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Abstract

We present DFT calculations of defect formation energies in
alumina, a ceramic oxide considered an archetype for other
similar oxides. Combining an existing method for the de-
termination of elemental chemical potentials (as a function
of the thermodynamic formation conditions), with a new
method for extrapolation to effectively infinite supercell size
(removing finite-size errors in electrostatic and elastic ener-
gies), we show how the results can be made relatively insen-
sitive to the principal approximations of DFT. These include
choices of XC functional and pseudopotential and the super-
cell in which the calculation is performed. Our results for
formation energies are much less sensitive than traditional
approaches to these choices, and differ notably from previ-
ous results. These are then used as inputs to a new ap-
proach to calculating fully ab initio values for expected de-
fect concentrations. From our results of concentrations and
activation energies, we are able to explain many previously
ill-understood aspects of oxygen and aluminium diffusion in
Al2O3.

Defect Formation Energies

Defects are the source of many of the most interesting properties of crys-
talline solids. Metal oxides are among the most widely-used and studied
crystalline solids, so it is clearly important that we are able to understand
and simulate defects in such materials. Their uses range from unreactive
structural ceramics and refractory materials, to highly efficient fuel cells,
catalysts, lasers and many other applications great industrial and tech-
nological importance. Aluminium Oxide, Al2O3, is a frequently-studied
material that can serve as a prototype for many others of the same struc-
ture, and serves to illustrate well many of the challenges of studying such
systems, such as low-symmetry structures, complex bonding midway be-
tween ionic and covalent, and long-ranged anisotropic interactions.

Figure 1: Three forms of α−Al2O3 with different doping, which affects
optical properties: Corundum, Ruby and Sapphire.

The concentration of defects in a material is controlled by the equilib-
rium conditions under which it was formed or annealed. The Law of
Mass Action tells us that concentrations ci of each species i of defect
obey

ci ∝ exp[−∆Gi
f/kBT ] (1)

The quantity one must calculate is therefore change in Gibbs Free Energy
∆Gf to form the defect. In a DFT calculation, we approximate the non-
entropic part of this with the difference in DFT total energies of perfect
and defect cells, using the Zhang-Northrup approach [1], so the required
formation energy is ∆Ef is

∆Ef = E
def,q
T − E

perf
T −

∑

X

∆nXµX + qµe , (2)

where ∆nX is the change in number of atoms of species X and µX is its
chemical potential, and µe is the chemical potential of the electron reser-
voir, expressed as a Fermi energy offset from the valence band maximum:
µe = EV BM + ǫF . By performing DFT simulations of a supercell of
perfect crystal, a supercell containing the defect, and the elemental forms
of the constituents, we thus calculate the formation energies of a range
of species of defect, such as cation and anion vacancies and interstitials,
plus more complex clusters of the above.

Our calculations use ultrasoft pseudopotentials and a plane wave basis
set, using the CASTEP code [2]. For the extrapolation to infinite super-
cell size we pattern the (non-primitive) 30-atom hexagonal cell of Al2O3
to a variety of sizes and shapes.

Figure 2: Hexagonal 2×2×1 supercell of Al2O3. The 2:3 coordination
means that Aluminium atoms occupy only 2/3 of the octahedral sites,
distorting the structure.

Species Chemical Potentials

Equation 2 contains terms representing the chemical potentials under
specific formation conditions of the species present in the crystal, and of
the electron reservoir. It is common simply to calculate the range of each
µX defined by the stability of the solid relative to the elemental phases of
each constituent. However, this approach is poor in the case of alumina:
not only is the range large due to the large formation energy, in addition
the calculation of the total energy of an Oxygen molecule is a challenging
one for DFT — producing an answer strongly dependent on choices of
XC functional and pseudopotential.
We follow here instead the approach of Finnis, Lozovoi and Alavi [3],
which links the chemical potential directly to the formation conditions,
and eliminates the use of the unreliable DFT total energy of an Oxygen
molecule by using the experimental value of the formation energy of the
oxide to complete the cycle. Then, analytic values for an ideal diatomic
gas are used to obtain the chemical potentials at specific temperature T
and oxygen partial pressure pO2

from the values at STP.
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Figure 3: Formation energy of an Oxygen vacancy without (left) and
with (right) the above approach to chemical potentials. Note the re-
duction in the spread of formation energies between different choices of
functional and pseudopotential (N.B. the difference in absolute value is
arbitrary as it is dependent on the values of pO2

and T used in the de-
termination of µO).

Supercell Size Scaling

Plane-wave basis sets have great advantages in computational cost and
accuracy. However, they are restricted to periodic BC’s. One must there-
fore surround a defect by some finite amount of bulk, and inevitably this
leads to errors in the total energy from electrostatic and elastic interac-
tions between periodic replicas of the defect. Previous work on correcting
for these interactions, to calculate the formation energy of an isolated de-
fect, has focused on two approaches: analytic correction of the spurious
interaction, and extrapolation of finite-cell results to infinite size. Here
we employ a new method that mixes elements of both approaches.
The most commonly used correction formula is that of Makov and Payne

ET (L) = ET (L → ∞) −
q2α

2ǫL
−

2πqQ

3ǫL3
+ O[L−5] (3)

However, neither the experimental or calculated dielectric constant con-
sistently produces a good correction in most solids. Extrapolation tech-
niques instead treat ǫ as a parameter, calculate the total energy at a range
of values of L and extrapolate to L → ∞.
The approach we take here is to note that α/L ∝ vM , the Madelung
constant, which varies with cell shape as well as size. By varying the
different lengths of the supercell independently, and fitting against vM
we can obtain data for a much larger range of cells without going to
unfeasibly large simulation cells.
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Figure 4: Extrapolation of formation energies of intrinsic defect species
to infinite supercell size. The points are from 2×2×1, 2×2×2, 2×2×3,
3 × 3 × 1, 4 × 4 × 1, 3 × 3 × 2 and 4 × 4 × 2 multiples of the hexagonal
cell, containing 120, 240, 360, 270, 480, 540, and 960 atoms respectively.
Elastic relaxations are not permitted here beyond the 120-atom positions.
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Figure 5: Extrapolation to infinite cell size allowing atomic relaxations,
hence including elastic effects. The lines are less straight, but the extrap-
olation to infinite size remains reliable.

The extrapolation can be carried out with or without elastic relaxations,
allowing the electrostatic and elastic effects to be investigated separately.
The fitted values of ǫ agree well between different defect species, and
are greatly increased when atomic relaxations are included, due to the
increased screening by movement of the ions.

Concentrations

These innovations allow us to calculate the formation energies of all the
species of intrinsic defect we expect to be common in our system. From
these energies, we can calculate the concentrations of these defects in a
self-consistent framework.
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Figure 5: Formation energies of intrinsic defect species as a function of
Fermi energy ǫF .

Beginning from the Law of Mass Action in Eq. 1, the total Gibbs energy
G of a system of Al2O3 can be minimised while constraining particle num-
bers and charge neutrality to give an expression for the concentration of
free defects of species i:

ci = pi exp(−
gi −

∑
X µXfX

i + µeqi

kBT
) . (4)

µX is the chemical potential of element X , fX
i the number of atoms of

X in a molecular unit containing a single defect of type i, qi the charge
on such a molecular unit, and pi the number of permutations of sites
and orientations of defect i. The constraint of charge neutrality ensures
that the net charge Qi =

∑I
0 ciqi of the native defects per formula unit

cancels the net charge of dopants per formula unit, Qd. This draws
an important parallel between theory and experiment. Qd is the total
charge of all dopants present, including those contained in clusters and
those with bound native defects. Care must be taken interpreting Qd in
terms of actual dopant atom concentrations as the charge provided may
well be bound up in clusters not included in the present formulation.
We find the value of µO equivalent to particular formation conditions T ,
pO2

, and the corresponding µAl = 1
2(µAl2O3

− 3µ1

2
O2

), then solve Eq. 4

iteratively, adjusting µe until the charge balance Qi = −Qd is obtained.
This yields the concentrations of individual defect species as functions
of T ,pO2

and Qd, and also gives a self-consistent value of µe, and thus
the Fermi level. ǫF will shift for different levels of net doping as charge-
compensating defects are created to balance Qd, and, for Al2O3, it is
found that ǫF is then confined to a region of ca. 2eV within the band
gap.
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Figure 6: Defect concentrations [X] as a function of net dopant charge
concentration Qd on a log-log plot at T = 1750K, pO2

/p0 = 0.2. For de-
fect species of low relative concentrations, only the most abundant charge
state is shown.

These changes in ǫF dictate changes in the formation energies, and thus
the activation energies for diffusion Qact = ∆Emig + ∆Ef . With these
results, we can explain many of the puzzles of diffusion in this mate-
rial. We can show that the remarkable confluence of bulk diffusion data
in Al2O3, despite numerous experimental difficulties and differences be-
tween sample impurity levels, owes in large part to the confinement of ǫF
to a strict regime within the band gap and the higher than previously
thought intrinsic levels of defects. Together, these cause ǫF to remain al-
most constant across wide ranges of doping, leading to constant diffusion
coefficients.

Conclusions

We present an approach to calculating defect formation energies and de-
fect concentrations that allows one to predict, with no empirical input,
a self-consistent set of concentrations for all the intrinsic defects under
consideration, taking only the thermodynamic variables describing the
formation conditions as inputs. This method has diverse applications
across materials science, as in very many fields a full understanding of
defect concentrations is crucial to improving material properties.

References
[1] S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).

[2] S. J. Clark et al, Zeitschrift für Kristallographie, 220, 567 (2005).

[3] M. W. Finnis, A. Y. Lozovoi and A. Alavi, Annu. Rev. Mater. Res. 35, 167 (2005).


