Michael John Hutcheon, PhD Phone: 07378620620 email: michael.hutcheon@hotmail.co.uk URLS: Google scholar¹ Github² Gitlab³

Current positions

- 2024- Intellectual Ventures Research consultant Machine-learning accelerated superconductor discovery
- Author of the open source⁴ procedurally-generated multiplayer video game Don't get lost⁵
 More than 128,000 copies shipped

Previous positions

2021-2024 University of Nottingham Research Fellow

Computational chemistry, Teale group⁶

- Research: Quantum mechanics, numerical optimization, Density functional theory (DFT), orbital-free DFT
 - Core developer of the $QUEST^7$ quantum chemistry code (~ 1400 commits)
 - Author of the TOPGRID⁸ topological analysis library (paper⁹)
 - Winner of best talk, Orbitals aren't real, Dan Ely symposium 2023

2018-2021 University of Cambridge PhD, Theoretical physics

Thesis: Novel methods to predict solid-state material properties¹⁰

Group: Theoretical condensed matter physics $(TCM^{11}, my homepage there^{12})$

Research: Superconductors, crystal structure prediction, machine learning, quantum Monte Carlo, phonons • Co-investigator in 3 million CPU-hour grant for superconductor discovery¹³

- Published seven academic papers during my PhD (achieving *editors suggestion* in PRL¹⁴ and PRB¹⁵)
- Four years teaching mathematics for the physical sciences tripos
- Author of the XDMC¹⁶ quantum Monte Carlo code, based on a technique of my own design¹⁷

2017-2018 University of Cambridge MPhil, Scientific Computing (distinction) Dissertation: The energetics of crystals using density-functional theory and diffusion quantum Monte Carlo

- 2016-2017 University of Oxford MPhys, Masters in Physics (1st class) Dissertation: Photon induced decoherence of a Transmon superconducting charge qubit
- 2013-2016 University of Oxford BSc, Physics (1st class)
 - Placed 6th in cohort
 - 2017 Mary Somerville prize
 - 2016 Brazell Scholarship in Physics
 - 2015 Maria and Tina Bentivoglio Scholarship in Physics
 - Departmental commendations for laboratory work

2016 Rutherford Appleton labs, Internship

8 week placement. Designed vertex reconstruction algorithms for the 2025 upgrade of the CMS detector at CERN

Publications

Please see my Google scholar page for my academic publications My music can be found on Spotify¹⁸ and SoundCloud¹⁹

Grants

Resource Allocation Panel (RAP): Open access to Tier-2 (Spring 2019) Predicting the crystal structure and superconducting properties of hydrides under high pressure; 3 million CPU hours, Co-investigator.

Talks

- Orbitals aren't real, Winner of best talk, Dan Eley symposium, Nottingham, 2023.
- Direct approaches to the SCF problem in quantum chemistry, Nottingham, 2023.
- Occupation numbers in quantum chemistry, Nottingham, 2022.

- Topological analysis of electronic properties on arbitrary grids, MAGIC conference, Cambridge, 2022.
- Topological analysis of functions on DFT grids, Nottingham, 2022.
- High-throughput discovery of superconductors, Invited talk, Oxford, 2021.
- Exchange-diffusion Monte Carlo, Total energy and force methods conference, San Sebastián, 2020.
- Exchange-diffusion Monte Carlo: asymptotically exact solutions to the sign problem, Cambridge, October 2019.
- Run DMC: diffusion Monte Carlo theory and practice, Cambridge, Nov 2018.

Computing experience

7 years of research focused on computational physics/chemistry and high-performance computing. Extensive experience programming in python, C++ and C# both for scientific and non-scientific purposes. I am the author of XDMC, a C++ quantum Monte Carlo code based on a novel technique of my own design²⁰, and TOPGRID, which is the topological analysis python library (see paper²¹) used in the QUEST quantum chemistry package, of which I am also a core developer (~1300 commits). I build video games in my spare time, mostly using C# and C++ and am the author of the open-source procedurally-generated multiplayer video game Don't get lost, which has shipped over 128,000 copies on steam. Along the way I've used a lot of 3D modelling software, game engines, photoshop etc. I have also done a reasonable amount of FORTRAN (in particular, optimizations to the Quantum Espresso²² software) and web development; Javascript, HTML and CSS. I am a native linux user, and an experienced user of supercomputers. I also built a robot called Doug²³, who draws pictures.

Peer Review

I have reviewed papers for the following journals

- Nature, npj Computational Materials
- \bullet APS, Physical Review B
- Wiley, The Journal of Computational chemistry
- Elsevier, Physics Letters A

Other experience

Graduate of the Make every comma count communications course.

2009-2013 Wootton upper school

A-Levels: Maths A*, Physics A*, Perspectives on Science A*, Further Maths A, Chemistry A AS-Levels: Applied Science A, Biology A GCSEs: 4A*, 10A

2012 Cranfield University, Internship

6 week placement. Created a computer model of a Siemens SGT-8000H industrial gas turbine engine.

2013-2019 Colben Ltd., Farm worker

Worked during the harvest at my family farm over each summer. Transporting and monitoring moisture levels of grain, maintaining and repairing farm equipment.

Rowing

Captain of Somerville men's boatclub in my 2nd year at Oxford, president in my 3rd and social sec in my 4th. Rowed for Somerville men's 1st boat at Oxford and Hughes Hall men's 1st boat in Cambridge. Organised and taken part in dozens of regattas and training camps.

Music

Countless hours spend recording and producing music of many genres; playing guitar, piano and drums. Examples can be found on my webpages.

Last updated: June 4, 2024 \bullet Typeset in LATEX

¹https://scholar.google.com/citations?user=UYEycjEAAAAJ ²https://github.com/miicck ³https://gitlab.com/miicck ⁴https://github.com/miicck/dont-get-lost ⁵https://store.steampowered.com/app/1442360/Dont_get_lost/ ⁶https://quest.codes/ ⁷https://quest.codes/the-code/ ⁸https://github.com/miicck/topgrid $^{9} https://pubs.acs.org/doi/10.1021/acs.jctc.2c00649$ $^{10} \rm https://www.repository.cam.ac.uk/items/2811d589-ae22-4d08-a265-111efa7af5be$ ¹¹https://www.tcm.phy.cam.ac.uk/ ¹²http://www.tcm.phy.cam.ac.uk/~mjh261/ 13 See 'grants' section ¹⁴https://link.aps.org/doi/10.1103/PhysRevLett.128.047001 ¹⁵https://link.aps.org/doi/10.1103/PhysRevB.104.054501 ¹⁶https://github.com/miicck/xdmc

¹⁷https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.042105

 $^{18} \rm https://open.spotify.com/artist/4ghErFI3mXNdb2UM7EQQzJ?si=mmJe0h5cT1ikoQ57KhKoYw$

- ¹⁹https://soundcloud.com/michael-hutcheon
 ²⁰https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.042105
 ²¹https://pubs.acs.org/doi/10.1021/acs.jctc.2c00649
 ²²https://gitlab.com/miicck/q-e
 ²³https://github.com/miicck/spider_printer