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Introduction
The question of whether a wavefunction represents a metal
or an insulator is easily answered within a one-electron, in-
dependent particles context, but in a many-body system it
is less clear. The development of the Berry-Phase theory of
polarisation [1] and localisation [2] has, however, allowed cal-
culation of these quantities central to metallic and insulating
behaviour, and recent work [3] has extended these to many-
body systems. We investigate here the behaviour of the local-
isation length, a quantity representing the quadratic spread
of an extended wavefunction, expected to be finite in an in-
sulator and infinite in a metal. We use Density Functional
Theory and Quantum Monte Carlo to study its behaviour in
model systems comprising periodic arrays of quantum dots.
We describe the circumstances under which a metal insulator
transition is accompanied by a divergence in the localisation
length, and we present a derivation of the many-body ex-
pressions for polarisation and localisation which stresses the
connection to many-body Wannier functions.

Many Body Wannier Functions

In one-electron theory, polarisation and localisation are associated with
the position and spread of the maximally localised Wannier functions.
The same approach can be applied to many-body Bloch functions Ψk
which result from translational symmetry of the whole Hamiltonian by
single electron coordinates, to form many-body Wannier functions WM.
In this localised many-body basis, the position operator is well-defined
and its first and second moments can be calculated in terms of the vari-
ation of the many-body wavefunction with the twist vector k over the
cell:

|WM〉 =
1√
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where Φk is the periodic part of Ψk. We define the spread functional Ω
as the variance of this operator:

Ω = 〈W0| X̂2 |W0〉 − 〈W0| X̂ |W0〉2 (3)

which after some manipulations is split into gauge-invariant and gauge
dependent parts ΩI and Ω̃, where
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To put this in a form in which the quantities can be evaluated within
existing methods, an ansatz wavefunction is constructed for a larger cell,
assuming short range correlations, to produce a ‘single-point’ formula for
the spread per electron in the N electron system of side Li in direction
i, relying only on the many-body wavefunction Ψ at k = 0:

〈r2
i 〉c = − 1

N
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Li

2π

)2

ln
∣∣〈Ψ
∣∣e−iGi.X̂

∣∣Ψ
〉∣∣2 (5)

Evaluation in DFT and QMC

Density Functional Theory does not provide a true many-body ground
state wavefunction, but localisation lengths can be calculated by forming
an ansatz Slater determinant Ψ from the occupied orbitals at k points
on a grid with spacings δki, and evaluating the above expression for this
wavefunction from the modulus squared of the complex number zN . The
determinant formed from the overlaps is very sparse and can be evaluated
in terms of overlaps of individual Bloch functions:

zN (δki) =
〈
Ψ
∣∣e−iδki.X̂

∣∣Ψ
〉

=
∏

k

det S(k) (6)

where S(k) is a matrix of overlaps between the periodic parts unk of the
Bloch functions of the occupied bands n, whose terms are given by

Snn′(k) =

{
〈unk| un′k+δk〉
〈unk| e−iG′.r | un′k+δk−G′〉

(7)

where the latter expression is used if k + δk is outside the Brillouin zone
for G′ such that k + δk− G′ is inside. In a plane wave basis with coef-
ficients cnk, zN can be evaluated easily from the plane wave coefficients:

Snn′ =
∑

G

c∗nk(G) cn′(k+δk−G′)(G − G′) (8)

where G′ = 0 if k + δk is in the first B.Z.

In Quantum Monte Carlo [4], the complex number zN (Gi) is evaluated
for each of the electron configurations {rj} generated during a VMC run,

by evaluating the local operators exp−iGi.X̂ at each timestep and av-
eraging. This method runs into difficulties in large systems when the
magnitude of the mean of |zN | becomes very small, as it is being av-
eraged from numbers of unit magnitude and hence fixed variance. In
this situation, using a run length M such that

√
M ≫ 2/|zN | ensures

∆〈x2〉c ≪ 〈x2〉c.

Localisation Lengths over

Metal-Insulator Transitions

Previous work [2] has shown that the localisation length is a good indica-
tor of metallic or insulating behaviour over a metal-insulator transition:
a divergence to infinity was observed where the system becomes metallic.
Additionally, localisation of Wannier functions is known to be closely re-
lated to the system’s energy gap, so one might expect that, approaching
a metal-insulator transition, as the gap tends to zero, the localisation
length will diverge to infinity. We show by a number of examples with
different bandstructures that this is only the case in particular circum-
stances and in general depends on the nature of the states which meet at
the transition. We illustrate how different properties of the bandstructure
in DFT affect localisation, and in QMC we show the effect of including
correlation via a Jastrow factor.

Quasi-1D Chains

We simulate a quasi-1D chain of 2D dots along x using a strong barrier
potential and a large unit cell in the y-direction. Including only ky=0 but
a range of kx’s in the first Brillouin zone produces a simplified bandstruc-
ture in which the effect of the symmetry properties of the Bloch functions
can be distinguished. The two situations, shown below as (a) and (b),
differ by the spatial symmetries of the states above and below the direct
gap. In both cases the strength of the confining potential ω is tuned
down such that a band-insulator to metal transition occurs at a particu-
lar strength ωM . In (a) the bands which meet have different symmetries
under reflection in the x-axis so there is no Hamiltonian matrix element
between them for any kx, whereas in (b) they are of the same symmetry
so there is a matrix element for all kx other than kx = 0. In both cases
the direct gap closes to zero, but only in (b) do we see a divergence in
〈x2〉c around ωM . This emphasises the importance of a nonzero matrix
element between the states either side of the gap if a divergence is to be
observed.
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1D Chain of 4-electron dots: Localisation spread 〈x2〉c and inverse
direct energy gap 1/(2Eg) as ω is reduced. Inset: Energy bands E(kx)
just before (left) and shortly after ωM (right). System remains metallic
after transition as the bands pass through each other.
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1D Chain of 6-electron dots: Localisation spread 〈x2〉c and inverse
direct energy gap 1/(2Eg) as ω is reduced. Insulating either side of ωM
but metallic at ωM . Inset: as above but bands repel after crossing and
system becomes insulating again.

2D Arrays

In this arrangement we restore 2D symmetry in the potentials, with a
square lattice with each unit cell containing a single dot. Now, with six

electrons per dot, the s band and the two p bands are filled and there is
an indirect gap to the next band up. By reducing the confining potential
ω we again drive the system over a metal-insulator transition but this
time the smallest direct gap remains finite as the indirect gap falls to
zero and the bands overlap. Consequently, no divergence is seen in 〈x2〉c
which merely grows as the confinement is reduced. The addition of cor-
relation via a Jastrow factor within QMC reduces the localisation length
significantly but does not otherwise affect its behaviour in this situation.
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2D Array: Localisation spread in DFT and direct and indirect energy
gaps, and localisation length in QMC with Jastrow factor. Inset: Disper-
sion curve for 2D array, showing Fermi surface and energy gap between
Γ and X (above right). Reciprocal cell of square lattice showing high
symmetry points (middle right). External potential in a sample of the
supercell (below left)

Graphene Model

The hexagonal lattice corresponding to a model of the graphene system
provides a situation with a direct gap which can be tuned down to zero
in a realistic system. The system contains two types of sites, A and B,
with the potential on the A sites scaled by (1 + ∆) relative to B.
At nonzero ∆ there is an energy gap and a finite localisation length,
which can be interpreted as the electrons being localised to the lower
energy sites. As ∆ → 0, the energy gap closes to be strictly zero, and
the localisation length diverges even though the lowest bands are fully
occupied.
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Graphene model: Localisation spread 〈x2〉c+〈y2〉c as potential asym-
metry is increased. Inset: Potential for ∆ = 0 (bottom). Real and
reciprocal lattices of the 2D system (top). The gap closes at K when
∆ = 0.

Conclusions

In conclusion, we have presented a variation on previous presentations of
localisation lengths in periodic systems, which highlights the connection
to many-body Wannier functions, and examined the behaviour of the
localisation length in a variety of 2D model systems.
Calculations of localisation lengths in model 2D periodic systems have
shown that the effect of symmetry properties on the possibility of hy-
bridisation between bands is crucial to whether a band crossing shows up
as a diverging localisation length. This will extend to 3D, although in
real materials metal-insulator transitions rarely result from closure of a
direct gap, so the chance of being able to observe such behaviour is small.
Many-body Wannier functions also have a range of other possible applica-
tions, due to their properties as a localised yet still correlated description
of the wavefunctions of extended insulators, such as in orbital magneti-
sation. They are also related to the polarisation fluctuations underlying
finite size errors within Quantum Monte Carlo.
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