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Abstract

We present recent improvements to the ONETEP code.
ONETEP is an ab initio electronic structure package for to-
tal energy calculations within density-functional theory. Its
main distinguishing features are true ‘linear scaling’, in that
the total computational effort scales only linearly with sys-
tem size, and ‘plane-wave’ accuracy, in that the convergence
of the total energy is systematically improvable with increas-
ing cutoffs. We present recent improvements to the parallel
performance of the code, and thus in effect considerable in-
creases in the scope and scale of feasible calculations with
ONETEP, especially in solids. On parallel computers com-
prising large clusters of commodity servers, our recent im-
provements make calculations of tens of thousands of atoms
in a solid feasible even for small numbers of cores (10-100).
Efficient scaling with number of atoms is demonstrated up to
32,768 atoms on 64 cores, and efficient scaling with number
of cores is demonstrated up to 512 cores for 32,768 atoms.

ONETEP Theory

Traditional Kohn-Sham DFT finds extended eigenstates ψi(r) with eigen-
values ǫi to solve Ĥ for some effective potential V [n](r):

Ĥψi(r) =

[

−
~

2m
∇2 + V [n](r)

]

ψi(r) = ǫiψi(r) , (1)

The density matrix ρ(r, r′) can then be written either in terms of the
eigenstates ψi(r) and occupation numbers fi as

ρ(r, r′) =
∑

i

fiψi(r)ψ
∗
i (r

′) . (2)

or in terms of a set of localised nonorthogonal functions φα(r)

ρ(r, r′) =
∑

αβ

φα(r)Kαβφβ(r′) , (3)

where the matrix Kαβ, the density kernel, is a generalisation of occupa-
tion numbers to a nonorthogonal basis.

Figure 1: (left) An extended eigenstate for an oligopeptide molecule
(right) Example localized NGWFs in the same molecule

Eigenstate-based approaches inevitably scale as O(N3) with the number
of atoms N : the system has O(N) eigenstates, each of size O(N), and
each needing to stay orthogonal to O(N) others. Localised-orbital ap-
proaches, however, can scale as O(N). In an insulator, the kernel Kαβ

can be truncated beyond some cutoff radius RK , so the matrix is sparse.
The overlap matrix Sαβ = 〈φα|φβ〉 is also sparse for localised φα(r),

as are elements of the Hamiltonian matrix Hαβ = 〈φα|Ĥ|φβ〉. With

Hαβ and the density n(r) =
∑

αβ φα(r)Kαβφβ(r) we can find the total
energy E with O(N) scaling by using

E[{Kαβ}, {φα}] =
∑

αβ

KαβHβα + EDC[n(r)] , (4)

and simulatenously minimising E with respect to the kernel and the coef-
ficients describing the NGWFs, subject to the constraint that the density
kernel remains idempotent and that its trace equals the number of elec-
trons.

Figure 2: (left) A psinc function (middle) FFT box containing overlap-
ping NGWFs (right) Example of NGWF optimisation of a p-orbital.

ONETEP combines O(N) scaling with ‘plane-wave’ accuracy, in that the
convergence of the total energy is systematically improvable by increas-
ing cutoffs. The localised basis in ONETEP comprises ‘Nonorthogonal
Generalised Wannier Functions’ (NGWFs) expressed in terms of a ba-
sis of periodic bandwidth-limited delta functions, or psinc functions, (see
Fig 2) strictly localized to spherical regions of radius Rφα. These psinc
functions, with coefficients Ci,α, are centered on the grid points ri of a
regular grid specified by a plane-wave cutoff energy Ecut.
The minimisation of the energy occurs via nested loops: The outer loop
minimises the energy with respect to the coefficients Ci,α

Emin = min
{Ci,α}

L({Ci,α}) , (5)

while inner loop, performed at fixed Ci,α, minimizes the energy with

respect to the kernel elements Kαβ

L({Ci,α}) = min
{Kαβ}

E({Kαβ}; {Ci,α}) . (6)

Parallel Optimisation

ONETEP was developed from the beginning as a parallel code and its
efficient scaling and performance on isolated molecules, nanotubes and
similar systems with a high degree of sparsity has been well-documented.
Recent work has focused on improving performance in solids, where com-
munications bottlenecks in large systems has previously limited the useful
applicability of the code.

Matrix Algebra

One time-limiting component of
ONETEP calculations is sparse
matrix algebra, especially during
kernel optimisation. As Fig 3
shows, the pattern of filling of the
sparse matrices representing Sαβ,

Hαβ, and Kαβ can be highly
structured, allowing considerable
optimisation of the communica-
tion and computation patterns.
Recent improvements include:

• Dense matrix algebra to re-
place sparse algebra in small
systems or systems such as
metals where kernel truncation
is not possible. See Fig 4.

• Reordered, non-blocking asyn-
chronous comms to allow differ-
ent node-node pairings to take
different lengths of time.

• Reduced total comms volume
by communicating only blocks
of multiplicands contributing
to matrix products.

• Loop-unrolled block multipli-
cation hardcoded for common
block sizes (1,4,9).

Combined, these developments
have dramatically improved both
the speed and scaling (with sys-
tem size and number of parallel
processors) of matrix algebra.

Figure 3: Sparsity pattern of
Sαβ for 512-atom fcc silicon.
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Figure 4: Timings for sparse
and dense matrix products in fcc
silicon with 4 NGWFs per atom,
with supercells of 64 to 4096
atoms on 4 to 64 cores.
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Figure 5: Timings for row sums
operations on 16 nodes, for a
range of systems (C Nanotube,
Organic BgK toxin, Al2O3 Crys-
tal, GaAs Nanorod, Si Crystal).

Another major contributor to the
computational work is from the
‘row sums’ operations, for calcu-
lating all the contributions to a
matrix or other quantity that in-
volve a given φα(r). Examples in-
clude kinetic and local potential
matrices and energies, the elec-
tron density and the NGWF gra-
dient:

i) Ekin = Kαβ〈φα|T̂ |φβ〉

ii) Eloc = Kαβ〈φα|Vloc|φβ〉 ,

iii) n(r) = Kαβφα(r)φβ(r) ,

iv) ∂E/∂φα(r) = Qαβφβ(r) + ... .

The sparsity pattern of the over-
lap matrix can be used to ‘plan’ in
advance which pairs of NGWFs
contribute to these expressions.
Sharing this plan with all other
nodes creates an efficient commu-
nication system, since each node
is able to send NGWFs to other
nodes exactly as they are needed.

Parallel Scaling
Combined with other parallel optimisations, these improvements have
resulted in very considerable decreases in the total computation time:
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Figure 6: (left) Scaling with system size for fcc silicon — clear linear
scaling of the total time for 1 iteration is observed up to 32768 atoms
(right) Scaling with number of cores on which the calculation is run —
efficient speedups are obtained up to at least 256 cores for 27000 atoms.

Recent Applications

GaAs Nanorods
‘Self-assembly’ is a promising route to constructing working nanotech
devices. Wurtzite structure GaAs nanorods, which display spontaneous
polarisation due to the polar bonding and lack of inversion symmetry,
have been observed forming a variety of self-assembled structures. Linear-
scaling DFT with ONETEP allows a window on the complex interplay be-
tween bonding and long-range electrostatic effects (which can be treated
with cutoff coulomb interactions) required to model these systems.

Figure 7: (left) Effective potential for an isolated H-terminated GaAs
nanorod (564 atoms) on a plane 6Å behind the rod. End-to-end charge-
separation results in the dipole field seen above. (right) Cross section of
the rod.

Figure 8: Two rods (1128 atoms) placed near each other to investigate

binding energies.

Defect Formation Energies
Understanding defects and defect clusters in crystalline materials is a
tough challenge for electronic structure methods due to the requirement
of embedding (often large) localised systems in periodic hosts. As a very
simple example, even the formation energy of the comparatively sim-
ple neutral vacancy in Germanium V 0

Ge tests the robustness of DFT to-
tal energy methods, since the defect state in Ge is doubly-occupied but
quadruply-degenerate. Therefore, while the bulk crystal is an insulator,
there is a degeneracy at the Fermi level in an unrelaxed defect supercell.
In small cells with a traditional DFT approach, this manifests itself as a
band whose occupation varies as function of k and may require a fudg-
ing of occupation numbers to provide results converged with respect to
supercell size.

Figure 8: Cross section through an unrelaxed vacancy in Ge, showing
(a) the largest supercell realistically feasible with a traditional plane-wave
DFT approach on 64 cores: 1000 atoms (inner box) and (b) a typical con-
siderably bigger cell (2744 atoms) that is quite feasible in a realistic time
with ONETEP (outer box).

In ONETEP cells large enough to require only Γ-point calculations for
accurate results can be used, giving results much less affected by finite-
size errors. However, a localised degeneracy can still lead to problems
with initial density kernel occupation numbers not summing exactly to
Ne. There are two solutions to this — either the initial degeneracy can
be broken by minor random adjustments to the initial Hαβ, or the initial

Hαβ can be explicitly diagonalised (a single O(N3) operation) to provide
an perfectly idempotent kernel as a starting-point.

Conclusions

Improvements to the ONETEP code have lowered the ‘crossover point’,
the number of atoms beyond which a linear scaling algorithm becomes re-
quires less calculations than a comparable traditional DFT method. This
was already (∼ 100 atoms) for a non-dense system such a nanotube, but
it has now been brought down to the regime of feasible calculations for
solids as well. For example, in covalent semiconductors such as Si, Ge
and III-V’s, we estimate the crossover point relative to CASTEP to be
around 600 − 1000 atoms.
We have also demonstrated the efficiency and accuracy of the code to
two important applications: self-assembly in GaAs nanorods, and defect
formation energies in semiconductors.
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