Solving the SHM equation

a

a

0

0

F
v

no velocity velocity increasing

velocity increasing

maximum velocity velocity decreasing

no velocity

(i) (ii)

(iii) (iv)

(v) (vi)

Figure 4: Snapshots of a mass oscillating on a spring. The mass is drawnback tox = a0 then released,
leading to oscillations. Double headed arrow indicates force, single headed arrow indicates velocity. Fur-
ther description in the main text.

remains stretched, so it continues to pull towards the equilibrium point, and the mass continues
to accelerate. When the spring reaches the equilibrium point the spring is no longer stretched so
there is no force and the mass is moving at its maximum speed. It passes straight through the
equilibrium point putting the spring into compression. This causes the spring to again push the
mass back towards the equilibrium point, but now, this forceis opposite to velocity, so it slows
the mass down. Eventually the mass becomes stationary, but the mass is now far from the equilib-
rium point and the spring is deep in compression, pushing themass back towards the equilibrium
point, and the whole process starts again. The mass oscillates on the spring.

The above discussion reveals the two key ingredients for oscillatory behavior: we need a
restoring force that pulls our system back towards its equilibrium point and inertia (i.e. resistance
to change in velocity) so that when the system reaches the equilibrium point, its motion ensures
that it passes through to the other side. In the above case, the spring provides the restoring force
and the mass provides the inertia.

Of courseF = ma allows us to go beyond this qualitative analysis and predictthe precise
motion of the mass. The force acting on the mass is just the spring force,F = −kx, and its
acceleration is simplya = ẍ (we use dots to denote derivatives with respect to time), so we have

− kx = mẍ. (3)

This second order differential equations can be rearrangedto

ẍ = − k

m
x, (4)

which encodes that acceleration is proportional but opposite to displacement, the essential ingre-
dient for simple-harmonic-motion.

3.2 Solving the SHM equation

Often the best way to solve differential equations is simplyto guess the answer. Here we want
an oscillating function that takes a maximum value ofa0 at t = 0, so we tryx = a0 cos(ωt).

3



3.2 Solving the SHM equation 3 SIMPLE HARMONIC MOTION

Substituting this into the equation of motion (eqn 4) we get

− ω2a0 = − k

m
a0 (5)

which is true, provided

ω =

√

k

m
, (6)

so the motion of our spring is given by

x = a0 cos

(

√

k

m
t

)

. (7)

We have just shown that our mass on a spring does indeed oscillate, and that it does so with

angular frequencyω =
√

k
m

. The full motion is plotted in fig. 5

0 twa cos

x(t)

t0

+a

-a

0

0

Period T

Figure 5: A mass on a spring is drawn back to
x = a0 and released from rest. This plot shows
the resultant position of the mass,x(t), oscillat-
ing as a function of time. The angular frequency
of the oscillation isω =

√

k/m, so the time pe-
riod isT = 2π

√

m/k.

0

0

0

Figure 6: Plot of the full solution to the SHM
equation, allowing that the oscillation need not
start with zero velocity and maximum displace-
ment. The inset shows a more realistic trajec-
tory for att = 0 since we cannot actually accel-
erate a mass to finite velocity instantaneously,
but we will ignore this complication.

Many other systems produce equations of motion like eqn 4, but with different constants in
place ofk/m. We can write any such equations as

ẍ+ ω2
0x = 0 (8)

where the value ofω0 depends on the specifics of the system, for the mass on a springω2
0 = k

m
.

This is the fundamental equation of SHM. We know it is solved by x(t) = a0 cos(ω0t), however
this cannot be the complete solution as it has maximum displacement att = 0, but if we had
started the oscillations by giving the mass a kick rather than displacing it, we would instead need
a solution with zero displacement att = 0. With the right choice of displacement and velocity we
could start the oscillations at any point in the cycle, so we consider the same solution but offset
in time:

x(t) = a0 cos(ω0t + φ). (9)

Substituting this into the fundamental equation of SHM, eqn8, gives

− ω2
0a0 cos(ω0t+ φ) + ω2

0a0 cos(ω0t+ φ) = 0, (10)

4



3 SIMPLE HARMONIC MOTION 3.3 Whyharmonicmotion?

which is indeed true. Eqn. 9 is the most general solution to the fundamental equation of SHM:
any system obeying eqn 8 will undergo a motion of this form, with a0 andφ determined by how
the oscillation is started. The displacementx varies between±a0, soa0 is the amplitude of the
oscillation. The constantφ is called the phase-constant, and determines which point inthe cycle
the oscillation starts at. Settingφ = −π/2 givesx = a0 sin(ω0t), which is appropriate when the
motion is started att = 0 by giving the mass a kick. A generic oscillation is plotted infig. 6.

Although eqn. 9 is the full solution to the SHM equation, it issometimes convenient to write
it in a different form,

x(t) = A cos(ω0t) +B sin(ω0t). (11)

This form also has two constants,A andB, which we can use to specify the motion of the system
at t = 0. We can relate the two forms of the SHM solution by expanding the first form using the
trig angle-addition formula to get

a0 cos(ω0t + φ) = a0 cos(φ) cos(ωt)− a0 sin(φ) sin(ωt), (12)

which matches the second form of the solution provided

A = a0 cos(φ) B = −a0 sin(φ). (13)

We may also wish to find the first form from the second, which we do by noting that

A2 +B2 = a20 cos
2(φ) + a20 sin

2(φ) = a20(cos
2(φ) + sin2(φ)) = a20, (14)

and
B

A
= −a0 sin(φ)

a0 cos(φ)
= − tan(φ). (15)

Therefore, if we knowA andB, we can calculatea0 andφ as

a0 =
√
A2 +B2, φ = arctan (−B/A). (16)

3.3 Why harmonic motion?

The frequency of simple harmonic oscillations is independent of their amplitude. For a mass
on a spring the angular frequency isω =

√

k/m, irrespective ofa0; however far we draw the
mass back, it oscillates at the same rate when we release it. As the oscillations die down, their
amplitude will diminish but their frequency will not. This is why these oscillations are called
harmonic: they have a characteristic frequency. If that frequency lies in the audible range we will
be able to hear the oscillation, and it will always have the same pitch, whether it is loud or quiet.

Not all oscillations are harmonic. Consider a bouncing ball. If I drop a ball from a height
z = h above the floor atz = 0, it will then fall under gravity, feeling a downwards weightforce
−mg. Applying Newton’s second law gives

mz̈ = −mg. (17)

This is a motion with constant acceleration, which you have studied previously. Solving gives
z = h− 1

2
gt2, so the ball reaches the floor att =

√

2h/g and, if the ball bounces elastically, it will
get back to its original height att = 2

√

2h/g. It is an oscillator with time periodT = 2
√

2h/g,
which is dependent onh: if I drop the ball from higher, the time between bounces is longer.
As a bouncing ball dissipates energy the frequency of its bounces increases. In general we have
no right to expect frequency and amplitude of oscillations to be independent. It is a remarkable
feature of SHM that in this case they are.

5



3.4 Position velocity and acceleration 3 SIMPLE HARMONIC MOTION

3.4 Position velocity and acceleration

We recall the displacement in SHM is given by

x(t) = a0 cos(ω0t + φ). (18)

We can take a time derivative of this to find the velocity:

ẋ(t) = −ω0a0 sin(ω0t+ φ) (19)

= ω0a0 cos
(

ω0t+ φ+
π

2

)

. (20)

The velocity also oscillates with angular frequencyω0, but it does so between±a0ω and isπ/2
(quarter of a cycle) ahead of the displacement. This makes sense if we think about the mass on
a spring: the velocity is maximum when the displacement is zero. Quarter of a cycle later, the
displacement is maximum, so it is quarter of a cycle behind velocity.

A time derivative of the velocity gives the mass’s acceleration

ẍ(t) = −ω2
0a0 cos(ω0t+ φ) (21)

= ω2
0a0 cos (ω0t+ φ+ π) . (22)

Acceleration also oscillates with angular frequencyω0, but between±a0ω
2 and isπ (half a cycle)

ahead (or behind, for half a cycle these are the same thing) ofthe displacement. The acceleration
behaves as the negative of displacement, exactly as the SHM equation requires. In terms of
the spring, acceleration is always opposite to displacement because the spring always pulls the
mass back back towards the equilibrium point. An example of the displacement, velocity and
acceleration of a particle undergoing SHM is shown in fig. 7.

1

0

−1
2

0

−2
4

0
2

−2
−4

0 1 2 3 4 5 6 7 8

.

..
Acceleration

Velocity

Displacement

π/ωT =2

x

x

x

t / s

ω = 2 s−1,    = 1,     =   /4a πφ

Figure 7: Displacement, velocity and acceleration of a particle undergoing SHM.

3.5 SHM Examples

We now look at some more examples of systems displaying simple harmonic motion.

6



3 SIMPLE HARMONIC MOTION 3.5 SHM Examples

3.5.1 Mass on a spring with gravity

A massless1 spring stretches by 18 mm when a 2.8 kg mass is suspended vertically from one end.
How much mass should be attached to the spring to make the frequency of oscillationν = 3Hz?

k k

mg

x

Figure 8: Left: A mass is held
at the end of a spring. Right:
When it is released, the spring
stretches byx.

We first draw a diagram, seen in fig. 8. In the first stage we
have force equilibrium between the gravity and the spring force

mg = kx. (23)

Substituting inm = 2.8kg, x = 18mm andg = 9.81, we get
k = 1526Nm−1. In the second stage we have a different mass but
the same spring. In equilibrium the spring extends byx0 such that
the spring and weight forces again balance:

−kx0 +mg = 0. (24)

If the mass is displaced from equilibrium by an amountx1, the
total displacement isx0 + x1 so Newton’s second gives

−k(x0 + x1) +mg = mẍ1. (25)

However, since−kx0 = mg, this reduces to

ẍ1 +
k

m
x1 = 0, (26)

which is the fundamental equation of SHM, with angular frequencyω2
0 = k

m
, and frequency

ν = ω0/(2π). Gravity has not changed the frequency of oscillations. Putting in our previously
calculated value fork, andν = 3Hz, we needm = 4.3kg.

3.5.2 Mass on two springs

x=0 x=0.07m

k=450Nm k=650Nm-1 -1

3kg

1 2

Figure 9: A mass oscillating under the influence of two springs.

A 3.0 kg block is attached between two horizontal springs andplaced on a frictionless surface
as shown in fig. 9. Neither spring is strained when the block ispositioned at the equilibrium posi-
tion x = 0. The block is now displaced a distance of 0.07 m in a directionalong the longitudinal
axes of the springs and released from rest.

• Determine the angular frequency of the system.

• At what time does the mass first cross the pointx = 0?

1All springs in the course are massless.

7



3.5 SHM Examples 3 SIMPLE HARMONIC MOTION

• What is the speed of the block as it passes throughx = 0?

If the mass is displaced to a positionx both springs are stretched byx so the total restoring
force isk1x+ k2x = (k1 + k2)x. Newton’s second law gives

− (k1 + k2)x = mẍ (27)

=⇒ ẍ+
k1 + k2

m
x = 0, (28)

the fundamental equation of SHM, with angular frequencyω2
0 = k1+k2

m
. Putting in our values for

m, k1 andk2 givesω0 = 19.15rad s−1. The general solution is

x = a0 cos(ω0t+ φ), ẋ = −a0ω0 sin(ω0t+ φ). (29)

Since the mass is released from rest with displacement 0.07m, we needx(0) = 0.07m andẋ(0) =
0, which requiresφ = 0 anda0 = 0.07m, so the displacement and velocity are

x = a0 cos(ω0t) ẋ = −a0ω0 sin(ω0t). (30)

The displacement is first zero whenω0t = π/2, requiring t = π/(2ω0) = 0.082s. Since
sin(π/2) = 1, the velocity at this point is just−a0ω0 = −1.34ms−1.

3.5.3 The Hydrometer

A prismatic hydrometer of massm and cross-sectional areaA floats in a fluid of densityρ with
its axis in the vertical direction, as depicted in fig. 10. It is then displaced vertically and released.
Find the frequency of the resulting oscillations.

r

y

A

m

Equilibrium height
of water

Figure 10: A floating hydrometer.

V
P

ρ

g

Figure 11: Pressure forces on an ob-
ject with volumeV submerged in a
fluid of densityρ in a gravitational
field g. The pressures are higher at
the bottom of the object, leading to a
net upwards buoyancy force.

Before tackling the hydrometer we need to understand buoyancy forces. Imagine a light
hollow object of volumeV submerged in a fluid of densityρ and in a gravitational fieldg, sketched
in fig. 11. The fluid’s pressureP pushes in on the object and, since the pressure is greater deeper
in the fluid, this gives an upwards buoyancy force. To calculate its size we imagine the object
is filled with fluid. We then have a homogeneous fluid, which is certainly in equilibrium, so
the buoyancy force must equal the object’s weight,ρgV . Any object with the same shape will

8



3 SIMPLE HARMONIC MOTION 3.6 Energy in Simple Harmonic Motion

experience the same pressure field, and the same buoyancy forceρgV . If this is greater than the
objects weight it will float, otherwise it will sink. We have just deduced Archimedes’ principle:
The buoyancy force on a partially or fully submerged body is equal to the weight of the volume of
fluid it displaces.

Returning to our hydrometer, it first floats in equilibrium between buoyancy and gravity,

mg = ρgV, (31)

wherem is hydrometer’s mass andV is its submerged volume. If we displace the hydrometer by
y from this equilibrium we change the submerged volume byAy, so Newton’s second law gives

ρg(V −Ay)−mg = mÿ. (32)

However, using eqn. 31, this reduces to

ÿ +
ρgA

m
y = 0, (33)

which is the fundamental equation of SHM, with angular frequencyω2
0 = ρgA

m
.

3.5.4 Simple Pendulum

A simple pendulum consists of a massm hung from a fixed pivot by a light string of lengthl. The
mass is drawn back to an angleθ and released. What is the frequency of oscillation?

l

T

mg

q

s=l q

F

Figure 12: A simple
pendulum.

We first draw a diagram, fig. 12, and consider the mass’s motion. It
follows a circle so, when it is atθ, it has traversed an arc-lengths = lθ. Its
velocity isṡ = lθ̇ and its acceleration is̈s = lθ̈. Two forces act on the mass,
gravity and tensionT . Velocity and acceleration are both perpendicular
to the string, so resolving forces perpendicular to the string and applying
Newton’s second law, we have

−mg sin(θ) = mlθ̈. (34)

For small anglessin(θ) ≈ θ, so this is approximately

−mgθ = mlθ̈ (35)

=⇒ θ̈ +
g

l
θ = 0, (36)

which is the fundamental equation of SHM, with angular frequencyω2
0 =

g/l. This is why it is important for pendulum clocks to work at lowampli-
tude: otherwise the frequency depends on amplitude and the clock will not
keep good time.

3.6 Energy in Simple Harmonic Motion

We now return to the oscillations of a horizontal mass on a spring. This motion involves two
types of energy, the mass’s kinetic energy and the spring’s the potential energy. We already know
the kinetic energy is given by

KE =
1

2
mv2 =

1

2
mẋ2. (37)

9



3.6 Energy in Simple Harmonic Motion 3 SIMPLE HARMONIC MOTION

To calculate the potential energy we imagine stretching thespring very slowly. To stretch the
spring fromX toX+dX, we must apply a forcekX, so we do workdW = kXdX. This energy
is stored in the spring, and can be recovered if we unstretch it. To calculated the total energy
stored in a spring stretched tox we must sum these contributions using an integral

PE =

∫ x

0

kXdX =
1

2
kx2. (38)

We recall that a mass on a spring executes simple harmonic motion with

x(t) = a0 cos(ω0t + φ) ẋ(t) = −ω0a0 sin(ω0t + φ), (39)

whereω2
0 = k/m. In such a motion the kinetic and potential energy both oscillate:

KE = 1
2
ma20ω

2
0 sin

2(ω0t+ φ)

= 1
2
ka20 sin

2(ω0t+ φ) using ω2
0 = k/m

PE = 1
2
ka20 cos

2(ω0t + φ). (40)

The total energy of the system is the sum of these two contributions,

E = 1
2
mẋ2 + 1

2
kx2 = 1

2
ka20 sin

2(ω0t + φ) + 1
2
ka20 cos

2(ω0t+ φ)

= 1
2
ka20

(

sin2(ω0t+ φ) + cos2(ω0t + φ)
)

= 1
2
ka20, (41)

which is independent of time. Although the kinetic energy and the potential energy both oscillate,
the total energy is constant. We can see how this works by plotting the kinetic energy and potential
energy as functions of displacement, as seen in fig. 13. At maximum displacement the mass is
not moving but the spring is very stretched and all the energyis potential. As the mass moves
inwards the spring’s potential energy is released and the mass gains a corresponding amount
of kinetic energy. At zero displacement the spring is not stretched but the mass is moving at
maximum velocity and all the energy is kinetic. Energy oscillates between kinetic and potential,
but the sum is conserved.

It is also informative to ask how the potential and kinetic energies vary in time, which we
plot in fig. 14. The kinetic energy is maximal when the displacement is zero, and the potential
energy when displacement is±a0. Both happen twice a cycle, so the energy oscillates between
potential and kinetic at twice the oscillation’s frequency. Mathematically this is because, though
the trigonometric functions in (eqn 40) still oscillate atω0, they are squared. The functionsin2 ω0t
is maximum wheneversinω0t = ±1, so it oscillates twice as fast. We can verify this by using the
identitiescos2 θ = 1

2
(1 + cos 2θ) andsin2 θ = 1

2
(1− cos 2θ). Applying these to eqn. 40 gives

KE = 1
2
ka20 sin

2(ω0t+ φ) = 1
2
ka20

1
2
(1− cos(2ω0t+ 2φ))

= 1
4
ka20 − 1

4
ka20 cos(2ω0t+ 2φ) (42)

PE = 1
2
ka20 cos

2(ω0t+ φ) = 1
2
ka20

1
2
(1 + cos(2ω0t+ 2φ))

= 1
4
ka20 +

1
4
ka20 cos(2ω0t+ 2φ), (43)
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0

00

Figure 13: Kinetic and potential energy as
a function of displacementx for SHM.

0

0

0

0

Figure 14: Displacement (top) and kinetic
and potential energy (bottom) in an oscil-
lation as a function of time. The energy
oscillates between PE and KE at twice the
underlying frequency.

which clearly oscillate with angular frequency2ω0. We
can also use these forms to deduce the time average of
potential and kinetic energy. The first term in each is a
constant,1

4
ka20, while the second oscillates at2ω0 and

time averages to zero, so the time averaged energies are

〈KE〉 = 〈PE〉 = 1
4
ka20, (44)

both half the total energy,E = 1
2
ka20. All energies are

quadratic in amplitudea0.
The above was a ratherad-hocway of deducing a

time average. A more systematic way to do it is by inte-
gration. For example, we can find the average of the po-
tential energy by integrating (summing) it over one time
period then dividing by the time periodT = 2π/ω0.

〈PE〉 = 1

T

∫ T

0

1

2
ka20 cos

2(ω0t+ φ)dt =
1

4
ka20. (45)

However it is typically easiest just to recall that, aver-
aged over one cycle,

〈

sin2 θ
〉

= 1
2

and 〈cos2 θ〉 = 1
2
,

so we can find the average energies just by replacing the
squared trigonometric functions in eqn. 40, by their time
averages of 1/2.

3.6.1 The ubiquity of SHM: Harmonic motion in a
general potential well

We can also work the other way. If total energy is conserved, its time derivative is zero. For our
mass on a spring this means

Ė =
1

2
m

d

dt
ẋ2 +

1

2
k
d

dt
x2 = 0. (46)

We can conduct both derivatives using the chain rule,

d

dt
x2 =

(

d

dx
x2

)

dx

dt
= 2xẋ,

d

dt
ẋ2 =

(

d

dẋ
ẋ2

)

dẋ

dt
= 2ẋẍ. (47)

Putting these into the energy derivative gives

Ė = mẋẍ+ kxẋ = 0 =⇒ ẍ+
k

m
x = 0, (48)

which is the SHM equation for a mass on a spring, but this time derived from conservation of
energy. We have just learnt something remarkable. Kinetic energy is always1

2
mẋ2 so, whenever

a particle moves in a quadratic (∝ x2) potential energy, the total energy will be like that in eqn.
46 and the particle will undergo SHM.

A more complicated potential a particle might move in is the Lennard-Jones potential,

PE = V0

(

(a

x

)12

− 2
(a

x

)6
)

, (49)
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V(x)

V0

a
x

parabola

0

Figure 15: The Lennard-Jones potential
for the interaction of neutral atoms.

which is used to describe the potential energy of a pair
of neutral atoms a distancex apart. It is plotted in fig.
15, which shows the potential has a minimum atx = a.
This arrises as a trade off between the first term, which
is strongly repulsive for smallx, reflecting the fact that
if the atoms are too close together their electron orbitals
overlap and nuclear-nuclear electrostatic repulsion takes
place, and the second term, which is attractive and dom-
inates at largex, reflecting the long range van-der-Waals
attraction between neutral atoms.

The Lennard-Jones potential is not quadratic, so we
do not expect a particle moving in it to undergo SHM.
However, in the region of the minimum atx = a, we ex-
pect the potential to be well approximated by its Taylor
series aboutx = a. Conducting this Taylor series gives

V (a + u) = V (a) + u

(

dV

dx

)

x=a

u+
1

2

(

d2V

dx2

)

x=a

u2 +
1

6

(

d3V

dx3

)

x=a

u3 + ... (50)

However, sinceV has a minimum ata, we know
(

dV
dx

)

x=a
= 0. For sufficiently smallu the cubic

term is negligible compared to the quadratic term, so we can approximate the potential by

V (a+ u) = V (a) +
1

2

(

d2V

dx2

)

x=a

u2, (51)

which is a quadratic potential! Indeed, almost all potentials can be approximated by quadratic
potentials for sufficiently small perturbations around their minima. This is why SHM is ubiqui-
tous. If a particle moves in a general potential, it will eventually settle down in a minima. If we
then perturb it a little, it will be moving in what is effectively a quadratic potential and undergo
SHM around the minima. We expect that any system in a stable equilibrium (i.e. at a potential
energy minima) will undergo SHM if we give it a small perturbation.

3.6.2 Energy method for findingω0

For any system in equilibrium in a potential energy minima, the total energy, at least for small
disturbances from the minima, is of the form

E = KE + PE =
1

2
αẋ2 +

1

2
βx2. (52)

Conservation of energy then gives

Ė = αẋẍ+ βxẋ = 0 =⇒ ẍ+
β

α
x = 0, (53)

so the system performs SHM withω2
0 =

β
α
. It is often much simpler to find the frequency of SHM

this way than by direct consideration of forces.

3.6.3 Simple pendulum via conservation of energy

The potential energy in a pendulum is gravitational potential energy,PE = mgh. Inspecting fig.
16, we see that when the mass is atθ it has risen a heightl − lg cos(θ), so its potential energy is

PE = mgl(1− cos(θ)). (54)

12



3 SIMPLE HARMONIC MOTION 3.6 Energy in Simple Harmonic Motion

This is not a quadratic potential, but it does have a minima atθ = 0. For smallθ we can approxi-
matecos(θ) by its Taylor series about zero,cos(θ) = 1− 1

2
θ2, so our potential is approximately

PE =
1

2
mglθ2, (55)

l

l
lc

o
sq q

mg

Figure 16: Potential
energy for a simple
pendulum.

which is quadratic. Adding in the kinetic energy,KE = 1
2
mv2, the total

energy is

E =
1

2
ml2θ̇2 +

1

2
mglθ2. (56)

Comparing these with eqn 52, we haveα = ml2 and β = mgl so, as
expected, the pendulum will undergo SHM withω2

0 = β/α = g/l. We now
understand that the behavior of the pendulum — SHM for small amplitude,
more complicated for large amplitude — is not a quirk of pendulums but the
generic behavior for energy conserving oscillating systems. The mass on a
spring and the hydrometer are unusual cases where the potential energy is
quadratic not just near the minima but everywhere, so the systems exhibit
large amplitude SHM.

3.6.4 Water in a U-tube via conservation of energy

y

y

l

A
y

Figure 17: Water in a U shaped tube.

A U shaped tube with cross-sectional areaA, is filled with
water as sketched in fig. 17. If the water is pushed down on
one side then released, what is the frequency of the resulting
oscillations?

Again here the potential energy is gravitational. Since the
volume of water is constant, if, as sketched, the level in the
LHS is a distancey below the equilibrium level, the RHS
must rise byy above. In potential energy terms, this is like
moving volume of fluidAy from the left to the right, requir-
ing us to elevate its center of mass by a heighty, so the po-

tential energy is
PE = ρAygy = ρAgy2, (57)

which is quadratic. If the level is changing at a rateẏ then all the fluid is moving at velocitẏy.
The total volume of fluid in the tube isAl, so the kinetic energy is

KE =
1

2
ρAlẏ2. (58)

Comparing these with eqns 52, we haveα = ρAl andβ = 2ρAg so the level water will undergo
SHM with ω2

0 =
β
α
= 2g

l
. This is much simpler than finding the equations of motion directly.

3.6.5 Torsional Pendulum via conservation of energy

A uniform disk of massm and radiusR is suspended from a wire (a torsional fibre or spring), as
sketched in fig. 18. When the wire is twisted through an angleθ, the fibre stores a potential energy

PE =
1

2
τθ2 (59)

whereτ is called the torsional stiffness and has units N m rad−1. The disk is twisted and released.
What is the frequency of the resulting oscillations?

13
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q

t

I

Figure 18: A tor-
sional pendulum.

R r

dr

Figure 19: A disk
can be broken into a
series of small rings.

We already know the potential energy, but we need to find the kinetic
energy. This is slightly tricky as the mass at the center of the disk is not
moving at all, whereas the mass at the edge moves quickly. However, if the
disk is rotating aṫθ then the thin ring of mass of widthdr and at a distance
r from the center of the disk, shown in fig. 19, is all moving at the same
speed,v = rθ̇. The mass-per-unit-area of the disk ism/(πR2), so the ring
has massdm = (m/(πR2))× 2πrdr and kinetic energy

d(KE) =
1

2
(dm)v2 =

mθ̇2

R2
r3dr. (60)

To find the total kinetic energy of the disk we must add up all ofthese
contributions using an integral

KE =
∑

d(KE) →
∫

d(KE) =

∫ r=R

r=0

mθ̇2

R2
r3dr =

1

4
mR2θ̇2. (61)

Comparing with eqn 52, we haveα = 1
2
mR2 andβ = τ , so the disk oscil-

lates with angular frequencyω2
0 = β

α
= 2τ

mR2 . In Lent term you will study
rotational motion, and learn to do this calculation in a force-like way. You
will also learn that the kinetic energy of any spinning body can be written
as 1

2
Iθ̇2, whereI is called the body’s moment of inertia. For the disk we

effectively just calculatedI = 1
2
mR2. The general result for a torsional

pendulum isω2
0 = τ

I
.

3.6.6 Diatomic molecule via conservation of energy

ClH

x
x

m
m1

m1

2

m2
Equilibrium 

position

1
Centre 

of mass
x2 1=

Figure 20: Model of a diatomic molecule.

We model a diatomic molecule, such as HCl, as two dif-
ferent masses,m1 andm2, connected by a spring of con-
stantk, as sketched in fig. 20. What is the vibrational
frequency of the molecule.

If m1 is displaced outwards byx1 andm2 outwards
by x2 the the spring is extended byx1 + x2. There is
no external force on the molecule so its center of mass
cannot move, meaningm1x1 = m2x2. We can therefore
write the potential and kinetic energy entirely in terms
of x1 as

PE =
1

2
k(x1 + x2)

2 =
1

2
k

(

1 +
m1

m2

)2

x2
1, (62)

and

KE =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 =

1

2
m1

(

1 +
m1

m2

)

x2
1. (63)

Comparing with eqn 52,α = m1

(

1 + m1

m2

)

andβ = k
(

1 + m1

m2

)2

so we have SHM with

ω2
0 =

β

α
=

(

1 + m1

m2

)

k

m1
= k

(

1

m1
+

1

m2

)

. (64)
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The system behaves as a single mass on a spring with constantk, but with an effective massm
known as the reduced mass given by

1

m
=

1

m1
+

1

m2
. (65)

This simple calculation allows us to estimate the “spring-constant” of an atomic bond. HCl
strongly absorbs radiation of aroundν ∼ 1014Hz because such radiation excites the vibrations.
The masses of chlorine and hydrogen are 1 a.m.u and 35 a.m.u. respectively (where 1 a.m.u.=
1.67 × 10−27kg). Putting in these numbers gives

cos(θ)

sin(θ)

x

y

θ
1

1

-1

-1

Figure 21: A unit length rod making an
angleθ with thex axis.

x

y

ϕ
a0-a0

a0

-a0

ω t0

=0tω 0

ω t+ϕ0a cos(          )  0

x(t)=

a0a0

Figure 22: A vector of lengtha0 rotates
around the origin. Its projection onto the
x axis undergoes SHM.

k = mω2
0 =

(

1

m1
+

1

m2

)−1

2πν ∼ 640Nm−1, (66)

which is a typical every-day value: such a spring would
extend 1.5cm under a 1kg load.

3.7 SHM and Circles

Imagine a rod of unit length which protrudes from the
origin making an angleθ with the x axis, as sketched
in fig. 21. The projection of the rod onto thex axis —
that is, its shadow on thex axis if it is illuminated with
rays parallel to they axis — has lengthcos(θ). As θ
increases, the end of the rod moves around the unit circle
and it’s projection onto thex axis changes between±1.
In this geometry, it is obvious that the cosine of a quarter
turn is zero, the cosine of a half turn is -1, the cosine of
a three-quarter turn is again zero, and the cosine of a full
turn is 1. The rod’s projection onto they axis has length
sin(θ), which also varies between±1 and, similarly, it is
obvious that the sine of zero is zero, the sine of a quarter
turn is 1, and so on.

If we now imagine the rod is spinning at constant
angular velocityω0 then, at timet, it makes an angle
ω0t with thex axis and its projection onto thex axis is
cos(ω0t). The rod moves in circles, but its projection
onto thex axis (or indeed any other diameter of the cir-
cle) does simple harmonic motion.

We now replace the rod by a vector of lengtha0 that
att = 0 makes an angleφ with thex axis, but which still
spins at angular velocityω0. At a timet it makes an angleφ + ω0t (see fig. 22) so its projection
onto thex axis has length

x = a0 cos(ω0t + φ). (67)

The projection undergoes the general form of SHM. This representation of SHM gives a geomet-
ric meaning to the previously abstract angleωt + φ, called the oscillation’s phase, and clarifies
the link between angular frequency and angular velocity.
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3.7.1 Phasor diagrams

0

0

0

0

0

0

Figure 23: Displacement velocity and acceler-
ation of SHM represented by three co-rotating
vectors with different lengths. Their projections
onto thex axis give the instantaneous value of
their respective variables.

The velocity and acceleration can be represented
the same way. The velocity is given by

ẋ(t) = −ω0a0 sin(ω0t+φ) = ω0a0 cos
(

ω0t+ φ+
π

2

)

,

(68)
so it can also be represented by a vector spinning at
ω0 but with a length ofω0a0 and that isπ/2 (quarter
of a turn) ahead of the displacement’s vector. Sim-
ilarly, the acceleration is

ẍ(t) = −ω2
0a0 cos(ω0t+φ) = ω2

0a0 cos (ω0t + φ+ π) ,
(69)

so it can also be represented by a vector spinning at
ω0 but with length ofω2

0a0 and that isπ (half a turn)
ahead of the displacement’s vector. This leads us to
fig. 23, a diagram with all three vectors. They all
rotate at the same speed, maintaining their relative

angles, and the values of the displacement, velocity and acceleration at a given moment in time
are given by their projections onto thex axis. Such diagrams are called phasor diagrams. They
allow us to visualize the phase difference between different quantities in SHM.

3.8 Superposition of simple harmonic motions

Suppose we have two solutions to the same fundamental SHM equation, ẍ1 = −ω2
0x1 andẍ2 =

−ω2
0x2. The SHM equation (eqn 8) is linear, so the sum of these,x3 = x1+x2, is also a solution:

ẍ3 = ẍ1 + ẍ2 = −ω2
0x1 − ω2

0x2 = −ω2
0(x1 + x2) = −ω2

0x3. (70)

N.B. This only works because the restoring force is linear, it would not work if, for example, we
hadF ∝ xn andn 6= 1. Sincex, x1 andx2 are all SHM solutions, we must be able to write them
all in the form of the general solution:

x1 = a1 cos(ω0t + φ1) x2 = a2 cos(ω0t+ φ2)

x3 = a1 cos(ω0t + φ1) + a2 cos(ω0t+ φ2) = a cos(ω0t+ φ). (71)

We can understand how this works by representingx1 andx2 as vectors of different lengths and
phases (but both spinning atω0) on the same phasor diagram, as shown in fig. 24. The vector
sum of thex1 andx2 phasors gives a third one representingx3, also spinning atω0. From the
diagram we can visualize how the phase and amplitude ofx depend on the phase and amplitude
of x1 andx2. With some geometry we can actually finda andφ. First, applying the cosine rule to
the vector-sum triangle we have

a2 = a21 + a22 − 2a1a2 cos(α), (72)
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3 SIMPLE HARMONIC MOTION 3.8 Superposition of simple harmonic motions

x=x+x3

Figure 24: Two phasors representing SHM
with the same frequency but different ampli-
tude and phase. The sum of the two motions
is also SHM, represented by a phasor that is
the vector sum of the first two.

but from the diagram we knowα = π − (φ2 − φ1), so
cos(α) = − cos(φ2 − φ1), giving the resultant ampli-
tudea as

a2 = a21 + a22 + 2a1a2 cos(φ2 − φ1). (73)

Secondly, looking at the right-angle triangle formed
by thex3 phasor and thex axis, we have

φ = tan−1

(

a1 sinφ1 + a2 sinφ2

a1 cosφ1 + a2 cosφ2

)

. (74)

We could prove these results by manipulating eqn 71,
but using phasors builds geometric intuition.

3.8.1 Interference via superposition of matching
frequencies

t

r

cos(ωt) cos(ω(t-r/c))

c

Figure 25: A sequence of snap-
shots of the sound wave propa-
gating out of a speaker. An ob-
server next the the speaker ob-
servescos(ωt), whereas an ob-
server a distancer away sees
cos(ω(t− r/c)).

Let us imagine an emitter of waves that is oscillating asa0 cos(ωt).
These oscillations travel away from the emitter at the wave speed
c, as sketched in fig. 25, so if we measure a distancer from the
emitter we see what the emitter was doing a timer/c ago, that
is, we measurea0 cos(ω(t − r/c)) = a0 cos(ωt − ωr/c). This is
exactly the same form as the SHM solution (withφ = −ωr/c) so
we can analyze it using phasors.

We first imagine that we have two identical sources a distance
R apart, and we stand between them, a distancer from the first
thus a distanceR − r from the second, as shown in fig. 26. We
experience the sum of two signals,a0 cos(ωt−ωr/c) from the first
emitter anda0 cos(ωt − ω(R − r)/c) from the second. We can
represent this sum as the sum of two phasors of equal amplitude,
but with phase constantsφ1 = −ωr/c andφ2 = ω(r − R)/c
respectively. If we stand half way between the emitters, these are

x

y

-ωr/c
ω(R-r)/c

ω 

x

y

x

y

-ωR/(2c)

r=R/2

-ωR/(2c) + π/2

-ωR/(2c)-π/2

r=R/2-cπ/(2ω)

R

r R-r

(a) (b) (c)

=R/2-λ/4

Figure 26: Left: Two emitter, a distanceR apart, oscillate together ascos(ωt), and an observer stands
between them. (a) The wave observed from each source can be represented by a phasor, and the total wave
observed as their sum. The two phasors have the same amplitude but different phases. (b) If the observer is
half way between the sources the phasors have equal phase andadd constructively. (c) But as the observer
moves away fromR/2 the two phases change in opposite directions and eventuallydiffer by π, leading to
destructive interference and no resultant wave.
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3.8 Superposition of simple harmonic motions 3 SIMPLE HARMONIC MOTION

both φ = −R/(2c) and the phasors are aligned and add constructively, giving aresult with
amplitude2a0. However, as we move towards the first emitter,φ1 increases andφ2 decreases so
the amplitude of the result falls. When we reachr = R/2 − cπ/(2ω) the phasors are opposite
to each other and the resultant amplitude is zero. Fromc = νλ, we know thatcπ/(2ω) = λ/4,
is quarter of the waves’s wavelength. As we move between the two sources, we move between
regions of high amplitude (2a0) oscillations (anti-nodes) and regions of zero amplitude (nodes),
separated in space byλ/4. This is called a standing wave.

1

2

P

AO

Figure 27: Two slits are illumi-
nated from behind, and the re-
sultant intensity pattern is col-
lected on a screen on the right.

The same thing happens if we imagine illuminating two slits
and collecting the resultant intensity pattern on a screen,as
sketched in fig. 27. The two slits act as synchronous sources of
waves and at each point on the screen we collect the sum of the
two waves, which we can represent as the sum of two phasors.
Exactly between the two slits (at A) both waves have traveledthe
same distance, so the phasors have the same phase and add con-
structively. Moving to the side (towards P) the distances tothe two
slits start to differ and the phasors move out of phase, eventually
canceling. This leads to a pattern of “fringes” (stripes of high and
low intensity) on the screen and, historically, was considered the
definitive proof that first light then, later, electrons, have a wave
character.

3.8.2 Beats via superposition of different frequencies

p w w p w -w

2a

a

0

0

E E

E E

1

1

2

2

,

+

Figure 28: Top: Two oscillations with slightly dif-
ferent frequencies plotted as a function of time. They
start in phase and add constructively but, as time goes
on, they become out of phase and add destructively.
Bottom: Sum of the two oscillations, showing a low
frequency oscillation between constructive and de-
structive interference, known as beats.

We can also imagine two wave sources with
different frequencies so that, at a given point
in space, the two waves produce oscillations

x1 = a0 cos(ω1t) x2 = a0 cos(ω2t), (75)

and our observer measures the sum:

x = x1 + x2 = a0 (cos(ω1t) + cos(ω2t)) .
(76)

We can easily see what happens by drawing
a graph of the two oscillations assuming their
frequencies are close, as shown in fig. 28. The
oscillations start in phase but and add con-
structively. However, since they have slightly
different frequencies, over many cycles they
drift out of phase. Eventually the two are completely out of phase and cancel out. They then
drift back into phase, and add constructively. This leads toa low frequency alternation between
constructive and destructive interference known as beats.We can analyze this more formally
using the trig angle addition formula:

18



3 SIMPLE HARMONIC MOTION 3.9 Complex representation of SHM

a0

1

2

Figure 29: Analyses of beats via phasors.

x = a0 (cos(ω1t) + cos(ω2t)) (77)

≡ a0

(

cos

(

ω2 + ω1

2
t− ω2 − ω1

2
t

)

+cos

(

ω2 + ω1

2
t+

ω2 − ω1

2
t

))

= 2a0 cos

(

ω2 + ω1

2
t

)

cos

(

ω2 − ω1

2
t

)

.

We see thatx varies between±2a0 and is the prod-
uct of a rapid oscillation, which oscillates at the aver-
age ofω1 andω2, and a slow oscillation with frequency
(ω2−ω1)/2, i.e. proportional to the difference in the two
frequencies. This is exactly what fig. 28 looks like. The beats are caused by the slow “envelope”
oscillation, which gets slower as the frequencies get closer. You hear a beat (maximum) whenever
cos((ω2 − ω1)t/2) = ±1, so the actual angular frequency of the beats is simply(ω2 − ω1).

Finally, we can also analyze beats with phasors. Our sum is now the sum of two phasors that
spin at slightly different frequencies, as shown in fig. 29. They start aligned but one slowly gets
ahead of the other reducing the amplitude of their sum. However, the resultant always bisects the
original two phasors, so it makes an angle of(ω1t+ ω2t)/2, i.e. it spins at the average frequency.
The phase difference between the two is(ω2 − ω1)t, and when this is half a turn (π, 3π, 5π...)
the two are out of phase and the resultant amplitude is zero, when it is a full turn (0,2π, 4π...)
they are in phase and the amplitude is maximum. As promised, the beats thus come with angular
frequencyω2 − ω1, or real frequencyν = (ω2 − ω1)/(2π).

3.9 Complex representation of SHM
Im(z)

Re(z)a

b

z

Figure 30: Argand dia-
gram showing the com-
plex numberz = a+ ib
in the complex plane.

Phasor diagrams have a natural representation in terms of complex
numbers. A complex number is the sum of a real and an imaginary
number such as

z = a+ ib, a,b ∈ R. (78)

We can plotz on an Argand diagram, a representation of the complex
plane in which thex axis represents the real part ofz and they axis
the imaginary part, seen in fig. 30. By Pythagoras the “vector” z has
lengthA =

√
a2 + b2, and, by trigonometry, it makes an angleφ =

arctan (b/a) with the real axis. We can thus write our complex number
as

z = A(cos(φ) + i sin(φ)). (79)

The power of complex numbers comes from the fact we can also writez as a complex exponential:

cos(φ) + i sin(φ) = eiφ =⇒ z = Aeiφ. (80)

The complex numberz = a0e
i(ω0t+φ) thus has constant lengtha0 but spins around the Argand

diagram with initial phaseφ, as sketched in fig. 31. This is just like a phasor, and indeed the
projection ofz onto the real-axis (i.e. its real part) undergoes general SHM:

19



3.9 Complex representation of SHM 3 SIMPLE HARMONIC MOTION

ϕ
a0-a0

a0

-a0

ω t0

ω 0

ω t+ϕ0a cos(          )  0

x(t)=

a0a0

Re(z)

Im(z)

A= e
iϕa0

z

Figure 31: Argand diagram showing the com-
plex numberz = a0e

i(ω0t+φ) spinning in the
complex plane like a phasor.

x = Re{a0ei(ω0t+φ)}
= Re{a0(cos(ω0t + φ) + i sin(ω0t + φ))}
= a0 cos(ω0t + φ). (81)

Complex numbers allow us to turn rotation into mul-
tiplication. If I have a complex number that makes
an angleφ1 with the real axis,z = a0e

iφ1, and I
then rotate it a further angleφ2, my new complex
number,̃z, is

z̃ = a0e
i(φ1+φ2) = a0e

iφ1eiφ2 = zeiφ2 . (82)

This makes complex numbers a powerful way of
dealing with phases. For example, we can write our
SHM solution as

z = a0e
i(ω0t+φ) = a0e

iφeiω0t = Aeiω0t, (83)

where the complex numberA = a0e
iφ encodes the amplitude and the phase constant (fig. 31).

ω φ+t

ω

x
x

x
. ..

Re

iωz

−ω2z

z

Im

Figure 32: Argand diagram showingz =
a0e

i(ω0t+φ) and its first and second time deriva-
tives, ż = iω0z andz̈ = −ω2

0z.

We can also differentiate our complex solution
to find the velocity:

ż =
d

dt

(

Aeiω0t
)

= iω0Ae
iω0t = iω0z. (84)

The multiplication by i = eiπ/2 rotatesz by a
quarter-turn (π/2) on the Argand diagram, ensur-
ing that ż spins a quarter turn ahead ofz, just as
with the phasors. As with displacement, the physi-
cal velocity is given by the real part:

Re{ż} = Re{iω0Ae
iω0t} = Re{iω0a0e

iφeiω0t}
= Re{iω0a0 (cos(ω0t+ iφ) + i sin(ω0t+ iφ))}
= −ω0a0 sin (iω0t + iφ)

= ẋ. (85)

Similarly the complex acceleration is

z̈ =
d

dt
(ż) =

d

dt

(

iω0Ae
iω0t
)

= i2ω2
0Ae

iω0t = −ω2
0z. (86)

The multiplication by−1 = eiπ rotatesz by half a turn (π), so, just like phasors, the complex
acceleration isπ ahead of the complex displacement. Fig. 32 is an Argand diagram ofz, ż andz̈,
which reproduces the phasor diagram (fig. 23). Again,Re{z̈} gives the physical acceleration:

Re{z̈} = Re{−ω2
0z} = Re{−ω2

0a0e
iφeω0t} = −ω2

0a0 cos (ω0t+ φ) = ẍ.

Although the physical solution is the real part of the complex one, we note from eqn 86 that,
z̈ + ω2

0z = 0, that is, the whole complex solution satisfies the fundamental equation of SHM.
This is because, in addition to the real part ofz undergoing SHM, the imaginary partIm{z} =
a0 sin(ω0t+ φ) also undergoes SHM with the same amplitude butπ/2 behind the real part.
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3 SIMPLE HARMONIC MOTION 3.9 Complex representation of SHM

3.9.1 Energy in the complex representation

When calculating energies in the complex representation, we must be careful to take real parts
before squaring. For example, with a mass on a spring, the potential energy is

PE =
1

2
kx2 =

1

2
k (Re{z})2 = 1

2
a20 cos

2 (ω0t+ φ). (87)

We mustnot work outRe{1
2
kz2}, the real part of the “complex-potential energy”: in general

Re{z}2 6= Re{z2}, easily verified by tryingz = i. We must be similarly careful with theKE,

KE =
1

2
mẋ2 =

1

2
mRe{ż}2 = 1

2
mRe{iω0z}2. (88)

Here it is useful to note thatRe{iz} = −Im{z} (easy to check if you setz = a + ib), so

KE =
1

2
mω2

0Im{z}2 = 1

2
mω2

0a
2
0 sin

2(ω0t+ φ).

(89)

Recallingω2
0 = k/m, we see the total energy does have a nice complex representation:

E = KE + PE =
1

2
kIm{z}2 + 1

2
kRe{z}2 = 1

2
k(Im{z}2 + Re{z}2) = 1

2
k|z|2, (90)

where the modulus of a complex numberz = a + ib is |z| =
√
a2 + b2, which, geometrically, is

its distance from the origin on the Argand diagram. The process is conserving energy because the
length ofz is constant as it spins. We can verify that this form forE agrees with eqn 41:

E =
1

2
k|z|2 = 1

2
k
∣

∣Aeiω0t
∣

∣

2
=

1

2
k|A|2 = 1

2
k|a0eiφ|2 =

1

2
ka20. (91)

3.9.2 Comparison of the complex and standard methods

x

3cm

6cm/s

Figure 33: Initial
conditions for a
mass oscillating on a
spring.

A mass on a spring oscillates withω0 = 3rad s−1. It is released with dis-
placement -3 cm and velocity 6 cms−1, as shown in fig. 33. Find the ampli-
tude of the oscillations and the times when the mass is at rest.

Solution 1: Usingsin andcos. The initial conditions are easiest to im-
pose if we use the general form of the solution

x = A cos(3t) +B sin(3t) =⇒ ẋ = −3A sin(3t) + 3B cos(3t). (92)

Working in cm, our initial conditions arex(0) = −3, requiringA = −3 and
ẋ(0) = 6 requiringB = 2. The amplitude isa0 =

√
A2 +B2 (eqn 16), so

a0 =
√
13cm. The mass is at rest wheneverẋ = 0, that is when,

3A sin(3t) = 3B cos(3t) =⇒ tan 3t =
B

A

=⇒ t =
1

3

(

arctan

(

B

A

)

+ nπ

)

(93)

=
1

3

(

arctan

(−2

3

)

+ nπ

)

= 0.85, 1.90, 2.95, ...s.
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Solution 2: Using complex numbers.The complex solution is

z = Aei3t =⇒ ż = 3iAei3t. (94)

Our initial conditions areRe{z} = −3, givingRe{A} = −3, andRe{i3A} = −3Im{A} = 6,
giving Im{A} = −2. The full solution is thus

z = (3− 2i)ei3t. (95)

The amplitude isa0 = |A| =
√
13cm and the complex velocity iṡz = (−9i + 6)ei3t = (−9i +

6)(cos(3t) + i sin(3t)). The physical velocity is zero wheneverRe{ż} = 0, i.e. whenever

Re{ż} = 6 cos(3t) + 9 sin(3t) = 0 =⇒ tan 3t = −2

3
(96)

=⇒ t =
1

3

(

arctan

(−2

3

)

+ nπ

)

= 0.85, 1.90, 2.95, ...s.

3.9.3 Why use the complex representation

For pure SHM the advantages of the complex representation are marginal. However, the complex
representation has several advantages for more complicated problems. Firstly, complex numbers
turn rotations into multiplications. This makes life much easier if you have several phase shifts to
keep track of. Secondly, the exponential function is the easiest possible function to differentiate.
Indeed, sinced

dt
eiωt = iωeiωt, exponential functions also turn differentiation into multiplication.

Finally, the complex exponential makes a link between exponential decay and the oscillating
functionssin andcos, which is very useful when we analyze damped and driven oscillators.

3.10 Summary of SHM

• The fundamental equation of SHM,ẍ+ω2
0x = 0, arrises whenever we have an equilibrium

with a restoring force proportional to displacement, such asF = −kx for the spring.

• The solution to the SHM equation can be written in two different ways

x = a0 cos(ω0t + φ) or x = A cos(ω0t) +B sin(ω0t), (97)

where the constants (a0 andφ orA andB) are fixed by the initial conditions of the oscilla-
tion butω0 only depends on the oscillator.

• The amplitude of the oscillation,a0, does not depend on the frequencyν = ω0/(2π).

• The SHM equation is linear, so we can add (superpose) solutions to form new solutions.

• SHM conserves total energy. On average it is shared equally between two forms (KE and
PE), but it oscillates between the two at2ω0.

• We can derive SHM from conservation of energy, provided our potential energy is quadratic.
All potentials are approximately quadratic near their minima so SHM is ubiquitous.

• SHM is the projection of motion in a circle onto a diameter of the circle. This gives a
geometric meaning to the phase of an oscillating variable.

• Circular motion can be neatly described by a rotating complex numberz = Aeiω0t. The real
part of this is a third general way of writing the SHM solutionx = Re{z} = Re{Aeiω0t}.
Both amplitude and initial phase are encoded by the complex numberA = a0e

iφ. However,
z also satisfies the SHM equation in its own right,z̈ + ω2

0z = 0.
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4 DAMPED HARMONIC MOTION

4 Damped Harmonic Motion

4.1 Equation of damped harmonic motion

Figure 34: Mass on a spring with damp-
ing. Top: Mass at rest in its equilibrium
position. Bottom: When the mass is atx
and has velocityẋ it feels both a spring
force−kx and a friction force−bẋ.

SHM conserves energy perfectly; after we set our sys-
tem oscillating the amplitude of the oscillations remains
constant. No oscillators actually behave like this, instead
they slowly dissipate energy through friction-like pro-
cesses, and the amplitude of the oscillations dies down
over time. Consider a horizontal mass on a spring, as
sketched in fig. 42, that, in addition to the spring force
Fs = −kx is also subject to a friction2 forceFf = −bẋ.
This is a force that always points opposite to the velocity
of the mass, acting to slow it down. Applying Newton’s
second law, the equation of motion of the mass is now

F = Fs + Ff = mẍ

=⇒ −kx− bẋ = mẍ

=⇒ ẍ+
b

m
ẋ+

k

m
x = 0. (98)

This is an example of the general form of the equation of damped SHM,

ẍ+ 2γẋ+ ω2
0x = 0, (99)

with γ = b/(2m) andω2
0 = k/m. Many other systems produce this equation of motion. Before

solving it properly, it is worth asking what we expect to happen. If γ = 0 there is no friction and
we have SHM: the system will oscillate atω0 in perpetuity. Ifω0 = 0 there is no spring force
and we just have a mass moving against friction. We now don’t expect oscillations, rather we
expect that, if we give the mass a velocity, it will just be slowed down by friction. The equation
of motion in this case,̈x = −2γẋ, is an exponential decay equation forẋ solved by

ẋ = ẋ(0)e−2γt, (100)

i.e. the mass slows down, with its velocity decaying by a factor of e in the timeτ = 1/(2γ).
The constantsγ andω0 both have units of1/time but with very different interpretations:

T = 2π/ω0 is the period of an oscillation whileτ = 1/(2γ) is a decay time. This leads us to
expect two different regimes. IfT ≪ τ then the system will oscillate many times before it decays,
leading to many oscillations with slowly falling amplitude. We call this light damping. IfT ≫ τ
then any velocity we give the mass will decay in much less thanone oscillation, and the mass will
then just move slowly back to the equilibrium point. We call this heavy damping.

4.2 Solving the equation of damped harmonic motion

If there is heavy damping we expect our system to simply decaywithout oscillation, so we try the
x = Ae−pt. Substituting this into eqn 98 turns the differential equation into a quadratic one:

ẍ+ 2γẋ+ ω2
0x = 0 =⇒ p2(Ae−pt)− 2γp(Ae−pt) + ω2

0(Ae
−pt) = 0. (101)

2Full disclosure: this isn’t actually a good model for friction. Sliding friction always points against velocity, as
this force does, but it is independent of speed. This is really a viscous drag force.
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Assumingx 6= 0 (i.e. we have some displacement) we can cancelAe−pt from this to get

p2 − 2γp+ ω2
0 = 0 =⇒ p = γ ±

√

γ2 − ω2
0. (102)

We have found not one but two solutions! The most general solution to eqn 98 is the their sum:

x = Ae
−
(

γ+
√

γ2−ω2
0

)

t
+Be

−
(

γ−
√

γ2−ω2
0

)

t
. (103)

We should not be surprised to have found two solutions, as this gives us a general solution with
two undetermined constants,A andB, which we can use to fix the initial displacement and
velocity of the oscillation. The SHM solution also has two undetermined constants,a andφ, for
this reason as, in general, will the solution to any second order ordinary differential equation —
i.e. one containing second derivatives.

4.2.1 Heavy damping,γ > ω0
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Figure 35: Heavily damped oscillators with dif-
ferent damping coefficients. Higher damping
leads to slower relaxation to equilibrium.

If γ > ω0 then the square root in eqn 102 is of a pos-
itive number andp is real. Our solution, eqn 103, is
thus the sum of two exponentially decaying terms
with different decay rates. The decay rates are set
by the system, while the unknown constants,A and
B, allow us to chose the initial displacement and
velocity. The system is non-oscillatory. Some typi-
cal solutions for an oscillator withω0 = 1 but with
different levels of heavy damping are shown in fig.
35. All the solutions start with a pure displacement,
x(0) = 1, ẋ(0) = 0. The higher the damping, the
longer the system takes to get back to equilibrium.

Example: Heavily damped pendulum

l

T

mg

θ

θ
.

Figure 36: A simple pen-
dulum moves in treacle.

A simple pendulum, sketched in fig. 36, hasl = 1m, m = 1kg
and swings in treacle which exerts a viscous drag force on themass
F = −bv, with b = 100Nsm−1. If I start the pendulum atθ = 0.2rad
and with an inward velocity of 3m/s, what is the mass’s subsequent
motion?

As previously, the mass’s velocity islθ̇ and its acceleration islθ̈.
Applying Newton’s second law perpendicular to the pendulumgives

mlθ̈ = −mg sin(θ)− blθ̇. (104)

For small anglessin(θ) ≈ θ, so we can rearrange this to get

θ̈ +
b

m
θ̇ +

g

l
θ = 0, (105)

which is eqn 99 withγ = b/(2m) = 50s−1 andω2
0 = g/l ≈ 10s−2. Therefore the solution is:

θ = Ae
−
(

γ+
√

γ2−ω2
0

)

t
+Be

−
(

γ−
√

γ2−ω2
0

)

t ≈ Ae−99t +Be−1t =⇒ θ̇ ≈ −99Ae−99t −Be−t.
(106)
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Figure 37: Decay of angle (left) and velocity (right) for the heavily damped pendulum. The initial velocity
decays very rapidly whereas the angle decays very slowly.

At t = 0 we needθ = A + B = 0.2 andlθ̇ = l(−99A− B) = −3m/s, requiringB ≈ 0.17 and
A ≈ 0.03, so the motion is

θ = 0.03e−99t + 0.17e−t. (107)

It is notable that the two terms in this solution decay at verydifferent rates. Looking at the
general solution, eqn 103, we see this is generic for extremely high damping. Ifγ ≫ ω0 then
√

γ2 − ω2
0 ≈ γ so one of the decay rates tends to2γ while the other tends to zero, exactly as we

see here. The meaning of these two different decay rates becomes clear if we plot the angle and
velocity of our damped pendulum, shown in fig. 37. The processstarts with a very high velocity,
generating lots of drag, which slows the pendulum down very rapidly. This decay gets faster if
there is more drag, and accounts for our rapid decay rate. However, although the pendulum is
brought close to rest very rapidly, it is still far from its equilibrium point. It then falls back to
θ = 0 very slowly as gravity works against drag. This process getsslower as drag gets higher,
and accounts for our slow decay rate. We have two very different decay rates because velocities
decay very rapidly but displacements decay very slowly.

4.2.2 Light damping,γ < ω0

In the case of light damping we expect our system to oscillatemany times with slowly decreasing
amplitude. At first sight this doesn’t seem connected to our non-oscillatory solution in the heavily
damped case, but actually complex numbers allow us to use exactly the same solution. Ifγ < ω0

the square root in eqn 102 is of a negative number (i.e. imaginary) sop is complex:

p = γ ± i
√

ω2
0 − γ2 = γ ± iωd, (108)

whereωd =
√

ω2
0 − γ2. Our solution is now a complex numberAe−pt = Ae−γteiωdt. The first

exponential in this expression is a regular real exponential decay, while the second is a complex
exponential representing oscillation atωd as we saw in SHM. AllowingA = a0e

iφ also to be
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Figure 38: Motion of a lightly damped oscillator with different damping coefficients. Dotted lines show
the decay of the oscillations ase−γt. N.B. the right-hand figure decays slowly and has a different time-axis.
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4.2 Solving the equation of damped harmonic motion 4 DAMPED HARMONIC MOTION

complex, the real (physical) part of the solution is

x = Re{Ae−γteiωdt} = a0e
−γt cos(ωdt + φ), (109)

which is oscillations at the damped angular frequencyωd =
√

ω2
0 − γ2, (which for light damping

is less than but close toω0) but with decaying amplitudea0e−γt. Interestingly the oscillations are
still harmonic: the frequency of the oscillations does not change as their amplitude diminishes.
The decay rateγ and the angular frequencyω are fixed for a given system, whilea0 andφ are
set by the initial conditions. We might worry what happened to the second solution,Ae−pt =
Ae−γte−iωt, but in fact it has the same real part, and generates the same physical solution.

Some examples of lightly damped solutions (eqn 109) are plotted in fig. 38. As in the heavy
damping case, these are all for systems withω0 = 1 and started with pure displacement,x(0) = 1,
ẋ(0) = 0, but with a range of levels of damping. We see that even for moderately heavy damping,
the period of the oscillations2π/ωd scarcely differs from2π/ω0, and that the lighter the damping,
the more oscillations take place before the amplitude decays.

Example: Lightly damped pendulum
The pendulum of fig. 36 is now in a much less viscous fluid (air?)and hence is lightly damped

with b = 0.01Nsm−1. At t = 0 I do not displace the pendulum, but I give it an angular velocity
of 0.2rads−1. How large is the initial amplitude. How long does the amplitude take to fall by a
factor ofe?

The equation for the pendulum is again

θ̈ +
b

m
θ̇ +

g

l
θ = 0, (110)

which is eqn 99 withγ = b/(2m) = 0.005s−1 andω2
0 = g/l ≈ 10s−2 ≫ γ2, so the pen-

dulum is indeed lightly damped. It therefore follows a motion of the form of eqn 109 with
ωd =

√

ω2
0 − γ2 ≈ ω2

0 ≈ 10. Since the displacement is zero att = 0 we knowφ = π/2, so the
solution is actually of the form

θ = a0e
−0.005t sin(10t) =⇒ θ̇ = a0e

−0.005t(−0.005 sin(10t) + 10 cos(10t)). (111)

The initial angular velocity is theṅθ(0) = 10a0 = 0.2, requiring the initial amplitude to be
a0 = 0.02. The full motion is

θ = 0.02e−0.005t sin(10t). (112)

The amplitude decays toa0/e (i.e. to about 37% ofa0) when0.005t = 1, requiringt = 200s.
The time period isT = 2π/ω ≈ 0.63s, so this decay takes200/0.63 ≈ 320 cycles.

4.2.3 Critical damping
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Figure 39: Critically damped oscillator.

If γ = ω0 then the square-root in eqn 102 is zero, and we
only have one solution,p = γ. As in the heavy damping
case, this is real so the solution is pure exponential decay
x = Ae−γt. This cannot be the whole story as there is
only one constant, but we need two since we can specify
the mass’s initial velocity and displacement. In fact, just
in this case, there is an entirely different second solution,

x = Ae−γt +Bte−γt. (113)
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4 DAMPED HARMONIC MOTION 4.3 Energy and amplitude decay

You can verify this by substituting it into eqn 99.
We again plot an example of this solution for a system withω0 = 1 and started with pure

displacement (x(0) = 1, ẋ(0) = 0) in fig. 39. We see critically damped systems are the fastest
decaying systems: they strike a balance between being overdamped, where friction prevents the
mass from getting back to equilibrium, and underdamped where the mass oscillates for many cy-
cles before the amplitude decays. Many damped systems are engineered to be critically damped
so that they settle to their equilibrium point as quickly as possible: examples include car suspen-
sion, measuring instruments, weighing scales, closing doors and, latterly, the Millennium Bridge.

Figure 40: Baby be-
ing weighed on a
spring balance.

Example: Spring balance.
I am designing a spring balance to weigh babies, seen in fig. 40. When

I put a typical 4kg baby on the spring it extends by 0.25m. Whatdamping
coefficient,b, do I need to critically damp my system? How long will it take
the reading on the scale to settle down in this case?

This is just a mass on a spring, withm = 4kg. When the baby hangs in
equilibrium there is a balance between gravity and the spring forcemg =
kx = 0.25k, sok = 160Nm−1. The equation of motion is then just eqn
98, so we haveγ = b

2m
andω2

0 = k/m = 40s−2. For critical damping
we needγ = ω0 =

√
40, requiringb ≈ 50Nsm−1. The system will then

decay ase−γt = e−
√
40t, so the reading on the balance will settle down when√

40t & 1, or in time t & 0.16s. If we damp less than this the baby will
bounce for an extended period. If we damp more than this the spring will
extend slowly and we will be waiting a long time for the reading.

4.3 Energy and amplitude decay

4.3.1 Energy dissipation

For a mass on a spring, the total energy, as before, is

E = KE + PE =
1

2
mẋ2 +

1

2
kx2. (114)

However, unlike in SHM, with damping the total energy is not conserved. Its rate of change is:

dE

dt
= mẋẍ+ kxẋ = ẋ(mẍ+ kx). (115)

Recalling that the equation of motion for a damped mass on a spring ismẍ + bẋ + kx = 0, we
see that the rate of loss of energy is

dE

dt
= ẋ(−bẋ) = −bẋ2. (116)

This is exactly the work done by the frictional force: the friction force has magnitude−bẋ and
the power is force times velocity.̇E is always negative as friction only removes energy.

4.3.2 Amplitude and energy dissipation for light damping

For light damping our mass and spring still performs many oscillations with displacement

x = a0e
−γt cos(ωdt+ φ). (117)
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4.4 Comparing oscillators 4 DAMPED HARMONIC MOTION

An example of this motion is plotted in fig. 41. The mass’s maximum displacement in each cycle
occurs whenωt + φ = 0, which occurs periodically with time periodT = 2π/ω. If the nth
maxima occurs at timetn, its displacement, which we call the amplitude of the oscillator attn, is

an = a0e
−γtn . (118)

At this point the mass is stationary, so all the energy is potential energy, and the total energy is

n n+1

____π2
ω

t

x(t)

T =

− e

e

a

aan

an+1

tt0

t

t

+a

−a

g

g-

-

Figure 41: Successive maximum displace-
ments in a lightly damped oscillator.

En =
1

2
kx2 =

1

2
ka20e

−2γtn . (119)

The amplitude decays in time ase−γt, while the en-
ergy decays at twice the rate, ase−2γt.

N.B. We have only calculated the energy at the
maximum of each cycle. We could however work
out the the energy at any time by substituting eqn
117 into eqn 114.

4.4 Comparing oscillators

We are often interested to know how good an oscil-
lator is, by which we mean how many oscillations
it performs before its amplitude decays. We saw
earlier that the general damped harmonic equation (eqn 99) contains two characteristic times, a
decay timeτ = 1/(2γ) and an oscillation periodT = 2π/ω0. The ratio of these two,τ/T , is an
estimate of the number of oscillations performed in one decay time. If this ratio is large damping
is very light and the oscillator is very good, performing many oscillations before the amplitude
decays. However, convention dictates that we in fact measure the quality of oscillators using two
slightly different measures, the logarithmic decrement and the quality factor.

4.4.1 The logarithmic decrement

The logarithmic decrement measures how much the amplitude of a lightly damped oscillator falls
by in one cycle. From eqn 118, the ratio of the amplitude of successive oscillations is

an+1

an
=

e−γtn+1

e−γtn
. (120)

However, the time period for oscillations isT = 2π/ω, so we knowtn+1 = tn + 2π/ω, giving

an+1

an
=

e−γ(tn+T )

e−γtn
= e−γT = e

− 2πγ
ωd . (121)

The logarithm of this is called the logarithmic decrement

∆ = log
(

e
− 2πγ

ωd

)

=
2πγ

ωd
. (122)

The amplitude of successive oscillations decays by a factorof e−∆, and the energy of successive
oscillations decays by a factor ofe−2∆. A good oscillator has a small∆.

The logarithmic decrement is often relatively easy to measure as it just requires us to measure
the ratio of successive amplitudes.
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4 DAMPED HARMONIC MOTION 4.4 Comparing oscillators

4.4.2 The Quality factor

The quality factor of an oscillator is defined as

Q =
ω0

2γ
. (123)

For a good oscillatorω0 > γ so Q is very large. We initially estimated that the number of
oscillations an oscillator would perform before significantly decaying isτ/T = ω0/(4πγ). The
quality factor is simply larger than this by a factor of2π, so it estimates the numbers of radians
of oscillation rather than the number of cycles.

For high quality oscillators we haveωd =
√

ω2
0 − γ2 ≈ ω0, i.e. they oscillate at close to their

undamped frequency. This allows us to relate the quality factor and the logarithmic decrement,

∆ =
2πγ

ωd

≈ 2πγ

ω0

=
π

Q
. (124)

This is useful because∆ is easy to measure, but most people prefer to think in terms ofQ.
The energy decays bye−2∆ each cycle, so, if we start withE0, aftern cycles we have left

E = E0

(

e−2∆
)n

= E0e
−2n∆. (125)

The number of cycles required for the energy to fall by a factor of e (i.e. to1/e or 37%) is

N =
1

2∆
=

Q

2π
=⇒ Q = 2πN. (126)

We see thatQ is the number of radians of oscillation required for the energy to fall by a factor of
e. It takes half as many radians for the amplitude to fall by thesame factor.

4.4.3 Quality factor of Big-Ben

Big Ben is a bell that, when struck, rings at around 100Hz for around 3s. Estimate Big Ben’s
quality factor.

The bell rings at 100Hz, so in 3s it performs3 × 100 = 300 cycles, i.e. the oscillation
takes 300 cycles to die down. However,Q is the number of radians not the number of cycles, so
Q = 2π × 300 ≈ 1800.

4.4.4 Quality factor of a radiating atom

Atoms emit light via quantum transitions. We can model this as the atom oscillating at the fre-
quency of the emitted light, just as Big-Ben oscillates at the frequency of the emitted sound. The
oscillation is damped because the light carries away energy. If, during a transition, an atom emits
a 3m long wave-train of visible light with wavelengthλ = 500nm, what is its quality factor.

The 3m long wave train contain3/(5× 10−7) = 6× 106 wavelengths, so the atom undergoes
6 × 106 cycles before its amplitude significantly decays. Again thequality factor is the number
of radians, not the number of cycles, soQ = 2π × 6× 106 ≈ 4× 107. The atom is a much better
oscillator than Big Ben.
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5 FORCED OSCILLATIONS

5 Forced Oscillations

Many interesting oscillating systems are driven by external forces. The classic example is a child
on a swing. The swing is effectively a pendulum, and will, if the parent gives it a single push,
perform damped oscillations. However, the child has more fun if the parent pushes the swing
periodically, so that it keeps swinging with high amplitudefor an extended period. This is an
example of a forced or driven oscillator: if we apply a periodic force to a damped oscillator we
can keep it oscillating indefinitely. Forced oscillations are everywhere, for example the pendula
in clocks are driven by wound springs, the water molecules infood undergo forced oscillations
when microwaved, and the air in a trumpet undergoes forced oscillations when it is blown.

F cos(ωt)0

Figure 42: Damped driven mass on a
spring. Top: Mass at rest in equilibrium.
Bottom: Mass atx and with velocityẋ. It
feels a spring force−kx a friction force
−bẋ and a driving forceF0 cos(ωt).

However, as always, we start our analysis with a hor-
izontal mass on a spring (fig. 42). We add an oscillatory
driving force applied to the massFd = F0 cos(ωt), so
Newton’s second law becomes

Fs+Ff+Fd = mẍ =⇒ −kx−bẋ+F0 cos(ωt) = mẍ.
(127)

We can rearrange this to get

ẍ+
b

m
ẋ+

k

m
x =

F0

m
cos(ωt), (128)

which is in the form of the general equation for the
damped driven harmonic oscillator

ẍ+ 2γẋ+ ω2
0x = f cos(ωt), (129)

with γ = b/(2m), ω2
0 = k/m andf = F0/m. Again,

before solving formally, it is worth asking what we ex-
pect to happen. If we start from rest, at first the the amplitude of the oscillations will build up, but
this growth should not continue indefinitely: eventually, the mass will settle down into a steady
oscillation at the driving frequency. We also know from our experience with swings that the am-
plitude of the swing’s oscillations are greatest if we matchthe frequency of our pushes with the
natural frequency of the swing, so in general we expect the amplitude of the steady oscillations
to depend not only on the strength of our driving, but also on its frequency. Returning to eqn 129,
in the long run we are expecting the mass to oscillate steadily at the driving frequency, so we try
a solution of the form

x = a0 cos(ωt+ φ). (130)

Substituting this proposed solution into eqn 129 gives

a0
(

(ω2
0 − ω2) cos(ωt+ φ)− 2γω sin(ωt+ φ)

)

= f cos(ωt). (131)

5.1 Low frequency response

If we apply a constant forceF to a mass on a spring, we know that, eventually, the spring will
settle down with constant extensionx = F/k as given by Hooke’s law. If we then change the
force a little and wait, the spring will settle down with a slightly different extension. Extending
this idea to an oscillating forceF = F0 cos(ωt), if the force varies sufficiently slowly the mass
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5 FORCED OSCILLATIONS 5.2 High frequency response

will always be essentially stationary, in equilibrium between the applied force and the spring
force,−kx = F0 cos(ωt), so the extension will be

x =
F0 cos(ωt)

k
, (132)

i.e. the displacement of the mass has amplitudeF0/k and is in-phase with the driving force. Math-
ematically, we can see this regime emerge from eqn 131 by realizing that at, very low frequencies,
we can neglect the terms proportional toω andω2, leaving

a0ω
2
0 cos(ωt+ φ) = f cos(ωt), (133)

which is clearly solved byφ = 0 anda0 = f/ω2
0, giving the solution

x =
f

ω2
0

cos(ωt) =
F0 cos(ωt)

k
, (134)

where the latter equality is for the mass-on-a-spring case.The key idea is that, if the driving
force is very slow, the mass’s velocity and acceleration arenegligible, so Newton’s second law
turns into a force balance between the applied force and the driving force.At low frequencies, the
resistance to the driving force is entirely provided by the spring.

5.2 High frequency response

We next imagine driving the mass at very high frequency. If, as sketched in fig. 43, we apply a
rapidly oscillating forceF0 cos(ωt) to an isolated mass Newton’s second law gives

F cos(ωt)0

m

Figure 43: Isolated
mass driven by a
forceF0 cos(ωt).

mẍ = F0 cos(ωt), (135)

which, integrating twice with respect to time, is solved by

x = −F0 cos(ωt)

mω2
. (136)

We see the mass’s displacement is always opposite to the driving force and, as the frequency gets
high, the amplitude of the oscillations vanishes. Taking a derivative reveals the mass’s velocity
also vanishes. If the mass is on a spring, driving the mass at high frequency results in negligible
displacements and velocities, so neither the spring force nor the damping force are relevant, and
the displacement is just given by eqn 136. We can also see thisemerge from eqn 131 since, ifω
is very large, the left side is dominated by the term proportional toω2, so it reduces to

− a0ω
2 cos(ωt+ φ) = f cos(ωt). (137)

This is solved byφ = −π anda0 = f/ω2, (we could also chooseφ = 0 anda0 = −f/ω, but we
prefer to keepa0 positive), so the displacement is

x =
f cos(ωt− π)

ω2
= −F0 cos(ωt)

mω2
, (138)

where the latter equality is again for the mass-on-a-springcase. The key is that at high frequency
the mass’s velocity and displacement are negligible, so drag and spring force are negligible and
Newton’s second law reduces to a balance between the appliedforce and the acceleration.At high
frequencies the resistance to the driving force is providedby the mass’s inertia.
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5.3 Resonant response 5 FORCED OSCILLATIONS

5.3 Resonant response

If we imagine driving a mass on a spring at exactlyω = ω0 =
√

k/m something interesting hap-
pens. The system oscillates atω0, but at this frequency of oscillation, independent of amplitude,
there is always a perfect balance between the spring force and the acceleration,̈x + ω2

0x = 0,
so neither the spring force nor the acceleration can counter-balance the driving force in Newton’s
second law. If the system were undamped, the amplitude of theoscillations would simply diverge.
However, real systems are damped, albeit often lightly, so when the oscillation gets big enough
the damping force can counterbalance the driving force, andthe system reaches a steady high
amplitude state. This is called resonance. We can see it clearly in eqn 131: if we drive the system
at exactlyω = ω0 then the acceleration and spring terms exactly cancel and weare left with

− 2a0γω0 sin(ω0t + φ) = f cos(ω0t), (139)

solved bya0 = f/(2γω0) andφ = −π/2 (again we wanta0 to be positive), so the displacement
is

x =
f cos(ω0t− π/2)

2γω0
. (140)

The displacement is quarter of a cycle behind the driving force, and the amplitude of the response
is only limited by the damping, so a good oscillator will produce a very high amplitude response.
This effect is called resonance.At resonance the resistance to the driving force is providedentirely
by the damping.

Theπ/2 phase shift between displacement and driving force means that the driving force is
in-phase with velocity, and thus does work each cycle, adding energy to the system. In the steady
state, this addition is exactly balanced by the energy dissipated by the damping.

5.4 Steady state solution at any frequency

We have just seen that the phase of the displacement shifts with the driving frequency. This is
exactly the sort of problem where complex numbers are particularly useful. The physical solution
is the real part ofz = Aeiωt (whereA = a0e

iφ encodes both the amplitude and the phase of the
displacement), and the force is the real part offeiωt. This leads us to write eqn 129 as

z̈ + 2γż + ω2
0z = feiωt. (141)

If we can solve this equation, the real part of the solution will be the physical solution to eqn 129.
Substituting in our proposed solution,z = eiωt, reduces this equation to an algebraic one

− ω2Aeiωt + 2iγωAeiωt + ω2
0Ae

iωt = feiωt, (142)

from which we can cancel a factor ofeiωt to get

A(−ω2 + 2iγω + ω2
0) = f =⇒ A =

f

ω2
0 − ω2 + 2iγω

. (143)

To recover the physical solution, we need to cast this is the form a0e
iφ. We first check we can

recover our three previous special cases. Ifω is very small we haveA ≈ f/ω2
0. This is real

and positive, so to write it in the forma0eiφ we simply needa0 = f/ω2
0 andφ = 0. At very

high frequencies we haveA ≈ −f/ω2. This is real and negative, so we needa0 = f/ω2 and
φ = −π. Whenω = ω0 we haveA = f/(2iγω0) = −if/(2γω0). This is negative imaginary,
so it needsφ = −π/2 (sincee−iπ/2 = −i)anda0 = f/(2γω0). We thus recover all three of
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Figure 44: Amplitude (left) and phase (right) of a damped harmonic oscillator as a function of driving
frequency. At low driving frequency the amplitude is low butfinite, and the system oscillates in phase with
the driving force. When driven atω0 the system resonates, responding with high amplitude and quarter of
a cycle behind the force. At high driving frequency the amplitude decays to nothing and the displacement
is half a cycle out of phase with the driving force. Systems with lower damping have higher resonances
and the phase shifts from 0 to−π more sharply.

our special cases correctly. More generally, the complex number inA’s denominator has length
|ω2

0 − ω2 + 2iγω| =
√

(ω2
0 − ω2)2 + 4γ2ω2, and makes an angletan(β) = 2γω/(ω2

0 − ω2) with
the real axis. ThereforeA has length and phase given by:

a0 = |A| = f
√

(ω2
0 − ω2)2 + 4γ2ω2

, tan(φ) =
2γω

ω2 − ω2
0

. (144)

N.B. We must be careful inverting this forφ as it varies between 0 and−π, but most arctan
functions only return values between−π/2 andπ/2.

In fig. 44 we plot the amplitude and phase for driven oscillators with a range of damping
coefficients, as a function of driving frequency. We see the high-amplitude resonance emerge in
each case as a peak aroundω = ω0, with impressively high amplitude when the damping is low.
During resonance the phase shifts from0 to−π. The shift is sharper with lighter damping.

5.4.1 Power and Resonance

In a driven oscillating system the driving force puts energyinto the oscillation while the damping
removes it. In the steady state the amount of energy in the system is constant, so these two
processes must balance: all the energy added by the driving force is dissipated by the damping.
To calculate how much energy is being dissipated, we first work out the velocity:

ẋ = −a0ω sin(ωt+ φ) =
−fω sin(ωt+ φ)

√

(ω2
0 − ω2)2 + 4γ2ω2

=
−f sin(ωt+ φ)

√

((ω2
0 − ω2)/ω)2 + 4γ2

. (145)

In the mass-and-spring case, the friction force isbẋ, so the instantaneous power dissipation isbẋ2.
Since the average ofsin2(ωt+φ) over one cycle is one half, the average rate power dissipation is

〈

bẋ2
〉

=
1

2
b

f 2

((ω2
0 − ω2)/ω)2 + 4γ2

. (146)

In fig. 45a we plot the power absorbed by three oscillators with different damping as a function
of driving frequency. We see a resonance peak in the power absorbed when the oscillators are
driven atω0, and that the reducing the damping dramatically increases this peak power.
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Figure 45: (a) Power absorbed by damped driven oscillators as a function of driving frequency. The
maximum power is absorbed at the resonant frequency,ω0 and the magnitude of the maximum power
increases if the damping coefficientγ is decreased. (b) Same curves as (a) but with each curve normalized
to the same height. We see that the resonance peaks are thinner for the higher quality oscillators. (c)
Zoomed in graph of the same power curve for the least damped system,γ = 0.05, showing the definition
of δω, the width of the peak at half maximum power. The dashed line is the Lorentzian power spectrum
given by eqn 147 instead of eqn 146, which agrees very well.

5.4.2 Example: IR Absorption Spectra
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Figure 46: HCl’s infrared absorption spectrum.

Molecules can be thought of as assemblies of
masses (atoms) connected by springs (bonds), so
they exhibit many vibrational modes of oscillation,
each with a characteristic frequency. If we fire a
beam of light into a beaker containing many iden-
tical molecules it drives these oscillations at its fre-
quency. If we then measure how much of the light
passes through the beaker, we know how much
power the oscillations have absorbed. The absorp-
tion at each frequency is described by eqn 146 so,
if we scan through frequencies, we can plot a graph like fig. 45, showing high absorption peaks
at each natural frequency. Such a graph is called an infra-red absorption spectrum because the
vibrational frequencies lie in the infra-red. From the resonant frequencies we can work out which
molecule we have in our beaker. Fig. 46 shows the absorbance spectrum of HCl, which, as we
saw earlier, we can model as two masses connected by a spring,so the spectrum shows a single
big peak at the resulting resonant frequency.

5.4.3 Lorentzian Peaks in Spectra (Non-examinable)

Other types of spectrography depend on resonances of different oscillations, for example nuclear-
magnetic resonance depends on atomic nuclei oscillating their magnetic moment in a magnetic
field. In all these spectra, we see peaks described by eqn 146 poking out of background noise.
Since we can’t see the peak’s tails, we describe them with a simplified version of eqn 146 that
only applies around the peak. Theω dependent term in the denominator is((ω2

0 − ω2)/ω)2 =
(ω − ω0)

2(ω + ω0)
2/ω2. Whenω ∼ ω0 (i.e. near resonance) this is well approximated by

(ω − ω0)
2(ω + ω0)

2

ω2
≈ (ω − ω0)

2(2ω0)
2

ω2
0

= 4ω2
0(ω − ω0)

2 =⇒
〈

bẋ2
〉

≈ 1

8
b

f 2

(ω − ω0)2 + γ2
.

(147)
This symmetric function, which describes the peak, is called a Lorentzian or a Cauchy distribu-
tion.
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5.4.4 Resonance width and the quality factor

In fig. 45b we plot the same absorption curves as in the left-most one, but normalized so they
all have the same height. This reveals a second feature of resonance: the width of the resonant
peak becomes narrower as the oscillator gets better. This means that, if we wish to cause a low
damping oscillator to resonate, we need to drive it very close to its resonant frequency.

We quantify this by asking how far from the resonant frequency our driving frequency can
be before the total power absorbed falls by a half. We call thewidth of the resonant peak at half
powerδω, as sketched in fig. 45c. From eqn 146, we see that if we drive the oscillator at exactly
ω0 the power absorbed isf 2b/(8γ2). To reduce this by half we need(ω2

0 − ω2)/ω = ±2γ, a
quadratic equation forω solved by

ωhp = ∓γ +
√

ω2
0 + γ2 (we take the positive discriminant so ωhp > 0). (148)

The resonant peak thus has widthδω = 2γ. Recalling the definition of the quality factor, we have

δω

ω0
=

2γ

ω0
=

1

Q
. (149)

Although high quality oscillators have dramatic resonances, they only occur if you drive them
very close to their resonant frequency.

5.4.5 Example: Breaking a wine glass

When I strike a wine glass, it rings at 700Hz, and the sound decays3 in half a second. If I seek to
shatter the glass by singing at its resonant frequency, how accurate a singer do I need to be?

In half a second, the glass performs750 × 0.5 = 350 cycles. Quality factor is the number of
radians for the oscillation to decay, so it isQ ≈ 350× 2π ≈ 2100. The glass is thus a very good
oscillator, so when struck it rings very close to its naturalfrequencyω0. To break the glass I must
sing at this resonant frequency. My margin for error is givenby

δω

ω0
=

δν

ν0
=

1

Q
≈ 0.0005 =⇒ δν = 0.0005ν0 = 0.3Hz. (150)

At this frequency a semitone is around 20Hz, so this is difficult. It’s easier if you simultaneously
sing at many glasses, each with a slightly different resonant frequency.

5.5 Transients and the quality factor (Non examinable)

Thus far we have only dealt with steady state driven oscillations. However, we are also interested
in how long it takes our system to reach the steady state: if I drive a system at the resonant
frequency how long do I have to wait for the amplitude reach its final value? Our general damped
driven oscillator is governed by by the equation

ẍ+ 2γẋ+ ω2
0x = f cos(ωt). (151)

We can write the general solution to this equation asx = xss + xd, the sum of the steady state
solution,xss, which we have already found, and a part decaying part,xd. However eqn 152 is
linear inx so substituting this form in gives

(ẍss + 2γẋss + ω2
0xss) + (ẍd + 2γẋd + ω2

0xd) = f cos(ωt). (152)

3We actually hear the glass ring for several decay times, but this is because our ears are amazing and can perceive
sound over many magnitudes of amplitude.
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We know thatẍss + 2γẋss + ω2
0xss = f cos(ωt), so this reduces töxd + 2γẋd + ω2

0xd = 0.
This is the equation for a damped undriven oscillator, whichwe already know is solved byxd =
ade

−γt cos(ωdt + φd), whereω2
d = ω2

0 − γ2 andad andφd are constants. The full solution is thus

x = xss + xd = x = a0 cos(ωt+ φ) + ade
−γt cos(ωdt+ φd), (153)

where the steady state amplitude and phase,a0 andφ, are fixed by eqn 144, whilead andφd are
fixed by the initial displacement and velocity. The system reaches its steady state whenxd has
decayed which, since it is the same solution, takes the same length of time as undriven oscillations
in the system take to decay. In this time the system conducts aboutQ radians of oscillation. Thus
Q is also the number of radians of oscillation a driven systemneeds to reach its steady state.

5.5.1 Example: Breaking a wine glass II

If, to break the wine glass from the previous example, I need the full amplitude of the resonance,
how long must I sustain the accurate note for?

When struck the glass’s oscillations decay in 0.5s. The decaying part of eqn 153 thus also
decays in 0.5s so, to reach the steady state (and break the glass) I need to sing for at least 0.5s.

5.6 More examples of resonance

• Mechanical resonance in bridges:Engineers must be careful to design bridges that don’t
have resonances that are driven by the bridge’s environment. The Millennium Bridge in
London has a resonant frequency close to walking frequency,and people walking on it
initially caused it to sway disconcertingly. The bridge wasclosed while damping was
added to reduce the resonant amplitude. More dramatically,the Tacoma Narrows Bridge in
Washington State USA had a resonant frequency excited by thewind, causing it to collapse.
You can watch this atwww.youtube.com/watch?v=j-zczJXSxnw.

Figure 47: Tacoma Narrows Bridge.
Still from film taken by Barney Elliott

Figure 48: The Bay of Fundy in Canada.
Map by Decumanus at en.wikipedia.

• Tidal resonances: The Bay of Fundy in Canada (fig. 48) is a shallow rectangular bay
facing the ocean. It takes about 12 h for a wave to travel from the bay’s mouth to its
back, reflect, and return to the mouth. High tide is every 12 h 25mins, providing a periodic
forcing at close to the bay’s natural frequency, so the the wave resonates and builds up a
large amplitude. In the open ocean tides are less than a metertall; in the Bay of Fundy tides
reach 16m.

• Acoustic resonances in musical instruments:A trumpet is a column of air with certain
resonant frequencies. When the player drives the trumpet, by buzzing with his/her lips
into the mouthpiece, the trumpet produces a loud sound, but only if the driving (buzzing)
frequency matches one of the trumpet’s resonant frequencies.
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5 FORCED OSCILLATIONS 5.6 More examples of resonance

• Electrical resonances in Radio and TV Tuners:These have electrical resonances which
are used to selectively amplify the frequency of the broadcast signal, but not unwanted
channels or noise. These resonances need a highQ so the resonant peak is thin and we only
amplify a very small frequency range. Traditional radios are tuned by changing the resonant
frequency until it matches the channel. Modern TVs and radios are more complicated.
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Figure 49: Higgs Boson Resonance from CERN

• Higgs Boson Resonance:According to the standard model of particle physics, a Higgs-
Field permeates all of space, and it has a resonant frequencyof oscillation. If we fire
protons together with a range of energies (which in quantum mechanics are equivalent to
frequencies, related via~) then, when we approach this resonant energy/frequency, the
protons drive an oscillation of the Higgs Field, which we seeas them colliding to form
a Higgs Boson. This shows up in our experiment as an increase in the probability that
the protons collide that looks just like a resonance peak. CERN recently found this peak,
shown in fig. 49, verifying the existence of the Higgs Boson.
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6 Electrical Circuits

6.1 Charge and Coulomb’s Law

Some fundamental particles carry a property called charge,which comes in two types, positive
and negative. Most matter we encounter contains an almost exactly equal number of protons,
which are positivity charged, and electrons, which are equally but negatively charged, so the
matter is electrically neutral. However, electrons are sufficiently mobile that we can easily move
some from one object to another, leaving both objects carrying a net electrical charge. When we
do this, we discover that objects carrying the same sign of charge repeal each other, while those
carrying opposite sign charges attract each other. If, as sketched in fig. 50, one object carries a
chargeq1 and the otherq2, and they are a distancer apart, the magnitude of this force is given by
Coulomb’s law,

q
1

q
2rq

1
q
2

4πε r
0

2
F=

q
1
q

2

4πε r
0

2
F=

Figure 50: Coulomb force between two charged particles.

F ∝ q1q2
r2

, (154)

where a negative force denotes attraction
and a positive force repulsion. If we work
in SI units (i.e. we measure length in meters and charge in Coulombs) then the constant of pro-
portionality is 1

4πǫ0
, whereǫ0 = 8.854187817...× 10−12F/m. In this unit system, the charge on a

proton ise = 1.60217657−19C, while the charge on an electron is−e.
We interpret this force as follows. There exists at every point in space a vectorE, which we

call the electric field, and if we put a particle with chargeq into an electric field, it feels a force

F = qE. (155)
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0

2
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Figure 51: Electric field from
caused by a positive charge.

However, charges alsoproducean electric field, which points ra-
dially away from them if they are a positive and radially towards
them if they are negative. More specifically, a distancer from a
charge, it produces an electric field

E =
q

4πǫ0r2
r̂, (156)

where r̂ is a unit-length vector pointing away from the charge,
as sketched in fig. 51. Putting these two results together to find
the force on one charge because of the electric field of a second
charge gives us back Coulomb’s law. This should remind you of

Newton’s law of gravitation, although with the important difference that we can have positive and
negative charge, whereas mass is always positive.

You will study static fields and charges extensively in Easter Term. However, in this course
we are going to jump ahead of ourselves and think about flows ofcharge around circuits. These
underpin all electronic devices, so their importance is hard to overstate.

6.2 Current

An electrical conductor is a material which contains mobilecharge carriers. Typically this is a
metal containing free electrons, though it could also be a fluid containing mobile ions. When we
apply an electric field to a conductor, the charges feel a forceqE and the mobile ones consequently
accelerate alongE. If the mobile charges were in a vacuum they would accelerateindefinitely.
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6 ELECTRICAL CIRCUITS 6.2 Current

However, they are actually in amongst densely packed atoms (for metallic conductors, a lattice
of atoms) with which they undergo energy-dissipating inelastic collisions. The mobile charge
carriers thus reach a finite average terminal velocity, known as the drift velocity.

I

E
q

A

<v>

Figure 52: Electric field in a
wire exerts a force on mobile
charges, causing them to move
with average velocity〈v〉.

Consider a wire with cross-sectional areaA, shown in fig.
52, containingn mobile charges per unit volume, each carrying
a chargeq. If we apply an electric field along the of the wire, the
charge carriers drift along the wire with average velocity〈v〉. In a
time t, the charge in a volumeA 〈v〉 t passes an observer standing
alongside the wire, which is a total chargeQ = nqA 〈v〉 t. The
rate at which charge flows past the observer is thus

I =
dQ

dt
= nqA 〈v〉 , (157)

which we call the electric current,I. If 〈v〉 changes as a function
of time so will the current. The total charge that flows past isthen given by integrating eqn 157:

Q =

∫

Idt. (158)

In the special case whereI is constant, we can trivially integrate this to get

Q = It. (159)

It is important to understand that this does not mean the wireis becoming charged:Q indicates
how much charge has flowed through the wire in a timet, but in every section of wireQ flows in
andQ flows out so the wire remains neutral.

The SI unit of current is the Ampere, which is one Coulomb flowing past each second.4

Since the charge on an electron is−1.6 × 10−19C, if we have a current on 1A, then we have
1/(1.6× 10−19) ∼ 6× 1018 electrons flowing past each second.

6.2.1 Example: speed of electrons in a current

A copper wire with cross-sectional areaA = 1mm2 carries 1 A of current. How fast do the
electrons drift? Copper has one free electron per atom, density ρ = 9g/cm3 and atomic weight
63.5g/mol.

A cubic centimeter of copper weighs 9 g, so it contains9/63.5 ∼ 0.14 moles of copper.
Recalling that Avogadro’s number isNA ≈ 6 × 1023, this is 8.5 × 1022 copper atoms. Each
copper atom contributes one free electron, so the density offree electrons isn = 8.5×1022cm−3.
The current flowing isI = −neA 〈v〉 = 1A, and we knowe = 1.6 × 10−19C andA = 1mm2 =
0.01cm2, so the drift velocity is〈v〉 = 1/(nqA) ≈ −0.01cms−1, or a tenth of a millimeter per
second. This is remarkably slow. Electric signals travel somuch faster than this because, when
we fire up a circuit, the electrons all along the wires start moving almost simultaneously.

The electron velocity above is negative because electrons carry a negative charge, so they
move in the opposite direction to the current. This is a simple matter of convention: we are stuck
with one introduced by Benjamin Franklin in the 1700s.

4Actually, the Ampere has a more fundamental definition and defines the Coulomb, but that’s beyond this course.
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6.3 Voltage 6 ELECTRICAL CIRCUITS

6.3 Voltage

Consider a ball of massm held a distanceh above the ground. If it is released, it will fall
under gravity gaining kinetic energy. When it reaches the ground, gravity has exerted a force
mg though a distanceh, so it has done workW = mgh on the ball, which has been converted
to kinetic energy. If the ball were not freely falling but sinking slowly through a viscous fluid,
gravity would still have done the same amount of work, but theenergy would be dissipated as
heat in the fluid. We therefore say that when the ball is at a heighth it has gravitational potential
energymgh, which is released when the ball moves down to the ground. More generally, we
might say there is a gravitational potential difference ofφh→0 = gh between the heighth and the
ground, which is an energy per unit-mass, meaning that if a massM moves fromh to ground, it
releases gravitational potential energyMφh→0.

dl

q

b

a

l

E

Figure 53: If I move
a chargeq a distancedl
against the electric field
E(l) in a wire, I must do
work qE(l)dl.

Exactly the same considerations apply to a charge moving in an
electric field. If we have an electric fieldE pointing along a wire, and
a charge in the wire moves a distancedl along the field direction, as
shown in fig. 53, the electric field does work on the chargedW =
qEdl. If the charge moves a long distance down the wire, froma to b,
the total work done by the electric field is

W = q

∫ b

a

Edl. (160)

This work done by the electric field must be converted into some other
form of energy. For current in a wire, it is released as heat but in other
circumstances the energy may be turned into light or motion.It is
useful to introduce a new concept, the electric potential difference betweena andb, defined as

Va→b =

∫ b

a

Edl, (161)

so that, if a chargeQ flows between froma → b, the total electric energy released is

W = QVa→b. (162)

This electric potential difference is measured in Volts, where one Volt is one Joule of energy per
Coulomb of charge. When one Coulomb of charge moves through one a potential difference of
one Volt, one Joule of energy is released. Note that, in both the electric and the gravitational case,
we only speak of the potential difference between two points, not the absolute potential at a point.

6.4 EMF and Batteries

A battery is a device with two terminals, that generates a sustained potential difference, conven-
tionally labeledξ, between them. If we connect a wire between the two terminals, there will be a
voltage drop along the wire (and hence an electric field within the wire) so a current,I, will flow
through it. Consequently a currentI is departing from the high voltage terminal and a current
I is arriving at the low voltage terminal, so a currentI also appears to be flowing through the
battery. When a Coulomb of charge flows through the wire it releasesξ Joules of energy as heat,
so when it then flows through the battery, from low voltage terminal to high voltage terminal, it
must acquireξ Joules of electrical energy to release on its next trip through the wire. We say that
the battery has an electro-motive-force (oremf) ξ, which is also measured in Volts (i.e. Joules per
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Coulomb) but in this case, meaning Joules of electrical energy gained by a Coulomb of charge
when it flows through the battery.

In a typical battery, energy is stored as chemical energy, and only converted to electrical
energy when a current flows. Other devices generateemfsby converting other forms of energy
into electrical energy: generators convert mechanical energy to electrical energy, solar panels
convert light energy and microphones convert sound energy.

While the picture of current flowing through a battery in thisway is a good way to think about
circuits, it isn’t necessarily how sources ofemfactually work. Some sources (notably generators)
do work in exactly this way, but, in general, we have no guarantee that the charges that flow into
the low voltage terminal are those that subsequently flow outof the high voltage terminal. Indeed
in most batteries charges do not move from low to high voltagewithin the battery (except when
you charge it) rather the high voltage terminal has a large stock of charge at high voltage, and
once it has all flowed to the low voltage terminal the battery is used up.

6.5 Resistance

If we connect a wire between two terminals of a battery then current flows through it, but how
much current? The answer depends both on the material and thegeometry of the wire, but for
almost all wires we find that the current is proportional to the applied potential difference

V = IR, (163)

where the constant of proportionality is called the wire’s resistance. This result is known as Ohm’s
law and the units of resistance are Ohms (Ω = VA−1), The number of Ohms of a component tells
you how many Volts you must apply to drive a current of one Amp though it.

We can understand Ohms law better by thinking microscopically. Imagine a cylindrical wire
of lengthl connected between the terminals of a battery with anemf of V . The wire will then
contain an electric field which will push the charge carriersthrough the wire with an average
velocity drift proportionalE, giving 〈v〉 = βE. We recall there is an average drift velocity
because, although the electric field accelerates the charges, they then collide with the atoms in
the wire and slow down again, soβ depends on the atoms in question, and hence the material
of the wire. The drift velocity will be constant along the wire’s length, so the electric field must
also be constant. This means that, looking at eqn 161, we can see the electric field must have size
E = V/l. Putting this into eqn 157, the total current in the wire isI = nqAβV/l, which is Ohm’s
law and, as a bonus, we have derived the wire’s resistance5, R = l/(nqAβ).

Figure 54: A battery
with emf ξ drives a cur-
rentI through a resistor.

Distilling this argument to its bare essentials, if we double the voltage
over the wire, we double the electric field in the wire, so we double the
drift velocity of the charge carriers, so we double the current. Current is
thus proportional to voltage. We also see that the resistance of a wire de-
pends on its geometry: if the wire is twice as long its resistance doubles,
if it doubles in cross-sectional area its resistance halves.

6.5.1 Resistors

Although all wires have some resistance, in practice the resistance of wires is very low. When
we build circuits we normally limit the current by using components known as resistors, which
have resistances that are orders of magnitude higher than a typical wire. We can make these, for

5We typically merge the three material dependent quantitiesinto a single material parameter, the conductivity of
the material,σ = nqβ or, if you prefer, its resistivityρ = 1/σ.
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example, by using a material such as graphite that has a much higher resistance than a metal.
We can now analyze the simplest possible circuit: a resistorof magnitudeR connected across a
perfect battery producing anemf of ξ. This is shown as a circuit diagram in fig. 54. The question
we ask is: what is the current through the resistor? The answer is simple: the potential difference
across the resistor is equal to theemf of the battery, and the current through the resistor is given
by Ohm’s law:

I =
ξ

R
. (164)

6.5.2 Resistors in series
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Figure 55: A battery
drives a currentI through
two resistors in series.

Suppose we now have two resistors, of resistanceR1 andR2, connected
in series across the battery, as shown in fig. 55. The same current,
I must flow through both resistors (otherwise we have more charge
flowing out of the first resistor than into the second, which would result
in it building up between them) and the potential differenceacross the
each resistor is given by Ohm’s law

V1 = Va→b = IR1 V2 = Vb→c = IR2. (165)

A Coulomb of charge liberates potential energyV1 when it passes
through resistor 1, thenV2 when it passes through resistor two. All
this energy must have been given to the Coulomb of charge by theemf
of the battery, so we have

ξ = V1 + V2 = IR1 + IR2 = I(R1 +R2). (166)

We see that the two resistors offer a combined resistance to the current
of R = R1 +R2. This easily generalizes ton resistors in series, giving

R = R1 +R2 +R3 + ...Rn. (167)
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Figure 56: A battery
drives a currentI through
two resistors in parallel.

This is consistent with our observation that a wire’s resistance is
proportional to its length. This result also confirms our intuition that
we can neglect the resistance of the wires in a circuit like fig. 54. The
wire has a tiny resistanceRw and is in series with a resistorR, so the
total resistanceRw +R is scarcely bigger thanR. Correspondingly the
voltage drop across the wireVw = IRw is also tiny, so the big resistor
feels almost the the wholeemfof the battery. In practice we completely
neglect the wire’s resistance in this type of circuit.

6.5.3 Resistors in parallel

Next we consider two resistors,R1 andR2, connected in parallel across
the battery, as shown in fig. 56. Now there is no need for the twoto
carry the same current, but in both cases any charge that flowsthrough
the resistor must lose the entire amount of energy it was given by the battery so the potential
difference across each resistor is the wholeemf, ξ. The current in both resistors is thus

I1 =
ξ

R1

, I2 =
ξ

R2

, (168)
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and the total current provided by the battery is

I = I1 + I2 = V

(

1

R1
+

1

R2

)

. (169)

From the battery’s perspective, the resistors are equivalent to a single resistor with resistance

1

R
=

1

R1

+
1

R2

. (170)

Again we can easily generalize this to an resistors in parallel,

1

R
=

1

R1
+

1

R2
+ ...

1

Rn
. (171)

This is consistent with our observation that a wire’s resistance is inversely proportional to its area.

6.5.4 Realistic Batteries
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Figure 57: A realistic bat-
tery can be modeled as an
ideal battery in series with
an internal resistanceRint.

Ideal batteries produce the sameemf regardless of how much current
they are providing. Real batteries are not so impressive, since they
do offer some resistance to current passing though. A more realistic
model is that they behave like an ideal battery in series witha small
internal resistanceRint, as shown in fig. 57. When the battery is called
on to produce currentI, the voltage drop across the internal resistance
is V = IRint, so the voltage seen by the rest of the circuit isξ − Rint.
For most purposes we neglect this complication.

6.6 Power in electric circuits

If a total chargeQ flows through a potential differenceV then the total electrical energy released
isW = QV . The rate at which electrical energy is being released is thus

P =
dW

dt
= V

dQ

dt
= IV, (172)

This applies in any situation where a current flows through a voltage so, for example, if a battery
produces anemf of ξ and a currentI, it is providing electrical energy at a rateξI. If the voltage
drop is accross a resistor (and the current through the resistor), then the power we are calculating
is the rate at which electrical energy is dissipated as heat in the resistor. However, in this case,
voltage and current are related by Ohm’s law, so we can write the general result as

P = IV =
V 2

R
= I2R. (173)

6.7 Kirchhoff’s Laws

Kirchhoff’s laws encode two principles that we have alreadyimplicitly used in our treatment of
resistors in series and parallel. However, writing them down formally allows us to tackle more
complicated networks of resistors and batteries.
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6.7.1 Kirchhoff’s Current Law

Kirchhoff’s current law states that current is conserved ata junction, that is, the total current
flowing into a junction of a circuit is equal to the total current flowing out. If this were not
true there would be more charge arriving than departing, so charge would be building up at the
junction, which is not observed.

An example of a junction in a circuit is shown in fig. 58. Kirchhoff’s law tells us thatI1 =
I2 + I3 + I4. In general we write this as

II

I

I

1

2

3

4

Figure 58: A battery drives a
currentI through two resistors
in parallel.

∑

i

Ii = 0, (174)

where currents are assigned positive values if they are flowing into
the junction and negative values if they are flowing out.

We already used this principle when we discussed resistors
in parallel: when we stated that the total current provided by the
battery is equal to the sum of the currents flowing through thetwo
resistors, we were implicitly applying Kirchhoff’s current law to
the junction marked A in fig. 56.

6.7.2 Kirchhoff’s Voltage Law

Kirchhoff’s voltage law is a somewhat disguised version of the principal of conservation of en-
ergy. If we imagine a charge moving around any loop in our circuit, the amount of electrical
potential energy it picks up going through any sources ofemf should equal the amount it loses
passing through any resistors. If this were not true, then wewould have a situation where we
were producing more heat energy in the resistors than we wereextracting from our sources of
emf, violating conservation of energy. When a chargeq passes through a component over which
there is a voltage changeVi, it gains or loses energyqVi. The formal statement of Kirchhoff’s
voltage law is thus that around any loop

∑

i

Vi = 0, (175)

so that the total energy picked up by a charge going around theloop, q
∑

i Vi, is zero. TheVi

are positive if a charge moving through the component gains energy, and negative if the charge
moving through the component loses energy, where the movement is in the direction of the loop
we are imagining taking the charge in.

We already used this principle when we discussed resistors in parallel: when we stated that
the voltage across each resistor was equal to the battery’semf we were implicitly applying Kirch-
hoff’s voltage law to the loop in the circuit containing the battery andR1, and the loop in the
circuit containing the battery andR2. Similarly with resistors in series, when we stated that the
sum of the voltage drop across the two resistors should equalthe battery’semf, we were implicitly
applying Kirchhoff’s voltage law to the single loop in the circuit.

6.7.3 Using Kirchhoff’s laws: signs

When applying Kirchhoff’s laws it is all too easy to get confused about the signs of the various
currents and voltages. The current law is easy. Draw a diagram of the circuit and label each
branch with the current flowing through it,Ii, and an arrow indicating the current’s direction. It
doesn’t matter if the arrow points in the direction the current actually flows — if it doesn’t you
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will just find your current is negative — but it is imperative to choose a direction for each current
and stick to it. At each junction, the signs in Kirchhoff’s current law are dictated by whether the
currents as marked flow into or out of the junction. The voltage law is harder because there are
two sets of signs to keep track of. The voltage across a component labels how much energy a
charge gains or loses when it flows through the component in a particular direction. This can be
positive if the component extracts electrical energy, likea resistor, of positive if it supplies energy
like a battery. Secondly, when we apply the voltage law to a loop, we must also keep track of
whether we pass each component with or against the assigned direction of the voltage. A simple
way through is to mark next to each component a voltageVi which is the potential lost by a
charge flowing through the component in the direction of the indicated current. For a resistor, this
is positive, related to the current by Ohm’s lawVi = IiR, while for a battery, if the current flows
through from the negative terminal to the positive terminalit will be negative,Vi = −ξ. In the
voltage law we then imagine taking a charge around a loop, so it loses energyqVi if it passes the
component in the direction of the indicated current and gains energyqVi if it passes against the
direction of the indicated current. The voltage law then says that the total energy change around
the loop must be zero.

3

3

3

V V1 �

V3V4 V5

Figure 59: Left: Diagram of a circuit containing two batteries. Right:We label a current in each branch
and a voltage for each component.

As an example of using Kirchhoff’s laws, consider the circuit shown if fig. 59. On the left
we see the circuit problem as posed: a network of three resistors and two batteries. We wish to
find the voltage over and current throughR3. On the right, we have the same circuit, but now
each of the three branches has a current assigned, with the directions indicated by an arrow, and
each component has a voltage change assigned. Applying the current law to the junction atb (or
equivalentlye) gives

I1 + I2 − I3 = 0 (176)

Applying the voltage law to the left loop going clockwise (a → b → e → f → a) we pass three
components, each in the direction of the indicated current,so we have

− V1 − V3 − V4 = 0 =⇒ ξ1 − I1R1 − I3R3 = 0. (177)

In the latter equality, we have applied Ohm’s law to the two resistors, and used the fact that we
know the battery’semf, which appears with a positive sign because theVi indicate the energy
lost by a Coulomb of charge flowing through a component, but a Coulomb of charge passing
through the battery gains energy soV4 = −ξ1. Similarly, applying the voltage law to the right
loop (c → b → e → d → c) we have

− V2 − V3 − V5 = 0 =⇒ ξ2 − I2R2 − I3R3 = 0. (178)
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These three equations can be solved for the three unknown currents,I1, I2 andI3. Using the latter
two to eliminateI1 andI2 from the first gives a linear equation forI3,

ξ1 − I3R3

R1

+
ξ2 − I3R3

R2

− I3 = 0 =⇒ I3 =
ξ1/R1 + ξ2/R2

1 +R3/R2 +R3/R1

. (179)

The voltage drop overR3 is correspondingly

V = I3R3 =
ξ1/R1 + ξ2/R2

1/R3 + 1/R2 + 1/R1
. (180)

6.7.4 Using Kirchhoff’s laws: current loops

I1
I2

Figure 60: Analyzing the circuit in fig. 59
via current loops.

The fact that current must be conserved, means that
charges must continuously flow in loops. If we assign
to each loop in a circuit a current flowing around it, we
generate a set of currents that automatically obey Kirch-
hoff’s current law, leaving us with less work to do. To
treat the previous problem in this manner, we assign cur-
rentsI1 andI2 to the two loops, as shown in fig. 60, so
that the current flowing throughR3, which is in both
loops, isI1 + I2. Notice that Kirchhoff’s current law is
automatically satisfied atb ande. All that remains is to
apply the voltage law to the two loops, giving

ξ1 − I1R1 − (I1 + I2)R3 = 0 and ξ2 − I2R2 − (I1 + I2)R3 = 0. (181)

We wish to find the current throughR3, which is I1 + I2, so we simply add the first equation
divided byR1 to the second divided byR2 to get

ξ1/R1+ξ2/R2−(I1+I2)(1+R3/R1+R3/R2) = 0 =⇒ I1+I2 =
ξ1/R1 + ξ2/R2

1 +R3/R2 +R3/R1
, (182)

as before.

I1
I2

3

4 5 6I3

Figure 61: A more complicated circuit analyzed via cur-
rent loops

This technique saves more effort in cir-
cuits with more loops such as that shown
in fig. 61. Suppose here we wish to
find the current thoughR6. The circuit
has six branches, so our original approach
would require us to introduce six currents,
but using loops we can use only three
currents, and immediately satisfy Kirch-
hoff’s current law. Applying the voltage
law to the three loops then gives three lin-

ear equations in our three unknown currents,

ξ1 − I1R1 − (I1 − I2)R4 = 0

−I2R2 − (I2 − I3)R5 − (I2 − I1)R4 = 0

−I3R3 − I3R6 − (I3 − I2)R5 = 0

which, in principle, we can easily solve to findI3.
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6.7.5 Using Kirchhoff’s laws: Assigning Voltages

We can do an analogous trick to automatically implement Kirchhoff’s voltage law. We know from
Ohm’s law that there is negligible potential difference across each wire in the circuit, so we label
each wire in the circuit with a voltage relative to some arbitrary reference point in the circuit,
normally taken for convenience as the negative terminal of the battery. The potential difference
across each component is then given by the difference in voltages of the wires on either side of
it. If we do this then Kirchhoff’s voltage law is automatically satisfied since, whatever loop we
move a charge around, it gets back to the same voltage it started at. Consider, for example, our
resistors in series diagram, fig. 55. If we assign a voltageVa to the wire markeda, Vb to wire b
andVc = 0 to wire c (which connects to the negative terminal) then, working clockwise around
the loop, the voltage drop overR1 is V1 = Va − Vb, the voltage drop overR2 is V2 = Vb − Vc and
the voltage drop over the battery isV3 = Vc − Va. Kirchhoff’s voltage law is thus automatically
satisfied:

− V1 − V2 − V3 = −(Va − Vb)− (Vb − Vc)− (Vc − Va) = 0. (183)

RecallingVc = 0, we know the battery’semf is ξ, soVa = ξ. Applying Ohm’s law to the two
resistors then givesξ − Vb = IR1 andVb = IR2, which we can solve to findIR1 + IR2 = ξ, as
before, andVb = ξR2/(R1 +R2).

6.8 Capacitors
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Figure 62: A capacitor formed from
two parallel plates with charge±Q.

Consider two parallel conducting plates, one holding a charge
+Q and the other a charge−Q, as sketched in fig. 62. If
a small chargedQ is released from the+Q plate, it will
be repelled by the+Q plate and attracted by the−Q plate
so, if there is a vacuum between them, it will fly towards
the−Q plate gaining kinetic energy. When it collides with
the−Q plate it will stick, turning all its kinetic energy into
heat. Where did this heat energy come from? The separated
+Q and−Q charges are storing electrical potential energy.
When the chargedQ flows between them, both plates be-
come slightly less charged, so they are storing less electrical
potential energy, and the balance has been released as heat.
We define the voltage between the two plates as the amount
of electrical potential energy released when one Coulomb ofcharge moves between them, so, in
the previous situation, the amount of electrical potentialenergy converted to heat wasV dQ.

+Q

-Q

V C

Figure 63: When a resistor con-
nected across the plates of a charged
capacitor, it drives a current through
the resistor.

Two such charged plates are an example of a circuit com-
ponent called a capacitor. Typically between the plates we
put a good insulating material, so no charge can pass be-
tween them as discussed above. However, if we then con-
nect a resistorR between the two plates, as shown in fig. 63
it provides path for charge to flow between them and a cur-
rent I = V/R will flow through the resistor until the plates
are completely uncharged. The charged plates thus behaves
like a battery withemf of V , except that, rather than stor-
ing energy chemically, they store energy directly as electrical
potential energy. However, unlike a battery which has fixed
voltage between its terminals, the voltage between the two plates depends on the charge they are
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holding. Returning briefly to the case where a chargedQ is allowed to pass between the plates,
if we double the charge on the plates, we double the electric field between them, so the charge
is pushed twice as hard, and it arrives at the negative plate with twice as much energy, meaning
the voltage between the plates has also doubled. In general the voltage between the plates is
proportional to the charge on them, so we write

Q = CV, (184)

where the constant of proportionalityC, is called the plates’ capacitance, and is measured in
Farads, where one Farad is one Coulomb per Volt.

Figure 64: Concentric
cylindrical conductors as a
capacitor.

A capacitor can be formed by any pair of separated conductorsthat
carry equal and opposite charges: for example a pair of separated con-
ducting spheres, or concentric conducting cylinders (fig. 64) or con-
centric conducting spheres. However, all capacitors are described by
eqn 184, with the value of the capacitance depending on the geometry
of the capacitor. A capacitor is a circuit component, like a battery or a
resistor, but with the voltage across it described by eqn 184rather than
Ohm’s law (resistors) or simply being a constant (batteries). We say
that a capacitor carrying charges±Q on its two conductors is “charged”
or “carries a chargeQ”, but it is important to realize that, although the
two conductors are charged, overall, the capacitor is neutral.

6.8.1 Energy stored in a Capacitor

To charge a capacitor we must move charge from the negativelycharged plate to the positively
charged plate. If the capacitor is holding a chargeq then to move a further chargedq we must do
work dW = V dq which is stored as electrical potential energy. However, since it is a capacitor,
this voltage depends on the charge the capacitor is holding via eqn 184, givingdW = (q/C)dq.
To find the total work needed to charge a capacitor for 0 toQ we must sum these contributions
using an integral, giving

W =

∫ Q

0

(q/C)dq =
Q2

2C
=

1

2
QV, (185)

whereQ is the final charge on the capacitor andV its final voltage. We can verify that all this
energy is stored in the capacitor by considering discharging it through a resistor. Each time a
chargedq flows through from the positive plate to the negative one through the resistor, it converts
dW = V dq of electric energy into heat. However, again, this voltage depends on the charge the
capacitor is holding via eqn 184, givingdW = (q/C)dq. If we sum these contributions to find
the total energy dissipated in the resistor during the discharge, we have exactly the same integral
as eqn 185. Thus all the energy we thought we stored in the capacitor is released as heat in the
resistor during discharge, confirming it was stored in the capacitor.

6.8.2 Exponential decay in an RC circuit

We are also interested in how long it takes to charge and discharge a capacitor. If we have an RC
circuit, as shown in fig. 63, in which the capacitor has a charge Q, then the voltage across the
resistor isV = Q/C, and the current through the resistor discharging the capacitor is I = V/R =
Q/(CR). However, current is rate of flow of charge so, if a currentI flows for a timedt then a
chargedQ = Idt has flowed from the positive plate to the negative plate, reducing the charge on
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the capacitor bydQ. We thus have

dQ

dt
= −I = −V

R
= − Q

CR
, (186)

t
t=τ t=2τ

Q

Q(0)

Q(0)/e

Q(0)/e2

Figure 65: Decay of the charge on
a capacitor as it discharges through a
resistor.

where the negative sign arises because the capacitor is dis-
charging, so the current acts to reduceQ. Integrating this
gives a simple exponential decay of the charge on the capac-
itor as a function of time:

Q(t) = Q(0)e−
t

RC . (187)

The charge on the capacitor, as sketched in fig. 65, decays
with characteristic decay timeτ = RC. As we might ex-
pect, a big resistor means little current flows, so the capacitor
discharges very slowly.

The energyW (t) stored in a discharging capacitor is thus

W (t) =
1

2

Q(t)2

C
=

1

2

Q(0)2

C
e−

2t
RC = W (0)e−

2t
RC , (188)

so the energy decays twice as quickly as the charge, with decay timeRC/2 = τ/2.

6.8.3 Charging a capacitor with a battery +Q -Q

ξ
C

Figure 66: Charging a capacitor with
a battery.

Finally, we are also interested in the mechanics of charginga
capacitor with a battery. Consider a circuit such as that shown
in fig. 66 containing a battery a capacitor and a resistor. If the
capacitor starts uncharged, we expect that current will flowin
the circuit, charging the capacitor.

To analyze this circuit, we first apply Kirchhoff’s voltage
law, which tells us that the voltage across the resistor and
capacitor must sum to theemf of the battery

ξ = IR +
Q

C
. (189)

Secondly, we know that the capacitor remains overall uncharged, so the current flowing on to its
positive plate must equal the current flowing off its negative plate, so we haveI = dQ

dt
. Taking a

time derivative of the above equation thus gives a simple exponential decay law for the current in
the circuit:

0 = R
dI

dt
+

I

C
=⇒ I = I(0)e−

t
RC . (190)

We see that the current in the circuit is high at early times, and decays thereafter. This is because
at first the capacitor is uncharged, so there is no voltage across it, and the wholeemf of the battery
is lost across the resistor, driving a large current throughit. As charging proceeds, the voltage
over the capacitor rises, so the voltage across the resistorfalls, and hence the current also falls.
At t = 0 the capacitor is uncharged (Q = 0) so substituting this current (eqn 190) into eqn 189
givesI(0) = ξ/R. The same substitution gives the charge att as

Q(t) = Cξ
(

1− e−
t

RC

)

. (191)
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We see that the capacitor charges with the same characteristic timeτ = RC as it takes to decay.
Finally, it is interesting to think about energy in this charging process. There is something of

a mystery here, since a chargeQ = Cξ has flowed off the positive terminal of the battery and
onto the negative terminal, releasing energyQξ, but the energy stored on the capacitor is only
1
2
Qξ. The other half of the energy is dissipated in the resistor. We can see this directly, since we

know the power dissipated in a resistor isI2R, so the total energy dissipated in the resistor in the
charging process is

W =

∫ ∞

0

I(t)2Rdt =
ξ2

R

∫ inf

0

e−
2t
RC dt =

1

2
Cξ2 =

1

2
Qξ. (192)

If our resistor is very small, the capacitor will charge veryquickly, but half the energy lost by the
battery is always dissipated in the resistor.

6.9 Inductors

This is not a course on magnetic fields, which are covered in greater detail in Easter term. How-
ever, here we need to understand a final circuit component called an inductor, which works via
magnetic fields, so we first recap their properties.

6.9.1 Magnetic Fields

The magnetic field, much like the electric field, is describedby a vector at each point in space,
which we labelB. However, the forces produced by magnetic fields are altogether more compli-
cated than those produced by the electric field: unlike in theelectric case, the universe doesn’t
contain any objects that carry a net “magnetic-charge”qB which experience a forceF = qBB. If
we put a regular electrically charged particle into a magnetic field, it does experience a force, but
only if it’s moving. More precisely, if a chargeq has velocityv in a magnetic field, it experiences
a magnetic force which is orthogonal to both the magnetic field and the velocity of the particle
given by:

F = q(v×B). (193)

Figure 67: Magnetic Field of a bar
magnet. The field lines radiate out of
the north pole and into the south pole.
Image by wikipedia user by Geek3,
licensed as GFDL.

The unit of the magnetic field is the Tesla (T), where one
1T=1Ns/(Cm): a charge of one Coulomb moving at one me-
ter per second perpendicular to a field of 1 Tesla feels a force
of one Newton.

We can thus observe magnetic fields by looking at the
forces they exert on moving charges, or currents in wires.
However, nature also provides us with another tool. Some ob-
jects, such as bar magnets, carry magnetic dipoles, meaning
that they appear to carry a magnetic charge+qB or north-pole
at one of−qB (a south-pole) at the other end. These magnetic
charges appear to produce magnetic fields that radiate out of
the positive charge (north-pole) and into the negative charge
(south pole), so the whole dipole produces the well-known
field of a bar magnet, shown in fig. 67. Furthermore, just
like electric charges, the north-poles of two magnets repel, as
do the south-poles, while north and south poles attract each
other. However, unlike in the electric case, we cannot isolate
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a net charge: if we try, for example by cutting a bar magnet in half, we find it divides into two
shorter dipoles rather than separate north and south poles.Even if we get down to fundamental
particles, we find that they still cary an intrinsic magneticdipole. The magnetic charges are a
useful way of thinking, but, as far as we know, they don’t actually exist.

If we put a dipole in a homogeneous magnetic field, the field does not exert a net force on the
dipole (since the forces on the two poles are opposite and cancel out) but it does produce a turning
moment that tries to align the dipole with the magnetic field.This is how a magnetic compass
works: the needle in it is a magnetic dipole, which aligns with the magnetic field of the earth.
Iron filings behave similarly since they acquire a magnetic dipole when placed in a magnetic field.
This allows us to visualize magnetic fields by sprinkling iron filings or little bar magnets around
another source of magnetic field and observing which way theyalign.

6.9.2 Magnetic Field from a wire
I

B

Figure 68: Magnetic Field of a cur-
rent carrying wire. The field forms
concentric circles around the wire,
with the direction given by the right-
hand-rule. Image by wikipedia user
by Jfmelero, licensed as GFDL.

If we have a long straight wire and we run a currentI through
it, it produces a magnetic field in its surroundings. We can ob-
serve the form of this field with iron filings, and we discover
that, as sketched in fig. 68, the magnetic field forms as rings
around the wire, with a direction given by a right-hand-rule
(point your right thumb along the current, and your fingers
wrap in the direction of the field). The strength of the field is
proportional to the strength of the current.

Historical note: this was first reported by Oersted in
1820, who conducted a famous experiment placing a com-
pass over a conducting wire, and showing that the needle of
the compass aligned perpendicular with the wire. This was
the first time a force had been seen to act between two objects
(the needle and the wire) that wasn’t along their separation. It then took Ampere less than a week
to show that the magnetic field lines lie in concentric circles around the wire.

Figure 69: Magnetic Field of a cur-
rent loop traced with iron filings.

The magnetic field of a wire bent into a loop is shown
traced in fig. 69. We can qualitatively understand the shape
of the field by breaking the wire into small arc lengths that are
effectively straight, and imagining that each produce concen-
tric rings of field. Each of these contributions produces a field
through the loop in the same direction, so there is a large field
through the loop. Outside the loop the contributions point in
different directions, so the field is weaker. The strength ofthe
field is proportional to the strength of the current.

6.9.3 Electromagnetic Induction

Thus far, electricity and magnetism have been separate phe-
nomena, albeit both acting on the same charges. However, a
simple experiment reveals that, at least when the fields vary

in time, they are intimately linked. If , as sketched in fig. 70, we have a wire loop, and we move
a bar magnet towards it, we discover it causes a current to flowin the loop. However, the current
only flows while the magnet is being moved: if we hold the magnet still the current stops. More
precisely, the current is proportional to the strength of the magnet’s field and the velocity of the
magnet through the loop. If we reverse the velocity of the magnet, we reverse the direction of the
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current. We can also establish that the current is inverselyproportional to the wire’s resistance,
so, invoking Ohm’s law, we can say that the movement of the magnet through the loop is inducing
anemf in the loop proportional to the velocity and strength of the magnet.

Figure 70: When a magnet moves
towards a coil, it induces a current
to flow in the coil

More careful experiments reveal that theemf around any
loop induced by changing magnetic fields is given by

ξ = −dφB

dt
, (194)

whereφB, called the magnetic flux, measures how much mag-
netic field passes through the loop. If we think of the magnetic
field as a velocity field for a fluid, we can then calculateφB as
the rate at which the fluid flows through the loop. For example,
in the very simple case where we have a loop of areaA and a
constant magnetic fieldB flowing through it perpendicular, we
simply haveφB = BA. The units ofφB are thusTm2. In our
initial experiment, when the magnet is far from the loop, there

are very few magnetic field lines flowing through the loop, soφB is small. When the magnet is
close to the loop, many field lines pass through the loop, soφB is big. Theemf in the loop arrises
whenφB changes, which occurs when the magnet approaches the loop.

The minus sign in eqn 194 encodes an important idea. As we saw in fig. 69, when current
flows in a loop it produces its own magnetic field, which itselfflows through the loop. The sign in
eqn 194 indicates that the direction of the current induced in the coil will be such that its magnetic
field opposes the change inφB driving the current. The result is known as Lenz’s law.

6.9.4 Self Inductance

When a current flows around a loop it produces a magnetic field that itself flows through the loop.
Thus the magnetic field of the loop itself has a magnetic fluxφB through the loop. Although
calculating this flux is difficult, we know that if we double the current in the loop, we will double
the strength of the field, and thus have twice the flux, so the flux through the loop is proportional
to the current in the loop. We therefore write

φB = LI, (195)

where the constantL is known as the loop’s self-inductance, and is measured in Henrys, where
1H = 1Tm2/A. This linear relationship holds for all geometries of loops, but the constant of
proportionality,L, is different for loops of different shapes.

If the current through a loop changes, then the flux through the loop from its own magnetic
field, φB = LI, changes. By the law of electromagnetic induction, eqn 194,this means that an
emf is generated in the loop

ξ = −dφB

dt
= −L

dI

dt
. (196)

This emf is proportional to the rate of change of the current in the loop. However, theemf is
also within the loop, so it drives current in the loop. Lenz’slaw allows us to understand how this
influence works: theemf acts to oppose the change in flux through the loop that occurs when the
current changes, so it acts against the change in current. Ifwe try to increase the current in the
loop, anemf appears around the loop trying to drive a current in the opposite direction to slow
the build-up of current, while, if we decrease the current inthe loop, anemf appears around the
loop that acts to push more current around the loop, slowing the decrease in the current.
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6.9.5 Inductors as circuit elements

Figure 71: A wire
coil forms an air-
core inductor.

We use the effect of self-inductance to make a circuit component called an
inductor. As with our previous circuit elements, this is a two terminal device,
but between the terminals is a wire wound into coil, as shown in fig. 71. The
wire coil has negligible resistance, but if a current flows through it, each loop
in the coil makes a magnetic field like that in fig. 69, which passes through
both itself and many other loops of the coil, so the inductor has a very high
self inductanceL. When the current through the coil changes, anemfgiven by
given by eqn 196 appears between the two ends of the coil, i.e.between the
terminals of our inductor. An inductor is thus a two terminalcircuit element,
where the voltage across it is determined by the rate of change of current
passing through it. This contrasts with a resistor, for which the voltage is

determined by the current flowing through it, a capacitor, for which the voltage is determined by
the charge, or a battery, for which it is constant.

6.9.6 Inductor and a battery

I

I

L

Figure 72: A battery
and an inductor.

The simplest circuit we can make involving an inductor is a loop containing
an inductorL and a battery with anemf of ξ, as shown in fig. 72. The
battery tries to drive a current through the inductor, but this is resisted by
the backemf of the inductor. The current at every point is the same. By
Kirchoff’s voltage law, theemf of the battery must equal theemf across the
inductor, so we have

ξ − L
dI

dt
= 0 =⇒ I(t) =

ξ

L
t, (197)

i.e. the current through the inductor grows linearly in time. This makes
sense: a linearly increasing current gives a linearly rising flux through the
inductor, and hence a constant backemf across the inductor, which matches
theemf of the battery.

6.9.7 Energy in an inductor

In the above example, an ever increasing amount of current flows from the positive terminal of
the battery to the negative one, releasing the battery’s energy at a rateξI, leading us to ask where
this energy has gone. There is no conventional resistance inour circuit to dissipate the energy
as heat. The answer is that the energy is stored in the ever increasing magnetic field inside the
inductor. We can calculate how much energy the inductor stores by looking at how much energy
the battery has released by timeT

W =

∫ T

0

ξI(t)dt =

∫ T

0

ξ2t

L
dt =

ξ2T 2

2L
=

1

2
LI(T )2. (198)

More generally, the power absorbed by an inductor is, as always the product of the current through
it and the voltage over itP = V I = ILdI

dt
. The power absorbed in a timedt is thusdW = Pdt =

V I = ILdI
dt
dt = ILdI, so the power absorbed building the current up from zero toI is

W =

∫ I

0

ILdI =
1

2
LI2, (199)

which agrees with our previous calculation. This is the general result of the energy stored in an
inductor when it is carrying a currentI.
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6.9.8 Exponential decay of an RL circuit

I

I

LR

Figure 73: A induc-
tor and a resistor.

Consider a circuit consisting of an inductor and a resistor in a loop, as shown
in fig. 73. If, att = 0, we prepare the circuit with a currentI flowing in it,
what happens next? The flow of the current is resisted by the resistor, but
a reduction in the current is resisted by the inductor. Applying Kirchoff’s
voltage law to the loop, we the backemf from the inductor must match the
potential difference across the resistor, giving

− IR− L
dI

dt
= 0 =⇒ I(t) = I(0)e−

tR
L , (200)

i.e. the current in the circuit decays exponential with decay timeτ = L/R.
We can understand this from an energy perspective. At the outset the

inductor is storing energy1
2
LI(0)2. However, the same current,I, is flowing

through the resistor, dissipating energy as heat at a rateP = I2R. This energy must ultimately
come from the stock of energy in the inductor, so this stock falls in time, meaning the current in
the loop falls in time. The total energy dissipated in the resistor is

W =

∫ ∞

0

I2Rdt =

∫ ∞

0

I(0)2Re−
2Rt
L dt =

1

2
LI(0)2, (201)

i.e. all the energy that starts in the inductor is ultimatelydissipated in the resistor.
The energy stored in the inductor decays asEL(t) =

1
2
LI(t)2 = EL(0)e

− 2Rt
L , so it also decays

exponentially but at twice the rate as the current, with decay timeτ = L/(2R).

6.10 Summary of Circuits

• The electric current through a surface is the rate at which charge passes through the surface:

I =
dq

dt
. (202)

• The potential difference between two points is the amount ofelectrical energy turned to
other forms of energy when a unit of charge moves between them, thus when a chargeq
moves,

W = qV. (203)

• A battery gives electrical energy to the charges that flow through it. In a circuit the potential
difference across a perfect battery is always itsemf, ξ,

V = −ξ. (204)

• When a capacitor of capacitanceC holds a chargeQ, the potential difference across it is
given by

V = Q/C. (205)

• When a currentI flows through a resistorR the potential difference across it is

V = IR. (206)
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6 ELECTRICAL CIRCUITS 6.10 Summary of Circuits

• When the current through an inductor,L, is changing the potential difference across it is

V = L
dI

dt
. (207)

• To analyze circuits, we need the above constitutive laws foreach component, and Kirchoff’s
laws. Firstly, at a junction in a circuit current is conserved

∑

i Ii = 0. Secondly, the sum of
the potential differences around every loop in a circuit addto zero

∑

i Vi = 0.

• When a currentI flows through a potential differenceV , the rate at which electrical energy
is converted to other forms is

P = V I (208)

• A battery thus puts electrical energy into a circuit at a rate

P = Iξ. (209)

• The power that flows into a resistor is dissipated as heat at a rate

P = V I = V 2/R = I2R. (210)

• The power that flows into capacitors and inductors is stored and can be recovered later. The
energies stored in a capacitor and an inductor are

WC = 1
2
QV = 1

2
CV 2 = 1

2
Q2/(2C) WL = 1

2
LI2. (211)
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